# A variation of Godsil-McKay switching 

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University
joint work with Ferdinand Ihringer

November 22, 2018 International Workshop on Algebraic Combinatorics Anhui University

## Cospectral graphs

Two graphs $\Gamma, \Gamma^{\prime}$ are cospectral if their adjacency matrices $A, A^{\prime}$ have the same spectra.

## Cospectral graphs

Two graphs $\Gamma, \Gamma^{\prime}$ are cospectral if their adjacency matrices $A, A^{\prime}$ have the same spectra.

$$
\text { cospectral } \Longleftrightarrow A^{\prime}=P^{\top} A P
$$

for some orthogonal matrix $P$.

## Cospectral graphs

Two graphs $\Gamma, \Gamma^{\prime}$ are cospectral if their adjacency matrices $A, A^{\prime}$ have the same spectra.
cospectral $\Longleftrightarrow A^{\prime}=P^{\top} A P$
for some orthogonal matrix $P$.
isomorphic $\Longleftrightarrow A^{\prime}=P^{\top} A P$ for some permutation matrix $P$.

## Cospectral graphs

Two graphs $\Gamma, \Gamma^{\prime}$ are cospectral if their adjacency matrices $A, A^{\prime}$ have the same spectra.

$$
\text { cospectral } \Longleftrightarrow A^{\prime}=P^{\top} A P
$$

for some orthogonal matrix $P$.
isomorphic $\Longleftrightarrow A^{\prime}=P^{\top} A P$ for some permutation matrix $P$.
\{permutation matrices $\} \subsetneq\{$ orthogonal matrices $\}$

## Cospectral graphs

Two graphs $\Gamma, \Gamma^{\prime}$ are cospectral if their adjacency matrices $A, A^{\prime}$ have the same spectra.

$$
\text { cospectral } \Longleftrightarrow A^{\prime}=P^{\top} A P
$$

for some orthogonal matrix $P$.
isomorphic $\Longleftrightarrow A^{\prime}=P^{\top} A P$ for some permutation matrix $P$.
\{permutation matrices $\} \subseteq\{P \in O(n, \mathbb{Q}) \mid P \mathbf{1}=\mathbf{1}$,
$P^{\top} A P(0,1)$-matrix with 0 diagonals $\}$

## Cospectral graphs

Two graphs $\Gamma, \Gamma^{\prime}$ are cospectral if their adjacency matrices $A, A^{\prime}$ have the same spectra.
cospectral $\Longleftrightarrow A^{\prime}=P^{\top} A P$ for some orthogonal matrix $P$.
isomorphic $\Longleftrightarrow A^{\prime}=P^{\top} A P$ for some permutation matrix $P$.
$\{$ permutation matrices $\} \subseteq\{P \in O(n, \mathbb{Q}) \mid P \mathbf{1}=\mathbf{1}$,
$P^{\top} A P(0,1)$-matrix with 0 diagonals $\}$
Wang-Xu (2006): " $=" \Longleftrightarrow$ determined by "generalized" spectrum.

## Godsil-McKay switching

© Godsil, McKay (1982): "Constructing cospectral graphs"
(2) Van Dam, Haemers, Koolen, Spence (2006): Johnson (non-distance-regular cospectral mate)
© Abiad, Haemers (2016), Kubota (2016): symplectic graphs
(9) Barwick, Jackson, Penttila (2017): orthogonal polar
(3) Ihringer (2017): all polar
(6) Munemasa (2017): Twisted Grassmann; Kubota (2017): Doob

## Godsil-McKay switching

© Godsil, McKay (1982): "Constructing cospectral graphs"
(2) Van Dam, Haemers, Koolen, Spence (2006): Johnson (non-distance-regular cospectral mate)
© Abiad, Haemers (2016), Kubota (2016): symplectic graphs (SRG)
(9) Barwick, Jackson, Penttila (2017): orthogonal polar (SRG)
(6) Ihringer (2017): all polar (SRG)
( ( Munemasa (2017): Twisted Grassmann; Kubota (2017): Doob (DRG)

## Godsil-McKay switching

$\Gamma=(X, E):$ graph, $X=\left(\bigcup_{i} C_{i}\right) \cup D$.
Assume $\forall x \in D, \forall i, x$ is adjacent to $0,1 / 2$ or all vertices of $C_{i}$.
Godsil-McKay switching: interchange adj. and non-adj. between $x \in D$ and $C_{i}$ if $x$ is adj. to $1 / 2$ of $C_{i}$.

