Weight enumerators of binary singly even self-dual codes

Akihiro Munemasa
Tohoku University
(joint work with Stefka Bouyuklieva and Masaaki Harada)

JCCA, August 18, 2017
Kumamoto University

Binary codes and their dual

A code C of length n is a vector subspace of \mathbb{F}_{2}^{n}. The dual code C^{\perp} of C is defined as

$$
C^{\perp}=\left\{x \in \mathbb{F}_{2}^{n} \mid x \cdot y=0 \text { for all } y \in C\right\}
$$

and C is self-dual if $C=C^{\perp}$.
A self-dual code C is

$$
\begin{aligned}
\text { doubly even } & \Longleftrightarrow \mathrm{wt}(x) \equiv 0 \quad(\bmod 4) \quad(\forall x \in C) \\
\text { singly even } & \Longleftrightarrow \text { otherwise } \\
& \Longleftrightarrow C_{0}=\{x \in C \mid \operatorname{wt}(x) \equiv 0 \quad(\bmod 4)\} \\
& \ngtr C \quad(\text { codimension } 1)
\end{aligned}
$$

The minimum weight of C is

$$
d(C)=\min \{\mathrm{wt}(x) \mid 0 \neq x \in C\}
$$

Upper bounds on minimum weight

Theorem (Mallows-Sloane (1973))

If C is a doubly even self-dual code of length n, then its minimum weight is at most

$$
4\left\lfloor\frac{n}{24}\right\rfloor+4
$$

Upper bounds on minimum weight

Theorem (Mallows-Sloane (1973))

If C is a doubly even self-dual code of length n, then its minimum weight is at most

$$
4\left\lfloor\frac{n}{24}\right\rfloor+4 .
$$

doubly even $\Longleftrightarrow \operatorname{wt}(x) \equiv 0(\bmod 4) \quad(\forall x \in C)$, singly even \Longleftrightarrow otherwise

Upper bounds on minimum weight

Theorem (Mallows-Sloane (1973))

If C is a doubly even self-dual code of length n, then its minimum weight is at most

$$
4\left\lfloor\frac{n}{24}\right\rfloor+4
$$

Theorem (Rains (1999))

If C is a self-dual code of length n, then its minimum weight is at most

$$
\left\{\begin{array}{lll}
4\left\lfloor\frac{n}{24}\right\rfloor+4 & \text { if } n \not \equiv 22 & (\bmod 24) \\
4\left\lfloor\frac{n}{24}\right\rfloor+6 & \text { if } n \equiv 22 & (\bmod 24) .
\end{array}\right.
$$

A self-dual code meeting this upper bound is called extremal. Doubly even $\Longrightarrow n \equiv 0(\bmod 8)$.

Shadow

Let C be a singly even self-dual code of length n and let

$$
C_{0}=\{x \in C \mid \mathrm{wt}(x) \equiv 0 \quad(\bmod 4)\} \varsubsetneqq C
$$

The shadow S is defined to be

Then

$$
\mathrm{wt}(x) \equiv n / 2 \quad(\bmod 4) \quad(\forall x \in S)
$$

so, letting $d(S)=\min \{\mathrm{wt}(x) \mid x \in S\}$, we say that C is a code with minimal shadow if

Shadow

Let C be a singly even self-dual code of length n and let

$$
C_{0}=\{x \in C \mid \mathrm{wt}(x) \equiv 0 \quad(\bmod 4)\} \varsubsetneqq C
$$

The shadow S is defined to be

$$
S=C_{0}^{\perp} \backslash C
$$

Then
$\mathrm{wt}(x) \equiv n / 2 \quad(\bmod 4) \quad(\forall x \in S)$,
so, letting $d(S)=\min \{\operatorname{wt}(x) \mid x \in S\}$, we say that C is a code with minimal shadow if

Shadow

Let C be a singly even self-dual code of length n and let

$$
C_{0}=\{x \in C \mid \mathrm{wt}(x) \equiv 0 \quad(\bmod 4)\} \varsubsetneqq C
$$

The shadow S is defined to be

$$
S=C_{0}^{\perp} \backslash C
$$

Then

$$
\mathrm{wt}(x) \equiv n / 2 \quad(\bmod 4) \quad(\forall x \in S)
$$

so, letting $d(S)=\min \{\mathrm{wt}(x) \mid x \in S\}$, we say that C is a code with minimal shadow if

$$
d(S)=\left\{\begin{array}{lll}
1 & \text { if } n \equiv 2 & (\bmod 8) \\
2 & \text { if } n \equiv 4 \quad(\bmod 8) \\
3 & \text { if } n \equiv 6 \quad(\bmod 8) \\
4 & \text { if } n \equiv 0 \quad(\bmod 8)
\end{array}\right.
$$

