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Prime Numbers

2,3,5,7,11,13,17,19,23,29, . . .

for abstract algebra, these are the source of finite prime
fields, finite (abelian) simple groups.
for combinatorics, these are the source of constructing
some combinatorial objects, such as graphs, designs,
codes.
for number theorists, not individual prime numbers, but the
set of all prime numbers, is of the primary interest.
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Abstract algebra

The only prime fields, that is, a field which contains no proper
subfield, are:

Q, Fp = GF(p) (p : prime),

where
Fp = Z/pZ = {[0], [1], . . . , [p − 1]},

[a] = {mp + a | m ∈ Z}
= {n ∈ Z | n ≡ a (mod p)}.
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Fields

Definition
A field is a set K equipped with addition + and multiplication,
such that

K is an abelian group with respect to addition,
K \ {0} is an abelian group with respect to multiplication,
where 0 denotes the identity of K as an abelian group with
respect to addition,
distributive law holds:

a(b + c) = ab + ac (a,b, c ∈ K ).

Exercise: Give a reason why K = Fp is a field, especially
describe how to find the multiplicative inverse of [a] ∈ Fp \ {[0]}
(what is [3]−1 in F7?).
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Polynomials
For a field K , the univariate polynomial ring with indeterminate x
is denoted by K [x ]. It consists of all polynomials in x with
coefficients in K :

K [x ] = {
n∑

i=0

aix i | n ∈ Z≥0, a0, . . . , an ∈ K}.

Here x is not considered to be an element of K , rather, it is a
formal symbol. However, we allow the operation “substitution
x = b,” where b ∈ K :

for f (x) =
n∑

i=0

aix i ∈ K [x ], f (b) =
n∑

i=0

aibi ∈ K .

If an 6= 0, then n is called the degree of f (x) and is denoted by
deg f .
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Factorization of polynomials

Let K be a field, and let K [x ] be the univariate polynomial ring
with indeterminate x . Exercise: Prove the following:

Lemma
If f (x),g(x) ∈ K [x ] \ {0}, then deg(fg) = deg f + deg g.

Lemma
If f (x) ∈ K [x ], b ∈ K and f (b) = 0, then there exists g(x) ∈ K [x ]
such that f (x) = (x − b)g(x).

Lemma
If f (x) ∈ K [x ] \ {0}, then

|{b ∈ K | f (b) = 0}| ≤ deg f .
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Finite fields

If K is a finite field with q elements, then K× = K \ {0} is an
abelian group of order q − 1. This is known to be cyclic. We
illustrate the proof by means of example.

The order of an element a ∈ K× is the smallest positive integer
n such that an = 1 holds. It follows from finite group theory that
the order of an element is a divisor of q − 1.

For K = F7, divisors of q − 1 = 6 are 1,2,3,6. Elements of order
1,2,3 should be roots of x1 − 1, (x2 − 1)/(x − 1) = x + 1, and
(x3 − 1)/(x − 1) = x2 + x + 1, respectively, so there are (at
most) 1,1,2 such elements. The remaining 6 − (1 + 1 + 2) = 2
elements must have order 6.

Exercise: Give a proof for an arbitrary odd prime p.
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Primitive elements

If K is a finite field with q elements, then K× is a cyclic group of
order q − 1.

A generator, that is, an element of order q − 1, of this cyclic
group is called a primitive element of K .

For K = F7, 2 is not a primitive element: 23 = 1, while 3 is a
primitive element: 32 6= 1, 33 6= 1.

Artin’s conjecture: there are infinitely many primes p for which 2
is a primitive element.
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Quadratic residues
Fix an odd prime p, and let K = Fp. Let α be a primitive element
of K , so that

K× = {1, α, α2, . . . , αp−2}.

The set of quadratic residues Q and that of quadratic
nonresidues and N are defined as

Q = {1, α2, α4, . . . , αp−3},
N = {α, α3, . . . , αp−2}.

The quadratic residue character χ of K is

χ(a) =


0 if a = 0,
1 if a ∈ Q,
−1 if a ∈ N.
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Abstract algebra

Fields: other than prime fields Q, Fp. A quadratic extension
F3[i ], i2 = −1, and a transcendental extension K (x), the field of
all rational functions in a formal variable x with coefficients in a
field K .

Groups: The only finite groups which possess no nontrivial
subgroups are cyclic groups of prime order. Finite groups which
possess no nontrivial normal subgroups are called simple, and
they are classified after huge amount of effort.