## Godsil-McKay switching

$\Gamma=(X, E):$ graph, $X=\left(\bigcup_{i} C_{i}\right) \cup D$.
Assume $\forall x \in D, \forall i, x$ is adjacent to $0,1 / 2$ or all vertices of $C_{i}$.
Godsil-McKay switching: interchange adj. and non-adj. between $x \in D$ and $C_{i}$ if $x$ is adj. to $1 / 2$ of $C_{i}$.

## Theorem (Godsil-McKay, 1982)

If $\left\{C_{i}\right\}_{i}$ is equitable, then the resulting graph is cospectral with the original.

Equitable: $\forall i, \forall x, \forall y \in C_{i}, \forall j,\left|\Gamma(x) \cap C_{j}\right|=\left|\Gamma(y) \cap C_{j}\right|$.

## Godsil-McKay switching with one cell $C$

$\Gamma=(X, E)$ : graph, $X=C \cup D$.
Assume $\forall x \in D, x$ is adjacent to $0,1 / 2$ or all vertices of $C$.
Godsil-McKay switching: interchange adj. and non-adj. between $x \in D$ and $C$ if $x$ is adj. to $1 / 2$ of $C$.

## Godsil-McKay switching with one cell C

$\Gamma=(X, E)$ : graph, $X=C \cup D$.
Assume $\forall x \in D, x$ is adjacent to $0,1 / 2$ or all vertices of $C$.
Godsil-McKay switching: interchange adj. and non-adj. between $x \in D$ and $C$ if $x$ is adj. to $1 / 2$ of $C$.

In this special case:

## Theorem (Godsil-McKay, 1982)

If the subgraph of $\Gamma$ induced on $C$ is regular, then the resulting graph is cospectral with the original.

## One cell of size 4

$\Gamma=(X, E):$ graph, $X=C \cup D,|C|=4$.
Assume $\forall x \in D, x$ is adjacent to 0,2 or 4 vertices of $C$.
Godsil-McKay switching: interchange adj. and non-adj. between $x \in D$ and $C$ if $x$ is adj. to 2 of $C$.

## One cell of size 4

$\Gamma=(X, E)$ : graph, $X=C \cup D,|C|=4$.
Assume $\forall x \in D, x$ is adjacent to 0,2 or 4 vertices of $C$.
Godsil-McKay switching: interchange adj. and non-adj. between $x \in D$ and $C$ if $x$ is adj. to 2 of $C$.

In this special case:

## Theorem (Godsil-McKay, 1982)

If the subgraph of $\Gamma$ induced on $C$ is regular, then the resulting graph is cospectral with the original.

## One cell of size 4

$\Gamma=(X, E)$ : graph, $X=C \cup D,|C|=4$.
Assume $\forall x \in D, x$ is adjacent to 0,2 or 4 vertices of $C$.
Godsil-McKay switching: interchange adj. and non-adj. between $x \in D$ and $C$ if $x$ is adj. to 2 of $C$.

In this special case:

## Theorem (Godsil-McKay, 1982)

If the subgraph of $\Gamma$ induced on $C$ is regular, then the resulting graph is cospectral with the original.

If $|C|=2$, then the switched graph is isomorphic to the original.

## Fano plane in a polar space

A quadrangle $C$ in a Fano plane.


Every line meets $C$ at 0 or 2 points. $\Uparrow$

## Fano plane in a polar space

A quadrangle $C$ in a Fano plane.


Every line meets $C$ at 0 or 2 points. $\Uparrow$
Neighbors of a vertex outside $C$
$\Longrightarrow C$ can be used in Godsil-McKay switching.

## Polar space

Let $V$ be a vector space over $\mathbb{F}_{q}$ with nondegenerate
$\left\{\begin{array}{l}\text { symplectic } \\ \text { hermitian } \\ \text { symmetric bilinear }\end{array}\right\}$ form $B$.