Singly even self-dual codes with minimal shadow

length n	$d=4 m+4$ (extremal)	$d=4 m+2$
$24 m+2$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !w.e. ($\nexists)$
$24 m+4$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !w.e. ($\nexists)$
$24 m+6$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2,!, w . e$.
$24 m+8$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+10$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !w.e. ($\nexists)$
$24 m+12$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+14$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+16$	$d(C)=4 m+4$, , $\nexists)$	
$24 m+18$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+22$	$d(C)=4 m+6, \nexists$	$d(C)=4 m+4$, !,w.e.

(\nexists) means that nonexistence is shown for sufficiently large m.
Bouyuklieva and Varbanov (2011),
\square
Bouyuklieva, Harada and Munemasa (2017-

Singly even self-dual codes with minimal shadow

length n	$d=4 m+4$ (extremal)	$d=4 m+2$
$24 m+2$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !w.e. (\nexists)
$24 m+4$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !w.e. (\nexists)
$24 m+6$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !/w.e.
$24 m+8$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+10$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !w.e. (\nexists)
$24 m+12$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+14$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+16$	$d(C)=4 m+4,(\nexists)$	
$24 m+18$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+22$	$d(C)=4 m+6, \nexists$	$d(C)=4 m+4$, !/w.e.

(\nexists) means that nonexistence is shown for sufficiently large m. Bouyuklieva and Varbanov (2011), by Bouyuklieva and Willems (2012),

Singly even self-dual codes with minimal shadow

length n	$d=4 m+4$ (extremal)	$d=4 m+2$
$24 m+2$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !w.e. ($\#$)
$24 m+4$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !w.e. ($\nexists)$
$24 m+6$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, ! $/$. e .
$24 m+8$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+10$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !w.e. ($\nexists)$
$24 m+12$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+14$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+16$	$d(C)=4 m+4,(\nexists)$	
$24 m+18$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+22$	$d(C)=4 m+6, \nexists$	$d(C)=4 m+4$, ! $/$. e.

(\nexists) means that nonexistence is shown for sufficiently large m.
Bouyuklieva and Varbanov (2011), by Bouyuklieva and Willems (2012),

Bouyuklieva, Harada and Munemasa (2017+)

Singly even self-dual codes with minimal shadow

length n	$d=4 m+4$ (extremal)	$d=4 m+2$
$24 m+2$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !w.e. (\nexists)
$24 m+4$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !w.e. (\nexists)
$24 m+6$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !/w.e.
$24 m+8$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+10$	$d(C)=4 m+4, \nexists$	$d(C)=4 m+2$, !w.e. (\nexists)
$24 m+12$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+14$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+16$	$d(C)=4 m+4,(\nexists)$	
$24 m+18$	$d(C)=4 m+4$, !w.e. (\nexists)	
$24 m+22$	$d(C)=4 m+6, \nexists$	$d(C)=4 m+4$, !/w.e.

(\nexists) means that nonexistence is shown for sufficiently large m.
Bouyuklieva and Varbanov (2011), by Bouyuklieva and Willems (2012),

Bouyuklieva, Harada and Munemasa (2017+)

$n=24 m+4, d(C)=4 m+2, d(S)=2$

The weight enumerators of C and S :

$$
\begin{align*}
& W_{C}(y)=\sum_{i=0}^{12 m+2} a_{i} y^{2 i} \equiv a y y^{\top}\left(\bmod y^{6 m+1}\right) \\
& W_{S}(y)=\sum_{i=0}^{6 m} b_{i} y^{4 i+2} \equiv b y^{\prime \top} \quad\left(\bmod y^{12 m+3}\right)
\end{align*}
$$

where

$$
\begin{aligned}
\boldsymbol{y} & =\left(1, y^{2}, y^{4}, \ldots, y^{6 m}\right) \in \mathbb{Q}[y]^{3 m+1} \\
\boldsymbol{y}^{\prime} & =\left(y^{2}, y^{6}, y^{10}, \ldots, y^{12 m+2}\right) \in \mathbb{Q}[y]^{3 m+1} \\
\boldsymbol{a} & =\left(a_{0}, a_{1}, \ldots, a_{3 m}\right) \in \mathbb{Z}^{3 m+1} \\
\boldsymbol{b} & =\left(b_{0}, b_{1}, \ldots, b_{3 m}\right) \in \mathbb{Z}_{3}^{3 m+1}
\end{aligned}
$$

