A variation of Godsil–McKay switching

Akihiro Munemasa

Graduate School of Information Sciences Tohoku University

joint work with Ferdinand Ihringer

November 22, 2018 International Workshop on Algebraic Combinatorics Anhui University

Two graphs Γ , Γ' are cospectral if their adjacency matrices A, A' have the same spectra.

Two graphs Γ , Γ' are cospectral if their adjacency matrices A, A' have the same spectra.

$$\mathsf{cospectral} \iff \mathbf{A}' = \mathbf{P}^\top \mathbf{A} \mathbf{P}$$

for some orthogonal matrix P.

Two graphs Γ , Γ' are cospectral if their adjacency matrices A, A' have the same spectra.

cospectral $\iff A' = P^{\top}AP$

for some orthogonal matrix P.

isomorphic $\iff A' = P^{\top}AP$

for some permutation matrix *P*.

Two graphs Γ , Γ' are cospectral if their adjacency matrices A, A' have the same spectra.

cospectral $\iff A' = P^{\top}AP$

for some orthogonal matrix P.

isomorphic $\iff A' = P^{\top}AP$

for some permutation matrix *P*.

{permutation matrices} \subseteq {orthogonal matrices}

Two graphs Γ , Γ' are cospectral if their adjacency matrices A, A' have the same spectra.

cospectral $\iff A' = P^{\top}AP$

for some orthogonal matrix *P*.

isomorphic $\iff A' = P^{\top}AP$

for some permutation matrix *P*.

{permutation matrices} \subseteq { $P \in O(n, \mathbb{Q}) | P\mathbf{1} = \mathbf{1}$, $P^{\top}AP(0, 1)$ -matrix with 0 diagonals}

Two graphs Γ , Γ' are cospectral if their adjacency matrices A, A' have the same spectra.

cospectral $\iff A' = P^{\top}AP$

for some orthogonal matrix *P*.

isomorphic $\iff A' = P^{\top}AP$

for some permutation matrix *P*.

{permutation matrices} \subseteq { $P \in O(n, \mathbb{Q}) | P\mathbf{1} = \mathbf{1}$, $P^{\top}AP(0, 1)$ -matrix with 0 diagonals}

Wang–Xu (2006): "=" determined by "generalized" spectrum.

- Godsil, McKay (1982): "Constructing cospectral graphs"
- Van Dam, Haemers, Koolen, Spence (2006): Johnson (non-distance-regular cospectral mate)
- Abiad, Haemers (2016), Kubota (2016): symplectic graphs
- Barwick, Jackson, Penttila (2017): orthogonal polar
- Ihringer (2017): all polar
- Munemasa (2017): Twisted Grassmann; Kubota (2017): Doob

- Godsil, McKay (1982): "Constructing cospectral graphs"
- Van Dam, Haemers, Koolen, Spence (2006): Johnson (non-distance-regular cospectral mate)
- Abiad, Haemers (2016), Kubota (2016): symplectic graphs (SRG)
- Barwick, Jackson, Penttila (2017): orthogonal polar (SRG)
- Ihringer (2017): all polar (SRG)
- Munemasa (2017): Twisted Grassmann; Kubota (2017): Doob (DRG)

 $\Gamma = (X, E)$: graph, $X = (\bigcup_i C_i) \cup D$. Assume $\forall x \in D, \forall i, x \text{ is adjacent to } 0, 1/2 \text{ or all vertices of } C_i$.

Godsil–McKay switching: interchange adj. and non-adj. between $x \in D$ and C_i if x is adj. to 1/2 of C_i .

 $\Gamma = (X, E)$: graph, $X = (\bigcup_i C_i) \cup D$.

Assume $\forall x \in D$, $\forall i, x$ is adjacent to 0, 1/2 or all vertices of C_i .

Godsil–McKay switching: interchange adj. and non-adj. between $x \in D$ and C_i if x is adj. to 1/2 of C_i .

Theorem (Godsil-McKay, 1982)

If $\{C_i\}_i$ is equitable, then the resulting graph is cospectral with the original.