## Polar space

Let $V$ be a vector space over $\mathbb{F}_{q}$ with nondegenerate
$\left\{\begin{array}{l}\text { symplectic } \\ \text { hermitian } \\ \text { symmetric bilinear }\end{array}\right\}$ form $B$.

The polar space consists of the set
$\mathbb{P}=\{x$ : projective point (1-dimensional subspace) $B=0$ on $x$ (isotropic) $\}$

## Polar space

Let $V$ be a vector space over $\mathbb{F}_{q}$ with nondegenerate
$\left\{\begin{array}{l}\text { symplectic } \\ \text { hermitian } \\ \text { symmetric bilinear }\end{array}\right\}$ form $B$.

The polar space consists of the set
$\mathbb{P}=\{x$ : projective point (1-dimensional subspace)

$$
B=0 \text { on } x \text { (isotropic) }\}
$$

Strongly regular polar graph $\Gamma: \mathbb{P}$ as vertices,

$$
x \sim y \Longleftrightarrow x \subseteq y^{\perp} .
$$

That is,

$$
\Gamma(x)=x^{\perp} \cap \mathbb{P} .
$$

## Fano plane in a polar space

## A quadrangle $C$ in a Fano plane.



> For any line $L$,
> $|L \cap C|=0$ or 2

## Fano plane in a polar space

A quadrangle $C$ in a Fano plane.


> For any line $L$,
> $|L \cap C|=0$ or 2

If this plane $P$ is totally isotropic, then

$$
\begin{aligned}
\Gamma(x) \cap P & =x^{\perp} \cap P=\text { a line of } P \text { or } P \\
& \Longrightarrow|\Gamma(x) \cap C|=0,2 \text { or } 4
\end{aligned}
$$

## Fano plane in a polar space

A quadrangle $C$ in a Fano plane.


> For any line $L$,
> $|L \cap C|=0$ or 2

If this plane $P$ is totally isotropic, then

$$
\begin{aligned}
\Gamma(x) \cap P & =x^{\perp} \cap P=\text { a line of } P \text { or } P \\
& \Longrightarrow|\Gamma(x) \cap C|=0,2 \text { or } 4
\end{aligned}
$$

## Fano plane in a polar space

A quadrangle $C$ in a Fano plane.


> For any line $L$,
> $|L \cap C|=0$ or 2

If this plane $P$ is totally isotropic, then

$$
\begin{aligned}
\Gamma(x) \cap P & =x^{\perp} \cap P=\text { a line of } P \text { or } P \\
& \Longrightarrow|\Gamma(x) \cap C|=0,2 \text { or } 4
\end{aligned}
$$

$\Longrightarrow C$ can be used in Godsil-McKay switching.

## One cell of size 4 partitioned into 2 parts

$C=C_{1} \cup C_{2} \quad C_{i}=L_{i} \backslash\left(L_{1} \cap L_{2}\right)$.
A quadrangle is a union of two lines minus the point of intersection.


For any line $L$,
$\left|L \cap C_{1}\right|=\left|L \cap C_{2}\right|$, or
$L \cap\left(C_{1} \cup C_{2}\right)=C_{1}$ or $C_{2}$.

## One cell of size 4 partitioned into 2 parts

$C=C_{1} \cup C_{2} \quad C_{i}=L_{i} \backslash\left(L_{1} \cap L_{2}\right)$.
A quadrangle is a union of two lines minus the point of intersection.