$n=24 m+4, d(C)=4 m+2, d(S)=2$

The weight enumerators of C and S :

$$
\begin{aligned}
& W_{C}(y)=\sum_{i=0}^{12 m+2} a_{i} y^{2 i} \equiv \boldsymbol{a} \boldsymbol{y}^{\top} \quad\left(\bmod y^{6 m+1}\right) \\
& W_{S}(y)=\sum_{i=0}^{6 m} b_{i} y^{4 i+2} \equiv \boldsymbol{b} \boldsymbol{y}^{\prime \top} \quad\left(\bmod y^{12 m+3}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{y} & =\left(1, y^{2}, y^{4}, \ldots, y^{6 m}\right) \in \mathbb{Q}[y]^{3 m+1} \\
\boldsymbol{y}^{\prime} & =\left(y^{2}, y^{6}, y^{10}, \ldots, y^{12 m+2}\right) \in \mathbb{Q}[y]^{3 m+1} \\
\boldsymbol{a} & =\left(a_{0}, a_{1}, \ldots, a_{3 m}\right) \in \mathbb{Z}^{3 m+1} \\
\boldsymbol{b} & =\left(b_{0}, b_{1}, \ldots, b_{3 m}\right) \in \mathbb{Z}^{3 m+1}
\end{aligned}
$$

$n=24 m+4, d(C)=4 m+2, d(S)=2$

The weight enumerators of C and S :

$$
\begin{aligned}
& W_{C}(y)=\sum_{i=0}^{12 m+2} a_{i} y^{2 i} \equiv \boldsymbol{a} y^{\top} \quad\left(\bmod y^{6 m+1}\right) \\
& W_{S}(y)=\sum_{i=0}^{6 m} b_{i} y^{4 i+2} \equiv \boldsymbol{b} y^{\prime \top} \quad\left(\bmod y^{12 m+3}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{y} & =\left(1, y^{2}, y^{4}, \ldots, y^{6 m}\right) \in \mathbb{Q}[y]^{3 m+1} \\
\boldsymbol{y}^{\prime} & =\left(y^{2}, y^{6}, y^{10}, \ldots, y^{12 m+2}\right) \in \mathbb{Q}[y]^{3 m+1} \\
\boldsymbol{a} & =\left(a_{0}, a_{1}, \ldots, a_{3 m}\right) \in \mathbb{Z}^{3 m+1} \\
\boldsymbol{b} & =\left(b_{0}, b_{1}, \ldots, b_{3 m}\right) \in \mathbb{Z}^{3 m+1} .
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{y}=\left(1, y^{2}, y^{4}, \ldots, y^{6 m}\right) \\
& \boldsymbol{y}^{\prime}=\left(y^{2}, y^{6}, y^{10}, \ldots, y^{12 m+2}\right)
\end{aligned}
$$

Rains (1999): Let

$$
\begin{aligned}
& f_{j}=\left(1+y^{2}\right)^{12 m+2-4 j}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{j} \in \mathbb{Q}\left[y^{2}\right], \\
& g_{j}=(-1)^{j} 2^{12 m+2-6 j} y^{12 m+2-4 j}\left(1-y^{4}\right)^{2 j} \in y^{2} \mathbb{Q}\left[y^{4}\right] .
\end{aligned}
$$

Then

$\exists \boldsymbol{c} \in \mathbb{Q}^{3 m+1}$ such that

$$
\begin{aligned}
& \boldsymbol{y}=\left(1, y^{2}, y^{4}, \ldots, y^{6 m}\right) \\
& \boldsymbol{y}^{\prime}=\left(y^{2}, y^{6}, y^{10}, \ldots, y^{12 m+2}\right)
\end{aligned}
$$

Rains (1999): Let

$$
\begin{aligned}
& f_{j}=\left(1+y^{2}\right)^{12 m+2-4 j}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{j} \in \mathbb{Q}\left[y^{2}\right] \\
& g_{j}=(-1)^{j} 2^{12 m+2-6 j} y^{12 m+2-4 j}\left(1-y^{4}\right)^{2 j} \in y^{2} \mathbb{Q}\left[y^{4}\right] .
\end{aligned}
$$