Rings: noncommutative rings are closely related to
representation theory (of groups). Typical examples of
commutative rings are multivariate polynomial rings.
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Applied, or not so abstract, algebra

Fields: algorithmic aspects in finite fields. Extensions of K (x) of
finite degree are called algebraic function fields, and it has
applications to algebraic geometry and codes.

Finite groups: permutation groups, or more generally group
action on combinatorial objects. Isomorphisms and
automorphisms of graphs.

Representation theory: combinatorial representation theory,
symmetric groups.

Gröbner bases for ideals in multivariate polynomial rings.
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Group action on combinatorial objects

A combinatorial object E is a subset of X n where X is a finite set
and n is a positive integer.

A graph is a subset E of X 2 satisfying

(x , y) ∈ E =⇒ x 6= y and (y , x) ∈ E .

A hypergraph can be defined by replacing 2 by some integer
k ≥ 2.

The automorphism group of a combinatorial object E is the
subgroup of the symmetric group on X whose induced action on
X n preserves E .
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A circulant graph

Let X = Fp, where p is a prime with p ≡ 1 (mod 4). Then
−1 ∈ Q (quadratic residue), so Q = −Q. This implies

E = {(x , y) | x , y ∈ X , x − y ∈ Q}

defines a graph, that is,

(x , y) ∈ E =⇒ x 6= y and (y , x) ∈ E .

The additive group X preserves E :

z ∈ X , (x , y) ∈ E =⇒ (x + z, y + z) ∈ E .

For example, p = 5, Q = {1,−1}, E consists of the set of edges
of a pentagon.
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A conference graph

Let X = Fp, where p is a prime with p ≡ 1 (mod 4). Consider
the graph G with vertex set X , and edge set

E = {(x , y) | x , y ∈ X , x − y ∈ Q}.

Then for x , y ∈ X ,

#{common neighbors of x , y} =


p−1

2 if x = y ,
p−5

4 if (x , y) ∈ E ,
p−1

4 otherwise.

A graph on p (not necessarily prime) vertices satisfying the
above condition is called a conference graph.
It is unknown whether a conference graph on 65 vertices exists.
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An incidence structure
Let X = Fp, where p is a prime. Recall that, if p ≡ 1 (mod 4),
then −1 ∈ Q, so −Q = Q.

Now assume p ≡ −1 (mod 4), then −1 /∈ Q. In this case

−Q = N (quadratic nonresidue).

Exercise: Prove this.

(For p = 7, Q = {1,2,4}, −Q = N = {3,5,6}).

Let
B = {Q + a | a ∈ Fp}.

Then for any distinct x , y ∈ K ,

|{B ∈ B | x , y ∈ B}| = p − 3
4

.

Exercise: Prove this.
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A symmetric (4m − 1,2m − 1,m − 1) design

Let X = Fp, where p is a prime of the form p = 4m − 1, where
m ∈ Z. Let

B = {Q + a | a ∈ Fp}.

Then for any distinct x , y ∈ K ,

|{B ∈ B | x , y ∈ B}| = p − 3
4

= m − 1.

A family B of (2m − 1)-element subsets of an (4m − 1)-element
set is called a symmetric (4m − 1,2m − 1,m − 1) design if the
above condition is satisfied.
The existence is unknown for m = 47 (p = 187 is not a prime).
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A skew Hadamard matrix
Let X = Fp, where p is a prime with p ≡ −1 (mod 4). Let C be
the matrix whose rows and columns are indexed by X , and
whose entries are defined by

Cxy = χ(x − y) (x , y ∈ X ),

where χ denotes the quadratic residue character. Define a
(p + 1)× (p + 1) matrix

H =


1 1 · · · 1
−1
... C + I

−1


Then

HH> = (p + 1)I.
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A Hadamard matrix

A square matrix H of order n is called a Hadamard matrix if all of
its entries are ±1, and

HH> = nI.

For example,

[
1
]
,

[
1 1
1 −1

]
,


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 .

If H is a Hadamard matrix of order n, then n = 1,2 or n is
divisible by 4.

It is unknown whether a Hadamard matrix of order 668 exists
(p = 667 is not a prime).
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Summary

Prime numbers can be used to construct graphs, designs and
Hadamard matrices.

A straightforward method using prime numbers are not sufficient
to produce all possible combinatorial objects.

Similar situations arise in spectral graph theory, algebraic
coding theory.

Related areas: extremal set theory (Turán graphs), enumerative
combinatorics (Catalan numbers).
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