Imprimitive permutation groups which are nearly multiplicity-free

Akihiro Munemasa
Tohoku University (joint work with Keiji Ito)

November 24, 2017 International Workshop on Bannai-Ito Theory Zhejiang University, Hangzhou

Permutation groups

Let \boldsymbol{G} be a finite group acting transitively on a finite set \boldsymbol{X}.

$$
\begin{aligned}
& \boldsymbol{G} \text { acts on } \boldsymbol{X} \times \boldsymbol{X}=\boldsymbol{R}_{0} \cup \boldsymbol{R}_{1} \cup \cdots \cup \boldsymbol{R}_{d} \quad \text { (orbitals), } \\
& \text { adjacency matrices } \\
& \boldsymbol{A}_{0}, \\
& \boldsymbol{A}_{1}, \ldots,
\end{aligned}
$$

Then

$$
\begin{aligned}
& A_{0}=I \quad \text { (WLOG we may assume), } \\
& \sum_{i=0}^{d} A_{i}=J \quad \text { (all-one matrix) } \\
& \forall i, \exists i^{\prime}, A_{i}^{\top}=A_{i^{\prime}}, \\
& \mathcal{A}=\left\langle\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{d}\right\rangle \text { is closed under multiplication. }
\end{aligned}
$$

Indeed, $\mathcal{A}=\operatorname{End}_{G}\left(\mathbb{C}^{X}\right)$.

Association schemes

If \boldsymbol{X} is a finite set,

$$
\begin{array}{rr}
\boldsymbol{X} \times \boldsymbol{X}= & \boldsymbol{R}_{0} \cup \boldsymbol{R}_{1} \cup \cdots \cup \boldsymbol{R}_{d} \quad \text { (partition), } \\
\text { adjacency matrices } & A_{0}, \quad \boldsymbol{A}_{1}, \quad \ldots, \quad \boldsymbol{A}_{d}
\end{array}
$$

satisfy

$$
\begin{aligned}
& A_{0}=I \quad \text { (WLOG we may assume) } \\
& \sum_{i=0}^{d} A_{i}=J \quad \text { (all-one matrix), } \\
& \forall i, \exists i^{\prime}, A_{i}^{\top}=A_{i^{\prime}}, \\
& \mathcal{A}=\left\langle\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{d}\right\rangle \text { is closed under multiplication, }
\end{aligned}
$$

then $\left(\boldsymbol{X},\left\{\boldsymbol{R}_{i}\right\}_{i=0}^{d}\right)$ is called an association scheme, \mathcal{A} is called its Bose-Mesner algebra.

Commutative Association schemes

An association scheme $\left(\boldsymbol{X},\left\{\boldsymbol{R}_{i}\right\}_{i=0}^{d}\right)$ is commutative if its Bose-Mesner algebra \mathcal{A} is commutative. If $\left(\boldsymbol{X},\left\{\boldsymbol{R}_{\boldsymbol{i}}\right\}_{i=0}^{d}\right)$ comes from a transitive permutation group \boldsymbol{G} on \boldsymbol{X}, then the permutation representation of G on $\mathbb{C}^{\boldsymbol{X}}$ decomposes:

$$
\begin{aligned}
\mathbb{C}^{\boldsymbol{X}} & =\bigoplus_{k=0}^{e} V_{k} \quad \text { (isotypic components) } \\
& =\bigoplus_{k=0}^{e} \bigoplus_{j=1}^{\mu_{k}} V_{k j} \quad \text { (irreducibles) }
\end{aligned}
$$

$$
\mathcal{A}=\operatorname{End}_{G}\left(\mathbb{C}^{X}\right)=\bigoplus_{k=0}^{e} \operatorname{End}_{G}\left(V_{k}\right) \cong \bigoplus_{k=0}^{e} M_{\mu_{k}}(\mathbb{C})
$$

which is commutative if and only if $\boldsymbol{\mu}_{\boldsymbol{k}}=\mathbf{1}$ for all \boldsymbol{k} (multiplicity-free).