For any line $L$,

$$
\begin{aligned}
& \left|L \cap C_{1}\right|=\left|L \cap C_{2}\right| \text {, or } \\
& L \cap\left(C_{1} \cup C_{2}\right)=C_{1} \text { or } C_{2} .
\end{aligned}
$$

If this plane $P$ is totally isotropic, then
$\Gamma(x) \cap C=C_{1}$ or $C_{2}$ or one point each from $C_{i}$, or $C$

## Theorem

Let $\Gamma$ be a graph whose vertex set is partitioned as $C_{1} \cup C_{2} \cup D$, where $\left|C_{1}\right|=\left|C_{2}\right|=2$. Assume that the subgraph of $\Gamma$ induced on $C$ is regular, and that

$$
\begin{aligned}
& \left|\Gamma(x) \cap C_{1}\right|=\left|\Gamma(x) \cap C_{2}\right|, \text { or } \\
& \Gamma(x) \cap\left(C_{1} \cup C_{2}\right)=C_{1} \text { or } C_{2} .
\end{aligned}
$$

Construct a graph $\bar{\Gamma}$ from $\Gamma$ by modifying edges between $C$ and $D$ as follows:

$$
\bar{\Gamma}(x) \cap C= \begin{cases}C_{2} & \text { if } \Gamma(x) \cap C=C_{1}, \\ C_{1} & \text { if } \Gamma(x) \cap C=C_{2}, \\ \Gamma(x) \cap C & \text { otherwise },\end{cases}
$$

for $x \in D$. Then $\bar{\Gamma}$ is cospectral with $\Gamma$.

## Proof: $A(\bar{\Gamma})=P^{\top} A(\Gamma) P$

$$
\begin{aligned}
& C_{1} C_{2} D \\
& A(\Gamma)=\begin{array}{c}
C_{1} \\
C_{2} \\
D
\end{array}\left[\begin{array}{cc|c}
* & * & * \\
* & * & * \\
\hline * & * & *
\end{array}\right]
\end{aligned}
$$

## Proof: $A(\bar{\Gamma})=P^{\top} A(\Gamma) P$

$$
\begin{gathered}
A(\Gamma)=\begin{array}{c}
C_{1} \\
C_{1} \\
C_{2} \\
D
\end{array}\left[\begin{array}{cc|c}
C_{1} & C_{2} & D \\
* & * & * \\
* & * & *
\end{array}\right] \\
P=\left[\begin{array}{ccccc} 
\\
\frac{1}{2}\left[\begin{array}{cccc}
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1
\end{array}\right] & \\
& 0 & & \\
& &
\end{array}\right] \in O(n, \mathbb{Q}) .
\end{gathered}
$$

The original Godsil-McKay switching (with one cell $C$ ) uses

$$
Q=\left[\begin{array}{cc}
\frac{1}{2}(J-2 I) & 0 \\
0 & I_{D}
\end{array}\right],
$$

## Proof: $A(\bar{\Gamma})=P^{\top} A(\Gamma) P$

$$
\begin{gathered}
A(\Gamma)=\begin{array}{ccc}
C_{1} & C_{2} & D \\
C_{1} & {\left[\begin{array}{cc|c}
* & * & * \\
C_{2} & * & * \\
* & * & * \\
* & * & *
\end{array}\right]} \\
P=\left[\begin{array}{cccc}
{\left[\begin{array}{cccc}
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
2 & 1 & 1 & -1 \\
1 & 1 & -1 & 1
\end{array}\right]} & \\
1 & 0 & & I_{D}
\end{array}\right] \in O(n, \mathbb{Q}) .
\end{array} . . \begin{array}{c}
\end{array} .
\end{gathered}
$$

The original Godsil-McKay switching (with one cell $C$ ) uses

$$
Q=\left[\begin{array}{cc}
\frac{1}{2}(J-2 I) & 0 \\
0 & I_{D}
\end{array}\right],
$$

but $P Q^{\top}$ is a permutation matrix, resulting in:

$$
P^{\top} A(\Gamma) P \text { isomorphic } Q^{\top} A(\Gamma) Q \text {. }
$$

## Projective space of order $q>2$

$$
C=C_{1} \cup C_{2} \quad C_{i}=L_{i} \backslash\left(L_{1} \cap L_{2}\right) .
$$

Union of two lines minus the point of intersection. $|C|=2 q$.


For any line $L$,

$$
\begin{aligned}
& \left|L \cap C_{1}\right|=\left|L \cap C_{2}\right|, \text { or } \\
& L \cap\left(C_{1} \cup C_{2}\right)=C_{1} \text { or } C_{2} .
\end{aligned}
$$

## Projective space of order $q>2$

$$
C=C_{1} \cup C_{2} \quad C_{i}=L_{i} \backslash\left(L_{1} \cap L_{2}\right) .
$$

Union of two lines minus the point of intersection. $|C|=2 q$.