Then

$$
\begin{array}{rlrl}
\mathbb{Q}[y]^{3 m+1} & \ni \boldsymbol{f} & =\left(f_{0}, f_{1}, \ldots, f_{3 m+1}\right), \quad \boldsymbol{y} \equiv \boldsymbol{f} A \quad\left(\bmod y^{6 m+1}\right) \\
& \ni \boldsymbol{g}=\left(g_{0}, g_{1}, \ldots, g_{3 m+1}\right), \quad \boldsymbol{y}^{\prime} \equiv \boldsymbol{g} B \quad\left(\bmod y^{12 m+3}\right)
\end{array}
$$

$\exists c \in \mathbb{Q}^{3 m+1}$ such that

$\begin{aligned} a y^{\top} \equiv W_{C}(y) & =c f^{\top} \\ b y^{\prime \top} \equiv W_{S}(y) & =c g^{\top}\end{aligned}$

$$
\begin{aligned}
& \boldsymbol{y}=\left(1, y^{2}, y^{4}, \ldots, y^{6 m}\right) \\
& \boldsymbol{y}^{\prime}=\left(y^{2}, y^{6}, y^{10}, \ldots, y^{12 m+2}\right)
\end{aligned}
$$

Rains (1999): Let

$$
\begin{aligned}
& f_{j}=\left(1+y^{2}\right)^{12 m+2-4 j}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{j} \in \mathbb{Q}\left[y^{2}\right] \\
& g_{j}=(-1)^{j} 2^{12 m+2-6 j} y^{12 m+2-4 j}\left(1-y^{4}\right)^{2 j} \in y^{2} \mathbb{Q}\left[y^{4}\right] .
\end{aligned}
$$

Then

$$
\begin{array}{rlrl}
\mathbb{Q}[y]^{3 m+1} & \ni \boldsymbol{f} & =\left(f_{0}, f_{1}, \ldots, f_{3 m+1}\right), \quad \boldsymbol{y} \equiv \boldsymbol{f} A \quad\left(\bmod y^{6 m+1}\right) \\
& \ni \boldsymbol{g}=\left(g_{0}, g_{1}, \ldots, g_{3 m+1}\right), \quad \boldsymbol{y}^{\prime} \equiv \boldsymbol{g} B \quad\left(\bmod y^{12 m+3}\right)
\end{array}
$$

$\exists \boldsymbol{c} \in \mathbb{Q}^{3 m+1}$ such that

$$
\begin{aligned}
\boldsymbol{a} \boldsymbol{y}^{\top} & \equiv W_{C}(y) \\
\boldsymbol{b} \boldsymbol{y}^{\prime \top} \equiv \boldsymbol{c f}^{\top} & \equiv W_{S}(y)=\boldsymbol{c} \boldsymbol{g}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{y}=\left(1, y^{2}, y^{4}, \ldots, y^{6 m}\right) \\
& \boldsymbol{y}^{\prime}=\left(y^{2}, y^{6}, y^{10}, \ldots, y^{12 m+2}\right)
\end{aligned}
$$

Rains (1999): Let

$$
\begin{aligned}
& f_{j}=\left(1+y^{2}\right)^{12 m+2-4 j}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{j} \in \mathbb{Q}\left[y^{2}\right] \\
& g_{j}=(-1)^{j} 2^{12 m+2-6 j} y^{12 m+2-4 j}\left(1-y^{4}\right)^{2 j} \in y^{2} \mathbb{Q}\left[y^{4}\right] .
\end{aligned}
$$

Then

$$
\begin{array}{rlrl}
\mathbb{Q}[y]^{3 m+1} & \ni \boldsymbol{f} & =\left(f_{0}, f_{1}, \ldots, f_{3 m+1}\right), \quad \boldsymbol{y} \equiv \boldsymbol{f} A \quad\left(\bmod y^{6 m+1}\right) \\
\ni \boldsymbol{g} & =\left(g_{0}, g_{1}, \ldots, g_{3 m+1}\right), \quad \boldsymbol{y}^{\prime} \equiv \boldsymbol{g} B \quad\left(\bmod y^{12 m+3}\right)
\end{array}
$$

$\exists \boldsymbol{c} \in \mathbb{Q}^{3 m+1}$ such that

$$
\begin{aligned}
\boldsymbol{a} y^{\top} & \equiv W_{C}(y) \\
\boldsymbol{b} y^{\prime \top} & \equiv \boldsymbol{c f}^{\top} \\
W_{S}(y) & =\boldsymbol{c} \boldsymbol{g}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{y}=\left(1, y^{2}, y^{4}, \ldots, y^{6 m}\right) \\
& \boldsymbol{y}^{\prime}=\left(y^{2}, y^{6}, y^{10}, \ldots, y^{12 m+2}\right)
\end{aligned}
$$