Bases of $\operatorname{End}_{G}\left(\mathbb{C}^{X}\right)$

$$
\mathcal{A}=\operatorname{End}_{G}\left(\mathbb{C}^{X}\right)=\bigoplus_{k=0}^{e} \operatorname{End}_{G}\left(V_{k}\right) \cong \bigoplus_{k=0}^{e} M_{\mu_{k}}(\mathbb{C})
$$

has two bases:

$$
\begin{array}{ll}
\left\{A_{0}, A_{1}, \ldots, A_{d}\right\}, & \bigcup_{k=0}^{e}\left\{E_{k}^{(i, j)} \mid 1 \leq i, j \leq \mu_{k}\right\} \\
\text { (adjacency matrices) } & \text { (matrix units of each component) }
\end{array}
$$

So

$$
d+1=\sum_{k=0}^{e} \mu_{k}^{2} .
$$

How do we find $\boldsymbol{E}_{k}^{(i, j)}$?

Suppose $\mu_{k}=2$, for example

If

$$
V_{k}=V_{k, 1} \oplus V_{k, 2}
$$

then

$$
\begin{aligned}
& \operatorname{End}_{G}\left(V_{k}\right)= {\left[\begin{array}{cc}
\operatorname{End}_{G}\left(V_{k, 1}\right) & \operatorname{Hom}_{G}\left(V_{k, 1}, V_{k, 2}\right) \\
\operatorname{Hom}_{G}\left(V_{k, 2}, V_{k, 1}\right) & \operatorname{End}_{G}\left(V_{k, 2}\right)
\end{array}\right], } \\
& \operatorname{End}_{G}\left(V_{k, j}\right)=\mathbb{C i d}_{V_{k, j}},
\end{aligned}
$$

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(V_{k, 1}, V_{k, 2}\right)=\operatorname{dim} \operatorname{Hom}_{G}\left(V_{k, 2}, V_{k, 1}\right)=1
$$

Basis of each of the four 1-dimensional spaces (unique up to scalar) \rightarrow matrix units $E_{k}^{(i, j)}$.
Orthogonal decomposition of unitary representation \rightarrow isometry in $\operatorname{Hom}_{G}\left(V_{k, 1}, V_{k, 2}\right)$ is unique up to a complex number of modulus 1 . But the whole process depends on the decomposition of V_{k}.

If

$$
V_{k}=V_{k, 1} \quad \text { (irreducible) },
$$

then

$$
\operatorname{End}_{G}\left(V_{k}\right)=\operatorname{End}_{G}\left(V_{k, 1}\right)=\mathbb{C} \operatorname{id}_{V_{k, 1}} .
$$

If multiplicity-free ($\mu_{k}=1$ for all \boldsymbol{k}), then

$$
\operatorname{End}_{G}\left(\mathbb{C}^{X}\right) \cong \mathbb{C}_{\operatorname{id}_{V_{0,1}}} \oplus \cdots \oplus \mathbb{C} \operatorname{id}_{V_{e, 1}}
$$

has a canonical basis

$$
\left\{\boldsymbol{E}_{0}, \ldots, \boldsymbol{E}_{e}\right\} \cong\left\{\operatorname{id}_{V_{0,1}}, \ldots, \operatorname{id}_{V_{e, 1}}\right\}
$$

(so $\boldsymbol{e}=\boldsymbol{d}$), where \boldsymbol{E}_{k} is the orthogonal projection onto $\boldsymbol{V}_{\boldsymbol{k}}=\boldsymbol{V}_{\boldsymbol{k}, \mathbf{1}}$. The first eigenmatrix $\boldsymbol{P}=\left(\boldsymbol{P}_{i j}\right)$ is defined by

$$
A_{j}=\sum_{i=0}^{d} P_{i j} E_{i}
$$

Nearly multiplicity-free?

$$
\mathbb{C}^{X}=\bigoplus_{k=0}^{e} V_{k}, \quad V_{k}=\bigoplus_{j=1}^{\mu_{k}} V_{k, j}
$$

Suppose

$$
\mu_{k} \leq 2
$$

and \boldsymbol{W} is a \boldsymbol{G}-submodule of $\mathbb{C}^{\boldsymbol{X}}$ such that
\boldsymbol{W} contains an isomorphic copy of $\boldsymbol{V}_{\boldsymbol{k}, \mathbf{1}}$
exactly once whenever $\boldsymbol{\mu}_{\boldsymbol{k}}=\mathbf{2}$.