For any line $L$,

$$
\begin{aligned}
& \left|L \cap C_{1}\right|=\left|L \cap C_{2}\right|=1, \text { or } \\
& L \cap\left(C_{1} \cup C_{2}\right)=C_{1} \text { or } C_{2} .
\end{aligned}
$$

## Theorem

Let $\Gamma$ be a graph whose vertex set is partitioned as $C_{1} \cup C_{2} \cup D$, where $\left|C_{1}\right|=\left|C_{2}\right|=q$. Assume that $C_{1} \cup C_{2}$ is equitable, and that

$$
\begin{aligned}
& \left|\Gamma(x) \cap C_{1}\right|=\left|\Gamma(x) \cap C_{2}\right|, \text { or } \\
& \Gamma(x) \cap\left(C_{1} \cup C_{2}\right)=C_{1} \text { or } C_{2} .
\end{aligned}
$$

Construct a graph $\bar{\Gamma}$ from $\Gamma$ by modifying edges between $C$ and $D$ as follows:

$$
\bar{\Gamma}(x) \cap C= \begin{cases}C_{2} & \text { if } \Gamma(x) \cap C=C_{1}, \\ C_{1} & \text { if } \Gamma(x) \cap C=C_{2}, \\ \Gamma(x) \cap C & \text { otherwise },\end{cases}
$$

for $x \in D$. Then $\bar{\Gamma}$ is cospectral with $\Gamma$.

## Proof: $A(\bar{\Gamma})=P^{\top} A(\Gamma) P$

$$
A(\Gamma)=\begin{gathered}
C_{1} \\
C_{1} \\
C_{2} \\
D
\end{gathered}\left[\begin{array}{cc|c}
C_{1} & C_{2} & D \\
* & * & * \\
* & * & * \\
\hline * & * & *
\end{array}\right], \quad P=\left[\begin{array}{ccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]
$$

## Proof: $A(\bar{\Gamma})=P^{\top} A(\Gamma) P$

$$
A(\Gamma)=\begin{gathered}
C_{1} \\
C_{1} \\
C_{2} \\
D
\end{gathered}\left[\begin{array}{ccc|c}
C_{1} & C_{2} & D \\
* & * & * \\
* & * & * \\
\hline * & * & *
\end{array}\right], \quad P=\left[\begin{array}{ccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{cccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]=\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]
$$

## Proof: $A(\bar{\Gamma})=P^{\top} A(\Gamma) P$

$$
A(\Gamma)=\begin{gathered}
C_{1} \\
C_{1} \\
C_{2} \\
D
\end{gathered}\left[\begin{array}{cc|c}
C_{1} & C_{2} & D \\
* & * & * \\
* & * & * \\
\hline * & * & *
\end{array}\right], \quad P=\left[\begin{array}{ccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{ccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]=\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]} \\
& {\left[\begin{array}{ll}
* & *
\end{array}\right]\left[\begin{array}{cc}
I-\frac{1}{q} J & \frac{1}{q} J \\
\frac{1}{q} J & I-\frac{1}{q} J
\end{array}\right]=\left\{\begin{array}{lll}
{\left[\begin{array}{ll}
1 & 1
\end{array}\right]} & \text { if }\left[\begin{array}{ll}
* & *
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{1} & 0
\end{array}\right] \\
\text { if }[* & * \\
{\left[\begin{array}{ll}
* & *
\end{array}\right]=\left[\begin{array}{ll}
0 & \mathbf{1}
\end{array}\right]} \\
\text { if } *_{1} J=*_{2} J \\
\left(\left|\Gamma(x) \cap C_{1}\right|=\left|\Gamma(x) \cap C_{2}\right|\right)
\end{array}\right.}
\end{aligned}
$$

