The Reed-Muller code RM(1,4), the Barnes-Wall lattice BW(16), and graphs with smallest eigenvalue -3

Akihiro Munemasa
(joint work with Tetsuji Taniguchi)

June 5, 2018 at Tohoku University
The 2nd Tohoku-Bandung Bilateral Workshop
Extremal Graph Theory, Algebraic Graph Theory and Mathematical Approach to Network Science

A warning about the term "lattice"

A lattice could mean:

- a partially ordered set with unique least upper bounds and greatest lower bounds, or
- $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$, or
- a subgroup $L \subset \mathbb{R}^{n}$ generated by a basis In this talk, a lattice will mean the third variant.

$$
L \cong \mathbb{Z}^{\boldsymbol{n}} \quad \text { as abstract groups }
$$

L may not be isometric to \mathbb{Z}^{n}.

Vector representation of a graph

By a representation of a graph, we mean

$\{$ vertices $\} \rightarrow \boldsymbol{L}$

 (fixed distance from 0)such that, for two distinct vertices $\boldsymbol{u}, \boldsymbol{v}$,

$$
\begin{aligned}
& u \sim v \Longleftrightarrow(u, v)=1 \\
& u \nsim v \Longleftrightarrow(u, v)=0 .
\end{aligned}
$$

Vector representation of a graph (Example)

$\boldsymbol{L}=\mathbb{Z}^{n}$. Vertices are

$$
(0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0)
$$

Edges are

This is just a line graph of a graph on \boldsymbol{n} vertices. How do we distinguish line graphs from non-line graphs? (orthonormal basis, vectors of norm 2...)

Vector representation of a graph (a formal definition)

Let $(\boldsymbol{G}, \boldsymbol{E})$ be a graph, \boldsymbol{m} a positive integer. A mapping

$$
\varphi: V(G) \rightarrow \mathbb{R}^{n}
$$

is a representation of norm m if

$$
(\varphi(u), \varphi(v))= \begin{cases}\boldsymbol{m} & \text { if } \boldsymbol{u}=\boldsymbol{v} \\ \mathbf{1} & \text { if } \boldsymbol{u} \sim \boldsymbol{v} \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, $\boldsymbol{L}\left(\boldsymbol{K}_{\boldsymbol{n}}\right)$ has a representation of norm 2 .
$\exists \varphi$ of norm $m \Longleftrightarrow A(G)+m I$ is positive semidefinite $\Longleftrightarrow \lambda_{\min }(G) \geq-m$.

Vector representation and the lattice

Let $(\boldsymbol{G}, \boldsymbol{E})$ be a graph, \boldsymbol{m} a positive integer. Assume $\boldsymbol{\lambda}_{\min }(\boldsymbol{G}) \geq-\boldsymbol{m}$. Let

$$
\varphi: V(G) \rightarrow \mathbb{R}^{n}
$$

be a representation of norm \boldsymbol{m}. Then

$$
L=\{\mathbb{Z} \text {-linear combinations of } \varphi(V(G))\} .
$$

is a lattice. The dual of \boldsymbol{L} is

$$
L^{*}=\left\{y \in \mathbb{R}^{n} \mid(x, y) \in \mathbb{Z}(\forall x \in L)\right\} \supset L .
$$

If \boldsymbol{G} is a line graph, then \boldsymbol{L}^{*} contains an orthonormal basis. Define

$$
\mu_{m}^{*}(G)=\min L^{*}=\min \left\{(y, y) \mid y \in L^{*}, y \neq 0\right\}
$$

Minimum of the dual lattice

Assume $\boldsymbol{\lambda}_{\min }(G) \geq-\boldsymbol{m}$.

$$
\mu_{m}^{*}(G)=\min \left\{(y, y) \mid y \in L^{*}, y \neq 0\right\}
$$

where \boldsymbol{L} is the lattice generated by a norm \boldsymbol{m} representation of \boldsymbol{G}.

Proposition

If G is a line graph, then $\mu_{2}^{*}(G) \leq 1$.
If $|V(G)| \leq 5$ and $\lambda_{\min }(G) \geq-2$, then $\mu_{2}^{*}(G) \leq 1$. However,

$$
\mu_{2}^{*}\left(E_{6}\right)=\frac{4}{3}>1
$$

$\mu_{2}^{*}(G)$ and $\mu_{3}^{*}(G)$

$\|V(G)\|$	$\mu_{3}^{*}(G)$
≤ 8	≤ 1
9	$8 / 7,16 / 15$
$?$	$?$
16	2
23	3

There exists a graph G with 16 vertices such that $\mu_{3}^{*}(G)=2$. Its norm 3 representation generates the overlattice of the Barnes-Wall lattice.

$R M(1,4)$

The Reed-Muller code $C=R M(1,4)$ is the 5 -dimensional subspace of \mathbb{F}_{2}^{16} whose basis is

$$
\begin{aligned}
& 1111111100000000 \\
& 1111000011110000 \\
& 1100110011001100 \\
& 1010101010101010 \\
& 1111111111111111
\end{aligned}
$$

Consider

$$
\pi: \mathbb{Z}^{16} \rightarrow \mathbb{F}_{2}^{16} \quad(\text { reducing modulo } 2)
$$

and set

$$
\Lambda=\frac{1}{\sqrt{2}} \pi^{-1}(C) \subset \mathbb{R}^{16}
$$

The Barnes-Wall lattice $B W(16)$

$$
\begin{aligned}
C & =R M(1,4), \\
\pi & : \mathbb{Z}^{16} \rightarrow \mathbb{F}_{2}^{16} \quad(\text { reducing modulo } 2), \\
\Lambda & =\frac{1}{\sqrt{2}} \pi^{-1}(C) \subset \mathbb{R}^{16}, \\
u & =\frac{1}{\sqrt{2}}(1,1, \ldots, 1) \in \Lambda, \\
B W(16) & =\{x \in \Lambda \mid(x, u) \equiv 0 \quad(\bmod 2)\} .
\end{aligned}
$$

Then there exists $v \in B W(16)^{*}$ with $(v, v)=3$.
The overlattice of the Barnes-Wall lattice is
$B W(16)+\mathbb{Z} v$.

$\|V(G)\|$	$\mu_{3}^{*}(G)$
≤ 8	≤ 1
9	$8 / 7,16 / 15$
$?$	$?$
16 (min ?)	2
23 (min ?)	3

- $\exists G$ with 16 vertices such that $\mu_{3}^{*}(G)=2$, its norm 3 representation generates the overlattice of the Barnes-Wall lattice.
- $\exists G$ with 23 vertices such that $\mu_{3}^{*}(G)=3$, its norm 3 representation generates a sublattice of index 2 in the shorter Leech lattice.