Then we can define that copy to be $\boldsymbol{V}_{\boldsymbol{k}, \mathbf{1}}$, and decompose $\boldsymbol{V}_{\boldsymbol{k}}$ as

$$
V_{k}=V_{k, 1} \oplus V_{k, 1}^{\perp} \quad\left(\perp \text { inside } V_{k}\right)
$$

Nearly multiplicity-free imprimitive perm. group

$$
\mathbb{C}^{X}=\bigoplus_{k=0}^{e} V_{k}, \quad V_{k}=\bigoplus_{j=1}^{\mu_{k}} V_{k, j}
$$

Suppose

$$
\mu_{k} \leq 2
$$

and \boldsymbol{W} is the \boldsymbol{G}-submodule of $\mathbb{C}^{\boldsymbol{X}}$ consisting of functions on \boldsymbol{X} which are constant on blocks. Suppose
\boldsymbol{W} contains an isomorphic copy of $\boldsymbol{V}_{\boldsymbol{k}, \boldsymbol{1}}$
exactly once whenever $\boldsymbol{\mu}_{\boldsymbol{k}}=2$

Then we can decompose $\boldsymbol{V}_{\boldsymbol{k}}$ canonically, subject to the choice of a system of imprimitivity (blocks).

Group theoretically. . .

Let

$$
G \geq H \geq K
$$

be finite groups. Then the permutation character $\mathbf{1}_{K}^{G}$ is the sum

$$
1_{K}^{G}=1_{H}^{G}+\left(1_{K}^{G}-1_{H}^{G}\right),
$$

so it makes sense to consider the situation where

$$
1_{H}^{G} \text { and }\left(1_{K}^{G}-1_{H}^{G}\right) \text { are both multiplicity-free. }
$$

This means that, if χ is an irreducible character of G appearing in $\mathbf{1}_{K}^{G}$ with multiplicity $\left(\mathbf{1}_{K}^{G}, \chi\right)>1$, then

$$
\left(1_{H}^{G}, \chi\right)=\left(1_{K}^{G}-1_{H}^{G}, \chi\right)=1 .
$$

$G \geq H \geq K$

\boldsymbol{G} acts on $\boldsymbol{X}=\boldsymbol{G} / \boldsymbol{K}$, and \boldsymbol{H} defines a \boldsymbol{G}-invariant equivalence relation \sim of \boldsymbol{X}. Suppose

$$
\begin{aligned}
& 1_{K}^{G}=\cdots+2 \chi_{k}+\cdots \\
& 1_{H}^{G}=\cdots+\chi_{k}+\cdots .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathbb{C}^{X}=\mathbb{C}^{G / K}=\cdots \oplus V_{k} \oplus \cdots \\
& \mathbb{C}^{X / \sim}=\mathbb{C}^{G / H}=\cdots \oplus V_{k, 1} \oplus \cdots
\end{aligned}
$$

SO

$$
V_{k}=V_{k, 1} \oplus V_{k, 1}^{\perp} \quad\left(\perp \text { inside } V_{k}\right)
$$

$\boldsymbol{V}_{\boldsymbol{k}, 1}$ and $\boldsymbol{V}_{\boldsymbol{k}, 1}^{\perp}$ are isomorphic irreducibles.

An (imprimitive) permutation group G is nearly multiplicity-free if both $\mathbf{1}_{\boldsymbol{H}}^{G}$ and $\mathbf{1}_{\boldsymbol{K}}^{G}-\mathbf{1}_{\boldsymbol{H}}^{G}$ are multiplicity free, where

$$
\boldsymbol{K}=\text { point stabilizer, } \quad \boldsymbol{H}=\text { block stabilizer } .
$$

Write

$$
\begin{aligned}
1_{K}^{G} & =\sum_{k=0}^{e} \mu_{k} \chi_{k}, \quad \mu_{k} \in\{1,2\}, \\
\mathbb{C}^{G / K} & =\bigoplus_{k=0}^{e} V_{k} \quad \text { (isotypic components) } \\
& \supset W=\mathbb{C}^{G / H} .
\end{aligned}
$$

