Quasi-symmetric 2-(56, 16, 18) designs constructed from the dual of the quasi-symmetric 2-(21, 6, 4) design as a Hoffman coclique

> Akihiro Munemasa Tohoku University (joint work with Vladimir Tonchev)

March 31, 2018 China University of Geoscience in Beijing

$t ext{-}(v,k,\lambda)$ designs

A t- (v,k,λ) design is a pair $(\mathcal{P},\mathcal{B})$, where

•
$$|\mathcal{P}| = v$$
, $\mathcal{B} \subset \binom{\mathcal{P}}{k}$,

• $|\{B \in \mathcal{B} \mid B \supset T\}| = \lambda$ for all $T \in \binom{\mathcal{P}}{t}$.

Elements of \mathcal{P} are called points, and elements of \mathcal{B} are called blocks, or lines.

If t=2 and $\lambda=1$, then the second condition is

 $|\{B\in \mathcal{B}\mid B
i p,q\}|=1$ for all $p,q\in \mathcal{P}$, p
eq q.

which can be rephrased as

every pair of distinct points lie in a unique line.

(t+1)-design $\implies t$ -design.

$2 ext{-}(v,k,\lambda)$ designs

A 2- (v,k,λ) design is a pair $(\mathcal{P},\mathcal{B})$, where

•
$$|\mathcal{P}|=v$$
 , $\mathcal{B}\subset {\mathcal{P}\choose k}$,

• $|\{B \in \mathcal{B} \mid B \ni p, q\}| = \lambda$ for all $\{p, q\} \in \binom{\mathcal{P}}{2}$.

symmetric if $|\{|B \cap B'| \mid B, B' \in \mathcal{B}, B \neq B'\}| = 1$, quasi-symmetric if $|\{|B \cap B'| \mid B, B' \in \mathcal{B}, B \neq B'\}| = 2$.

For a symmetric design, we have

 $\{|B \cap B'| \mid B, B' \in \mathcal{B}, \ B \neq B'\} = \{\lambda\}.$

For a quasi-symmetric design, write

$$\{|B\cap B'|\mid B,B'\in \mathcal{B},\;B
eq B'\}=\{x,y\}$$

with x < y (intersection numbers, uniquely determined by v, k, λ).

- 2-(v, k, 1) designs, x = 0, y = 1.
- Hadamard 3-design, 2-(4n, 2n, 2n 1), x = 0, y = n; more generally, resolvable designs (x = 0)
- residual of biplanes (finitely many known)

Other examples:

- Exceptional designs: not in the above classes.
- 4-(23, 7, 1) design or its complement is the only quasi-symmetric design which is a 4-design. This design has automorphism group M₂₃, a sporadic finite simple group discovered by Mathieu (1873). The uniqueness of such a design is due to Witt (1938).

Designs related to Mathieu groups

name	parameters	int. numbers
W_{24}	5 - (24, 8, 1)	4,2,0
W_{23}	$4 ext{-}(23, 7, 1)$	3,1
W_{22}	$3 ext{-}(22, 6, 1)$	2,0

These designs are unique, without assumption on intersection numbers (Witt 1938).

The design W_{22} gives rise to parameters int. numbers

 $2 - (21, 6, 4) \quad 2, 0$

This design is unique as a quasi-symmetric design (Tonchev 1986). However, according to Martinjak and Pavčević (2009), there are at least 1,700,745 2-(21, 6, 4) designs.

 \rightarrow Table of exceptional quasi-symmetric designs in "CRC Handbook of Combinatorial Designs" (2007).

2-(56, 16, 18) (x = 4, y = 8)

The existence of a quasi-symmetric 2-(56, 16, 18) design was unknown until:

Theorem (Krčadinac–Vlahović, 2016)

There are at least 3 non-isomorphic quasi-symmetric 2-(56, 16, 18) designs.

These were found by computer under the assumption that the automorphism group contains $\mathbb{Z}_2^5 \cdot A_5$ of order 960. One of the 3 designs has full automorphism group $M_{21} \cdot \mathbb{Z}_2 = L_3(4) \cdot 2$, which is the automorphism group of the unique 2-(21, 6, 4) design.

2-(56, 16, 18) and 2-(21, 6, 4)

The incidence matrix of a design $(\mathcal{P}, \mathcal{B})$ is the $|\mathcal{P}| \times |\mathcal{B}|$ matrix M whose (p, B)-entry is

$$M_{p,B} = egin{cases} 1 & ext{if } p \in B, \ 0 & ext{otherwise}, \end{cases}$$

where $p \in \mathcal{P}$, $B \in \mathcal{B}$. 2-(21,6,4) design ightarrow 21 imes 56 matrix M2-(56, 16, 18) design $\rightarrow 56 \times 231$ matrix N^{\top} $\rightarrow 231 \times 56$ matrix N

Does N contain M as a submatrix?

$$NN^{\top} = 16I + 8A + 4(J - I - A),$$
 (231)
 $MM^{\top} = 16I + 4(J - I),$ (21)

because intersection numbers are 4, 8.