Rains (1999): Let

$$
\begin{aligned}
& f_{j}=\left(1+y^{2}\right)^{12 m+2-4 j}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{j} \in \mathbb{Q}\left[y^{2}\right] \\
& g_{j}=(-1)^{j} 2^{12 m+2-6 j} y^{12 m+2-4 j}\left(1-y^{4}\right)^{2 j} \in y^{2} \mathbb{Q}\left[y^{4}\right] .
\end{aligned}
$$

Then

$$
\begin{array}{rlrl}
\mathbb{Q}[y]^{3 m+1} & \ni \boldsymbol{f} & =\left(f_{0}, f_{1}, \ldots, f_{3 m+1}\right), & \boldsymbol{y} \equiv \boldsymbol{f} A \quad\left(\bmod y^{6 m+1}\right) \\
\ni \boldsymbol{g} & =\left(g_{0}, g_{1}, \ldots, g_{3 m+1}\right), \quad \boldsymbol{y}^{\prime} \equiv \boldsymbol{g} B \quad\left(\bmod y^{12 m+3}\right)
\end{array}
$$

$\exists \boldsymbol{c} \in \mathbb{Q}^{3 m+1}$ such that

$$
\begin{aligned}
& \boldsymbol{a} \boldsymbol{y}^{\top} \equiv W_{C}(y)=\boldsymbol{c} \boldsymbol{f}^{\top} \Longrightarrow \boldsymbol{a} A^{\top}=\boldsymbol{c} \\
& \boldsymbol{b} \boldsymbol{y}^{\prime \top} \equiv W_{S}(y)=\boldsymbol{c} \boldsymbol{g}^{\top} \Longrightarrow \boldsymbol{b} B^{\top}=\boldsymbol{c}
\end{aligned}
$$

$\boldsymbol{a} A^{\top}=\boldsymbol{b} B^{\top}, d(C)=4 m+2, d(S)=2$

$$
\begin{array}{r}
W_{C}(y)=\sum_{i=0}^{12 m+2} a_{i} y^{2 i} \equiv \boldsymbol{a} \boldsymbol{y}^{\top} \quad\left(\bmod y^{6 m+1}\right) \\
d(C)=4 m+2 \Longrightarrow a_{0}=1, \quad a_{1}=\cdots=a_{2 m}=0 \\
W_{S}(y)=\sum_{i=0}^{6 m} b_{i} y^{4 i+2} \equiv \boldsymbol{b} \boldsymbol{y}^{\prime \top} \quad\left(\bmod y^{12 m+3}\right) \\
d(S)=2 \Longrightarrow b_{0}=1, \quad b_{1}=\cdots=b_{m-1}=0
\end{array}
$$

$a A^{\top}=b B^{\top}$ implies

$\boldsymbol{a} A^{\top}=\boldsymbol{b} B^{\top}, d(C)=4 m+2, d(S)=2$

$$
\begin{array}{r}
W_{C}(y)=\sum_{i=0}^{12 m+2} a_{i} y^{2 i} \equiv \boldsymbol{a} \boldsymbol{y}^{\top} \quad\left(\bmod y^{6 m+1}\right) \\
d(C)=4 m+2 \Longrightarrow a_{0}=1, \quad a_{1}=\cdots=a_{2 m}=0 \\
W_{S}(y)=\sum_{i=0}^{6 m} b_{i} y^{4 i+2} \equiv \boldsymbol{b} \boldsymbol{y}^{\prime \top} \quad\left(\bmod y^{12 m+3}\right) \\
d(S)=2 \Longrightarrow b_{0}=1, \quad b_{1}=\cdots=b_{m-1}=0
\end{array}
$$

$\boldsymbol{a} A^{\top}=\boldsymbol{b} B^{\top}$ implies

$$
(1, \underbrace{0, \ldots, 0}_{2 m}, \underbrace{\boldsymbol{a}^{\prime}}_{m})\left(\begin{array}{cc}
* & * \\
0 & A^{\prime}
\end{array}\right)=(1, \underbrace{0, \ldots, 0}_{m-1}, *)\left(\begin{array}{cc}
* & B^{\prime} \\
* & 0
\end{array}\right)
$$