Then $\operatorname{End}_{G}\left(\mathbb{C}^{G / K}\right)$ has a basis

$$
\left\{\operatorname{id}_{V_{k}} \mid \mu_{k}=1\right\} \cup\left\{\operatorname{id}_{V_{k} \cap W}, \operatorname{id}_{V_{k} \cap W^{\perp}}, \beta_{k}, \beta_{k}^{*} \mid \mu_{k}=2\right\}
$$

where $\operatorname{Hom}_{G}\left(\boldsymbol{V}_{\boldsymbol{k}} \cap \boldsymbol{W}, \boldsymbol{V}_{\boldsymbol{k}} \cap \boldsymbol{W}^{\perp}\right)=\mathbb{C} \boldsymbol{\beta}_{k}$, $\operatorname{Hom}_{G}\left(V_{k} \cap W^{\perp}, V_{k} \cap W\right)=\mathbb{C} \beta_{k}^{*}$,

First eigenmatrix

The square matrix \boldsymbol{P} tabulating the coefficients of the obtained basis in $\boldsymbol{A}_{\boldsymbol{j}}$:

$$
\begin{array}{r}
\boldsymbol{A}_{j} \\
\mathrm{id}_{V_{k}} \text { with } \boldsymbol{\mu}_{k}=1 \\
\mathrm{id}_{V_{k} \cap W} \boldsymbol{\beta}_{k} \\
\boldsymbol{\beta}_{k}^{*} \\
\mathrm{id}_{V_{k} \cap W^{\perp}}
\end{array}\left[\begin{array}{c}
\boldsymbol{P}_{k j} \\
\boldsymbol{P}_{k j}^{(1,1)} \\
\boldsymbol{P}_{k j}^{(1,2)} \\
\boldsymbol{P}_{k j}^{(2,1)} \\
\boldsymbol{P}_{k j}^{(2,2)}
\end{array}\right]=\boldsymbol{P}
$$

where $\boldsymbol{E}_{k} \leftrightarrow \mathrm{id}_{V_{k}}, \boldsymbol{E}_{k}^{(\mathbf{1 , 1})} \leftrightarrow \operatorname{id}_{V_{k} \cap W}, \boldsymbol{E}_{k}^{(\mathbf{2 , 2})} \leftrightarrow \operatorname{id}_{V_{k} \cap W^{\perp}}$, $E_{k}^{(2,1)} \leftrightarrow \boldsymbol{\beta}_{k}, E_{k}^{(1,2)} \leftrightarrow \boldsymbol{\beta}_{k}^{*}$.

Second eigenmatrix $Q=|X| P^{-1}$

Using the entries of \boldsymbol{Q}, one can express $\boldsymbol{E}_{\boldsymbol{k}}, \boldsymbol{E}_{\boldsymbol{k}}^{(i, j)}$ as a linear combination of $\boldsymbol{A}_{\boldsymbol{j}}$'s.
Let $\phi_{Y} \in \mathbb{C}^{\boldsymbol{X}}$ be the characteristic vector of a subset $\boldsymbol{Y} \subset \boldsymbol{X}$. Multiplicity-free case: Delsarte's inequalities

$$
0 \leq\left\|E_{k} \phi_{Y}\right\|^{2}=\phi_{Y}^{*} E_{k} \phi_{Y}=\sum_{j=0}^{d} Q_{j k} \frac{1}{|X|} \phi_{Y}^{*} A_{j} \phi_{Y}
$$

Nearly multiplicity-free case: take

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \geq 0 \quad\left(\overline{a_{12}}=a_{21}\right)
$$

and set

$$
E=\sum_{i, j} a_{i j} E_{k}^{(i, j)}
$$

Nearly multiplicity-free case: take

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \geq 0 \quad\left(\overline{a_{12}}=a_{21}\right)
$$

and set

$$
E=\sum_{i_{1}, i_{2}} a_{i_{1}, i_{2}} E_{k}^{\left(i_{1}, i_{2}\right)}
$$

Since

$$
E_{k}^{\left(i_{1}, i_{2}\right)}=\frac{1}{|X|} \sum_{j=0}^{d} Q_{j,\left(k, i_{1}, i_{2}\right)} A_{j}
$$

we have

$$
\begin{aligned}
0 & \leq \phi_{Y}^{*} \boldsymbol{E} \phi_{Y}=\sum_{i_{1}, i_{2}} a_{i_{1}, i_{2}} \phi_{Y}^{*} E_{k}^{\left(i_{1}, i_{2}\right)} \phi_{Y} \\
& =\sum_{i_{1}, i_{2}} a_{i_{1}, i_{2}} \sum_{j=0}^{d} Q_{j,\left(k, i_{1}, i_{2}\right)} \frac{1}{|X|} \phi_{Y}^{*} A_{j} \phi_{Y}
\end{aligned}
$$