2-(56, 16, 18) and 2-(21, 6, 4)

Strongly regular graphs

Definition

A graph Γ is called a strongly regular graph (SRG) with parameters (k,λ,μ) if

- valency is k,
- ullet each edge is contained in λ triangles,
- ullet each pair of non-adjacent vertices has μ common neighbors.

The Petersen graph is a SRG with parameters (3, 0, 1).

Algebraic Graph Theory

For a regular graph Γ , the following are equivalent:

- Γ is strongly regular,
- the adjacency matrix has 3 distinct eigenvalues.

Theorem (See Brouwer-Haemers, Theorem 3.5.2)

Let Γ be a *k*-regular graph on *n* vertices, with smallest eigenvalue θ . Then every coclique of Γ has size at most

$$nrac{- heta}{k- heta}.$$

A coclique whose size achieve the upper bound is called a Hoffman coclique.

Vertices outside a Hoffman coclique C has a constant number of neighbors in C (equitable partition).

Quasi-symmetric design \rightarrow SRG

Theorem

Let $(\mathcal{P}, \mathcal{B})$ be a quasi-symmetric design with intersection numbers x < y. Define

 $E = \{\{B_1, B_2\} \mid B_1, B_2 \in \mathcal{B}, \ |B_1 \cap B_2| = y\}.$

Then (\mathcal{B}, E) is a strongly regular graph.

The graph obtained in this way is called the block graph of the quasi-symmetric design.

If N is the transpose of the incidence matrix, then the adjacency matrix A of the block graph can be expressed as:

$$NN^{\top} = kI + \frac{\mathbf{y}}{\mathbf{y}}A + x(J - I - A).$$

Quasi-symmetric design \rightarrow SRG

 $2\text{-}(56,16,18)\; ext{design} \;
ightarrow \; 231 imes rac{56}{56} \; ext{matrix} \; N$

$$NN^{\top} = 16I + 8A + 4(J - I - A), \qquad (231)$$

because intersection numbers are 4, 8.

The (0, 1)-matrix A is the adjacency matrix of a SRG on 231 vertices with parameters (30, 9, 3) and smallest eigenvalue -3. The bound is

$$nrac{- heta}{k- heta}=231rac{-(-3)}{30-(-3)}=21.$$

So

$$MM^{\top} = 16I + 4(J - I),$$
 (21)

will correspond to a Hoffman coclique.

A. Munemasa

From (21,6,4) to (56,16,18)

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ be the unique quasi-symmetric 2-(21, 6, 4) design. The dual $\overline{\mathcal{D}} = (\mathcal{B}, \overline{\mathcal{P}})$ is

$$\overline{\mathcal{P}}=\{[p]\mid p\in\mathcal{P}\}, \hspace{1em} |\overline{\mathcal{P}}|=21,$$

where

$$[p]=\{B\in \mathcal{B}\mid p\in B\} \ \ (p\in \mathcal{P}).$$

Define

$$egin{aligned} \mathcal{Q} &= \{Q \in inom{\mathcal{P}}{5} \mid |Q \cap B| \leq 2 \; (orall B \in \mathcal{B}) \}, \quad |\mathcal{Q}| = 21, \ \mathcal{R} &= \{([p_1] \cup [p_2] \cup [p_3]) riangle ([p_4] \cup [p_5]) \mid \{p_1, \dots, p_5\} \in \mathcal{Q} \} \ &\subseteq inom{\mathcal{B}}{16}, \quad |\mathcal{R}| = 210. \end{aligned}$$

Then $(\mathcal{B}, \overline{\mathcal{P}} \cup \mathcal{R})$ is a quasi-symmetric 2-(56, 16, 18) design.

Problem

- Classify quasi-symmetric 2-(56, 16, 18) designs constructible from the quasi-symmetric 2-(21, 6, 4) designs as described above. Are there more than 2 designs up to isomorphism?
- Classify quasi-symmetric 2-(56, 16, 18) designs. Are there more than 3 designs up to isomorphism?
- Classify quasi-symmetric 2-(56, 16, 6) designs. Is there a design constructible from the quasi-symmetric 2-(21, 6, 4) designs in a similar manner as above?

Thank you very much for your attention.