$\boldsymbol{a} A^{\top}=\boldsymbol{b} B^{\top}, d(C)=4 m+2, d(S)=2$

$$
\begin{aligned}
& W_{C}(y)=\sum_{i=0}^{12 m+2} a_{i} y^{2 i} \equiv \boldsymbol{a} \boldsymbol{y}^{\top} \quad\left(\bmod y^{6 m+1}\right) \\
& d(C)=4 m+2 \Longrightarrow a_{0}=1, \quad a_{1}=\cdots=a_{2 m}=0 \\
& W_{S}(y)=\sum_{i=0}^{6 m} b_{i} y^{4 i+2} \equiv \boldsymbol{b} \boldsymbol{y}^{\prime \top} \quad\left(\bmod y^{12 m+3}\right) \\
& d(S)=2 \Longrightarrow b_{0}=1, \quad b_{1}=\cdots=b_{m-1}=0
\end{aligned}
$$

$\boldsymbol{a} A^{\top}=\boldsymbol{b} B^{\top}$ implies

$$
\begin{gathered}
(1, \underbrace{0, \ldots, 0}_{2 m}, \underbrace{\boldsymbol{a}^{\prime}}_{m})\left(\begin{array}{cc}
* & * \\
0 & A^{\prime}
\end{array}\right)=(1, \underbrace{0, \ldots, 0}_{m-1}, *)\left(\begin{array}{cc}
* & B^{\prime} \\
* & 0
\end{array}\right) \\
\Longrightarrow \boldsymbol{a}^{\prime} A^{\prime} \rightarrow \boldsymbol{a}^{\prime} \rightarrow \boldsymbol{a} \rightarrow W_{C}(y)
\end{gathered}
$$

Formula for b_{m}

$$
W_{S}(y)=\sum_{i=0}^{6 m} b_{i} y^{4 i+2} \quad\left(b_{0}=1, b_{1}=\cdots=b_{m-1}=0\right)
$$

is also uniquely determined. In fact,

$$
b_{m}=\frac{2(12 m+1)(38 m+7)}{5 m(2 m+1)}\binom{5 m}{m-1}
$$

but incorrectly reported in Zhang-Michel-Feng-Ge (2015). Moreover,

$<0 \quad$ (for m sufficiently large).

Formula for b_{m}

$$
W_{S}(y)=\sum_{i=0}^{6 m} b_{i} y^{4 i+2} \quad\left(b_{0}=1, b_{1}=\cdots=b_{m-1}=0\right)
$$

is also uniquely determined. In fact,

$$
b_{m}=\frac{2(12 m+1)(38 m+7)}{5 m(2 m+1)}\binom{5 m}{m-1}
$$

but incorrectly reported in Zhang-Michel-Feng-Ge (2015). Moreover,

Formula for b_{m}

$$
W_{S}(y)=\sum_{i=0}^{6 m} b_{i} y^{4 i+2} \quad\left(b_{0}=1, b_{1}=\cdots=b_{m-1}=0\right)
$$

is also uniquely determined. In fact,

$$
b_{m}=\frac{2(12 m+1)(38 m+7)}{5 m(2 m+1)}\binom{5 m}{m-1}
$$

but incorrectly reported in Zhang-Michel-Feng-Ge (2015). Moreover,

$$
b_{m+1}=-\frac{\text { polynomial in } m \text { of positive leading coeff. }}{(5 m-1) \prod_{i=2}^{6}(4 m+i)}\binom{5 m}{m-1}
$$

$<0 \quad$ (for m sufficiently large).

Our results

Theorem (Bouyuklieva-Harada-M., arXiv:1707.04059)

The weight enumerators $W_{C}(y)$ and $W_{S}(y)$ of a singly even self-dual code C of length $24 m+4$, minimum weight $4 m+2$ and its shadow are uniquely determined by m. These uniquely determined polynomials have all coefficients nonnegative if and only if $0 \leq m \leq 155$.
In particular, for $m \geq 156$, there is no singly even self-dual code of length $24 m+4$, minimum weight $4 m+2$ with minimal shadow.

We have similar theorems for the lengths $24 m+2$ and $24 m+10$.

Our results

Theorem (Bouyuklieva-Harada-M., arXiv:1707.04059)

The weight enumerators $W_{C}(y)$ and $W_{S}(y)$ of a singly even self-dual code C of length $24 m+4$, minimum weight $4 m+2$ and its shadow are uniquely determined by m. These uniquely determined polynomials have all coefficients nonnegative if and only if $0 \leq m \leq 155$.
In particular, for $m \geq 156$, there is no singly even self-dual code of length $24 m+4$, minimum weight $4 m+2$ with minimal shadow.

We have similar theorems for the lengths $24 m+2$ and $24 m+10$.