Bannai-Ito, Section II. 11

If

$$
\mathbb{C}^{X}=\bigoplus_{k=0}^{e} V_{k} \quad \text { (isotypic components) }
$$

and \boldsymbol{E}_{k} is the projection of $\mathbb{C}^{\boldsymbol{X}}$ onto $\boldsymbol{V}_{\boldsymbol{k}}$, then

$$
\begin{aligned}
\boldsymbol{E}_{k} & =\frac{1}{|\boldsymbol{X}|} \sum_{j=0}^{d} q_{k}(j) \boldsymbol{A}_{j}, \\
q_{k}(j) & =\frac{|X| \chi_{k}(1)}{|G| k_{j}} \sum_{g \in K \alpha_{j} K} \overline{\chi_{k}(g)} .
\end{aligned}
$$

This holds without assuming multiplicity-freeness.
Nearly multiplicity-free case: if $\boldsymbol{V}_{\boldsymbol{k}}=\boldsymbol{V}_{\boldsymbol{k}, \mathbf{1}} \oplus \boldsymbol{V}_{\boldsymbol{k}, \mathbf{2}}$, then

$$
E_{k}=\operatorname{id}_{V_{k}}=\operatorname{id}_{V_{k, 1}}+\operatorname{id}_{V_{k, 2}}=E_{k}^{(1,1)}+E_{k}^{(2,2)} .
$$

Recall $\boldsymbol{W} \subset \mathbb{C}^{\boldsymbol{X}}$ is the submodule affording $\mathbf{1}_{\boldsymbol{H}}^{G}$.

Bannai-Ito, Section II. 11

$$
E_{k}=\frac{1}{|X|} \sum_{j=0}^{d} q_{k}(j) A_{j}, \quad q_{k}(j)=\frac{|X| \chi_{k}(1)}{|G| k_{j}} \sum_{g \in K \alpha_{j} K} \overline{\chi_{k}(g)}
$$

Nearly multiplicity-free case: if $\boldsymbol{V}_{\boldsymbol{k}}=\boldsymbol{V}_{\boldsymbol{k}, \mathbf{1}} \oplus \boldsymbol{V}_{\boldsymbol{k}, \mathbf{2}}$, then

$$
E_{k}=\mathrm{id}_{V_{k}}=\mathrm{id}_{V_{k, 1}}+\mathrm{id}_{V_{k, 2}}=E_{k}^{(1,1)}+E_{k}^{(2,2)}
$$

Recall $\boldsymbol{W} \subset \mathbb{C}^{\boldsymbol{X}}$ is the submodule affording $\mathbf{1}_{\boldsymbol{H}}^{G}$.

$$
\begin{aligned}
\boldsymbol{E}_{k}^{(\mathbf{1 , 1})} & =\text { projection onto } \boldsymbol{V}_{\boldsymbol{k}, \mathbf{1}}=\boldsymbol{V}_{\boldsymbol{k}} \cap \boldsymbol{W} \\
& =\boldsymbol{E}_{\boldsymbol{k}} \cdot(\text { projection onto } \boldsymbol{W}) \\
& =\boldsymbol{E}_{\boldsymbol{k}} \cdot(\text { averaging over blocks })
\end{aligned}
$$

Then $\boldsymbol{E}_{k}^{(2,2)}=\boldsymbol{E}_{k}-\boldsymbol{E}_{k}^{(\mathbf{1 , 1})}$

Matrix units $E_{k}^{(1,1)}, E_{k}^{(1,2)}, E_{k}^{(2,1)}, E_{k}^{(2,2)}$

- $\boldsymbol{E}_{k}=\boldsymbol{E}_{k}^{(1,1)}+\boldsymbol{E}_{k}^{(\mathbf{2}, 2)}$ can be computed using group characters.
- $E_{k}^{(1,1)}=E_{k} \cdot$ (averaging over blocks)
- $E_{k}^{(2,2)}=E_{k}-E_{k}^{(1,1)}$
$\boldsymbol{E}_{k}^{(1,2)}$ should be found by normalizing