## Proof: $A(\bar{\Gamma})=P^{\top} A(\Gamma) P$

$$
A(\Gamma)=\begin{gathered}
C_{1} \\
C_{1} \\
C_{2} \\
D
\end{gathered}\left[\begin{array}{cc|c}
* & * & * \\
* & * & * \\
\hline * & * & *
\end{array}\right], \quad P=\left[\begin{array}{ccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{ccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]=\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]} \\
& {\left[\begin{array}{ll}
* & *
\end{array}\right]\left[\begin{array}{cc}
I-\frac{1}{q} J & \frac{1}{q} J \\
\frac{1}{q} J & I-\frac{1}{q} J
\end{array}\right]=\left\{\begin{array}{lll}
{\left[\begin{array}{ll}
1 & 1
\end{array}\right]} & \text { if }\left[\begin{array}{ll}
* & *
\end{array}\right]=\left[\begin{array}{ll}
1 & 0
\end{array}\right] & \text { if }[* * \\
{\left[\begin{array}{ll}
* & *
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
* & *
\end{array}\right]} & \text { if } *_{1} J=*_{2} J \\
\left(\left|\Gamma(x) \cap C_{1}\right|=\left|\Gamma(x) \cap C_{2}\right|\right)
\end{array}\right.}
\end{aligned}
$$

## Proof: $A(\bar{\Gamma})=P^{\top} A(\Gamma) P$

$$
A(\Gamma)=\begin{gathered}
\\
C_{1} \\
C_{2} \\
D
\end{gathered}\left[\begin{array}{ccc}
C_{1} & C_{2} & D \\
* & * & * \\
* & * & * \\
\hline * & * & *
\end{array}\right], \quad P=\left[\begin{array}{ccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]
$$

## Proof: $A(\bar{\Gamma})=P^{\top} A(\Gamma) P$

$$
A(\Gamma)=\begin{gathered}
C_{1} C_{2} D \\
C_{1} \\
C_{2} \\
D
\end{gathered}\left[\begin{array}{cc|c}
* & * & * \\
* & * & * \\
\hline * & * & *
\end{array}\right], \quad P=\left[\begin{array}{ccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]
$$

The original Godsil-McKay switching (with one cell $C$ ) uses

$$
Q=\left[\begin{array}{ccc}
\frac{1}{q} J-I & \frac{1}{q} J & 0 \\
\frac{1}{q} J & \frac{1}{q} J-I & 0 \\
0 & 0 & I_{D}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{q} J-I & 0 \\
0 & I_{D}
\end{array}\right] .
$$

## Proof: $A(\bar{\Gamma})=P^{\top} A(\Gamma) P$

$$
A(\Gamma)=\begin{gathered}
C_{1} \\
C_{1} \\
C_{2} \\
D
\end{gathered}\left[\begin{array}{cccc}
* & * & * \\
* & * & * \\
\hline * & * & *
\end{array}\right], \quad P=\left[\begin{array}{ccc}
I-\frac{1}{q} J & \frac{1}{q} J & 0 \\
\frac{1}{q} J & I-\frac{1}{q} J & 0 \\
0 & 0 & I
\end{array}\right]
$$

The original Godsil-McKay switching (with one cell $C$ ) uses

$$
\begin{gathered}
Q=\left[\begin{array}{ccc}
\frac{1}{q} J-I & \frac{1}{q} J & 0 \\
\frac{1}{q} J & \frac{1}{q} J-I & 0 \\
0 & 0 & I_{D}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{q} J-I & 0 \\
0 & I_{D}
\end{array}\right] . \\
{[*]\left[\left[\frac{1}{q} J-I\right]= \begin{cases}1-* & \text { if } * J=q 1 \\
{\left[|\Gamma(x) \cap C|=\frac{1}{2}|C|\right)} \\
{[*]} & \text { if }[*]=0 \text { or } \mathbf{1}\end{cases} \right.}
\end{gathered}
$$

## Hypotheses of the two switchings

Two switchings require different hypotheses.
Godsil-McKay: for $|C|=2 q$,

$$
|\Gamma(x) \cap C|=0, q \text { or } 2 q
$$

Ours: for $C=C_{1} \cup C_{2},\left|C_{1}\right|=\left|C_{2}\right|=q$,
$|\Gamma(x) \cap C|$ could possibly be any even number

For $q>2$, these two methods in general give non-isomorphic graphs.