$$
E_{k}^{(1,1)} A_{j} E_{k}^{(2,2)} .
$$

This can be regarded as an element of $\operatorname{Hom}_{G}\left(\boldsymbol{V}_{k, 2}, \boldsymbol{V}_{k, 1}\right)$, and $\exists j$ such that $E_{k}^{(1,1)} \boldsymbol{A}_{j} \boldsymbol{E}_{k}^{(2,2)} \neq 0$, since $\boldsymbol{E}_{k}^{(1,1)} \operatorname{End}_{G}\left(\mathbb{C}^{\boldsymbol{X}}\right) \boldsymbol{E}_{k}^{(2,2)} \neq 0$.

$S_{n} \geq S_{n-2} \times S_{2} \geq S_{n-2}$

$\boldsymbol{G} / \boldsymbol{H}=$ Johnson scheme $\boldsymbol{J}(\boldsymbol{n}, \mathbf{2})$,
$\boldsymbol{G} / \boldsymbol{K}=$ ordered pairs $\boldsymbol{X}=\{(i, j) \mid 1 \leq i, j \leq n, i \neq j\}$.

$$
\begin{aligned}
1_{H}^{G} & =\chi_{n}+\chi_{n-1,1}+\chi_{n-2,2}, \\
1_{K}^{G} & =\chi_{n}+2 \chi_{n-1,1}+\chi_{n-2,2}+\chi_{n-2,1,1}, \\
\mathbb{C}^{X} & =V_{0} \oplus\left(V_{1,1} \oplus V_{1,2}\right) \oplus V_{2} \oplus V_{3}, \\
J(n, 2) & : V_{0} \oplus V_{1,1} \oplus V_{2} \subset \mathbb{C}^{X}
\end{aligned}
$$

Two bases:

$$
\begin{aligned}
& A_{0}, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6} \\
& E_{0}, E_{1}^{(1,1)}, E_{1}^{(1,2)}, E_{1}^{(2,1)}, E_{1}^{(2,2)}, E_{2}, E_{3}
\end{aligned}
$$

First eigenmatrix \boldsymbol{P}

The \boldsymbol{j} th column of the matrix \boldsymbol{P} consists of the coefficients of $\boldsymbol{A}_{\boldsymbol{j}}$ when written as a linear combination of \boldsymbol{E} 's.
E_{0}
$E_{1}^{(1,1)}$
$E_{1}^{(1,2)}$
$E_{1}^{(2,1)}$
$E_{1}^{(2,2)}$
E_{2}
$E_{3}$$\left[\begin{array}{rrrrrrr}1 & 1 & n-2 & n-2 & n-2 & n-2 & (n-2)(n-3) \\ 1 & 1 & \frac{n-4}{2} & \frac{n-4}{2} & \frac{n-4}{2} & \frac{n-4}{2} & -2(n-3) \\ 0 & 0 & m & -m & -m & m & 0 \\ 0 & 0 & m & m & -m & -m & 0 \\ 1 & -1 & \frac{n-2}{2} & -\frac{n-2}{2} & \frac{n-2}{2} & -\frac{n-2}{2} & 0 \\ 1 & 1 & -1 & -1 & -1 & -1 & 2 \\ 1 & -1 & -1 & 1 & -1 & 1 & 0\end{array}\right]$
where

$$
m=\frac{\sqrt{n(n-2)}}{2}
$$

Remark

System of imprimitivity may not be unique:

$$
S_{n} \geq\left\{\begin{array}{l}
S_{2} \times S_{n-2} \\
S_{n-1}
\end{array} \geq S_{n-2}\right.
$$

One could define "multiplicity-free chain"

$$
\begin{gathered}
G \geq H_{1} \geq H_{2} \geq \cdots \\
1_{H_{1}}^{G}, 1_{H_{2}}^{G}-1_{H_{1}}^{G}, 1_{H_{3}}^{G}-1_{H_{2}}^{G}, \ldots \text { are multiplicity-free }
\end{gathered}
$$

However, a different definition is known (in a book by Ceccherini-Silberstein, Scarabotti and Tolli):

$$
\mathbf{1}_{H_{1}}^{G}, 1_{H_{2}}^{H_{1}}, \mathbf{1}_{H_{3}}^{H_{2}}, \ldots \text { are multiplicity-free }
$$