Question: Is there a common generalization?

## Projective space of order $q>2$

$$
C=C_{1} \cup C_{2} \quad C_{i}=L_{i} \backslash\left(L_{1} \cap L_{2}\right) .
$$

Union of two lines minus the point of intersection. $|C|=2 q$.


For any line $L$,

$$
\begin{aligned}
& \left|L \cap C_{1}\right|=\left|L \cap C_{2}\right|, \text { or } \\
& L \cap\left(C_{1} \cup C_{2}\right)=C_{1} \text { or } C_{2} .
\end{aligned}
$$

## Projective space of order $q>2$

$$
C=C_{1} \cup C_{2} \quad C_{i}=L_{i} \backslash\left(L_{1} \cap L_{2}\right) .
$$

Union of two lines minus the point of intersection. $|C|=2 q$.


For any line $L$,

$$
\begin{aligned}
& \left|L \cap C_{1}\right|=\left|L \cap C_{2}\right|=1, \text { or } \\
& L \cap\left(C_{1} \cup C_{2}\right)=C_{1} \text { or } C_{2} .
\end{aligned}
$$

Let $\Gamma$ be the graph of non-isotropic points in a hermitian polar space. Two vertices are adjacent iff orthogonal. If $C$ consists entirely of non-isotropic points, the switching can be applied.

## Non-isotropic points

Let $V$ be a vector space over $\mathbb{F}_{q^{2}}$ equipped with a nondegenerate hermitian form.

Let $\Gamma$ be the graph of non-isotropic points of $V$. Two vertices are adjacent iff orthogonal.
Then $\Gamma$ is a strongly regular graph.

## Non-isotropic points

Let $V$ be a vector space over $\mathbb{F}_{q^{2}}$ equipped with a nondegenerate hermitian form.
Let $\Gamma$ be the graph of non-isotropic points of $V$.
Two vertices are adjacent iff orthogonal.
Then $\Gamma$ is a strongly regular graph.
For all cliques $\{x, y, z\}$ of $\Gamma,|\Gamma(x) \cap \Gamma(y) \cap \Gamma(z)|$ is independent of the choice of $\{x, y, z\}$.
After switching, this property will be violated
$\Longrightarrow$ the resulting cospectral graph is not isomorphic to the original graph $\Gamma$.

## Switching $\Gamma$ to $\bar{\Gamma}$

$C=C_{1} \cup C_{2} \quad C_{i}=L_{i} \backslash\left(L_{1} \cap L_{2}\right)$.
Union of two lines minus the point of intersection. $|C|=2 q$.


## Switching $\Gamma$ to $\bar{\Gamma}$

$C=C_{1} \cup C_{2} \quad C_{i}=L_{i} \backslash\left(L_{1} \cap L_{2}\right)$.
Union of two lines minus the point of intersection. $|C|=2 q$.


## Switching $\Gamma$ to $\bar{\Gamma}$

$C=C_{1} \cup C_{2} \quad C_{i}=L_{i} \backslash\left(L_{1} \cap L_{2}\right)$.
Union of two lines minus the point of intersection. $|C|=2 q$.


$$
|\Gamma(x) \cap \Gamma(y) \cap \Gamma(z) \cap P|>|\bar{\Gamma}(x) \cap \bar{\Gamma}(y) \cap \bar{\Gamma}(z) \cap P| .
$$

Therefore, $\Gamma \neq \bar{\Gamma}$.

## Future work

- Is there a common generalization for Godsil-McKay switching and our switching?


## Future work

- Is there a common generalization for Godsil-McKay switching and our switching?
- Pairs of DRG having the same parameters can be obtained by either switching? (yes for twisted Grassmann, Doob). For example, $\operatorname{Alt}(n+1, q)$ and $\operatorname{Quad}(n, q)$.


## Future work

- Is there a common generalization for Godsil-McKay switching and our switching?
- Pairs of DRG having the same parameters can be obtained by either switching? (yes for twisted Grassmann, Doob). For example, $\operatorname{Alt}(n+1, q)$ and $\operatorname{Quad}(n, q)$.

Thank you very much for your attention!