Equitable: $\forall i, \forall x, \forall y \in C_i, \forall j, |\Gamma(x) \cap C_j| = |\Gamma(y) \cap C_j|.$

Godsil–McKay switching with one cell C

 $\Gamma = (X, E)$: graph, $X = C \cup D$.

Assume $\forall x \in D$, x is adjacent to 0, 1/2 or all vertices of C.

Godsil–McKay switching: interchange adj. and non-adj. between $x \in D$ and C if x is adj. to 1/2 of C.

Godsil–McKay switching with one cell C

 $\Gamma = (X, E)$: graph, $X = C \cup D$.

Assume $\forall x \in D$, x is adjacent to 0, 1/2 or all vertices of C.

Godsil–McKay switching: interchange adj. and non-adj. between $x \in D$ and C if x is adj. to 1/2 of C.

In this special case:

Theorem (Godsil–McKay, 1982)

If the subgraph of Γ induced on *C* is regular, then the resulting graph is cospectral with the original.

One cell of size 4

 $\Gamma = (X, E)$: graph, $X = C \cup D$, |C| = 4. Assume $\forall x \in D$, x is adjacent to 0, 2 or 4 vertices of C.

Godsil–McKay switching: interchange adj. and non-adj. between $x \in D$ and C if x is adj. to 2 of C.

One cell of size 4

 $\Gamma = (X, E)$: graph, $X = C \cup D$, |C| = 4. Assume $\forall x \in D$, x is adjacent to 0, 2 or 4 vertices of C.

Godsil–McKay switching: interchange adj. and non-adj. between $x \in D$ and C if x is adj. to 2 of C.

In this special case:

Theorem (Godsil–McKay, 1982)

If the subgraph of Γ induced on *C* is regular, then the resulting graph is cospectral with the original.

One cell of size 4

 $\Gamma = (X, E)$: graph, $X = C \cup D$, |C| = 4. Assume $\forall x \in D$, x is adjacent to 0, 2 or 4 vertices of C.

Godsil–McKay switching: interchange adj. and non-adj. between $x \in D$ and C if x is adj. to 2 of C.

In this special case:

Theorem (Godsil–McKay, 1982)

If the subgraph of Γ induced on *C* is regular, then the resulting graph is cospectral with the original.

If |C| = 2, then the switched graph is isomorphic to the original.

A quadrangle *C* in a Fano plane.

Every line meets C at 0 or 2 points.

A quadrangle *C* in a Fano plane.

Every line meets *C* at 0 or 2 points.

Neighbors of a vertex outside C

 \implies C can be used in Godsil–McKay switching.

Polar space

Let V be a vector space over \mathbb{F}_q with nondegenerate

 $\left\{\begin{array}{l} \text{symplectic} \\ \text{hermitian} \\ \text{symmetric bilinear} \end{array}\right\} \text{ form } B.$

Polar space

Let V be a vector space over \mathbb{F}_q with nondegenerate

{ symplectic
 hermitian
 symmetric bilinear
} form B.

The polar space consists of the set

 $\mathbb{P} = \{x : \text{ projective point (1-dimensional subspace)}\}$ B = 0 on x (isotropic) }

Polar space

Let V be a vector space over \mathbb{F}_q with nondegenerate

{ symplectic hermitian symmetric bilinear } form B.

The polar space consists of the set

 $\mathbb{P} = \{x : \text{ projective point (1-dimensional subspace)}\}$ B = 0 on x (isotropic) }

Strongly regular polar graph Γ : \mathbb{P} as vertices,

$$x \sim y \iff x \subseteq y^{\perp}.$$

That is.

$$\Gamma(x) = x^{\perp} \cap \mathbb{P}.$$

A quadrangle *C* in a Fano plane.

For any line L, $|L \cap C| = 0$ or 2

A quadrangle *C* in a Fano plane.

For any line L, $|L \cap C| = 0$ or 2

If this plane *P* is totally isotropic, then

$$\Gamma(x) \cap P = x^{\perp} \cap P = ext{a line of } P ext{ or } P$$

 $\implies |\Gamma(x) \cap C| = 0, 2 ext{ or } 4$

A quadrangle *C* in a Fano plane.

For any line L, $|L \cap C| = 0$ or 2

If this plane *P* is totally isotropic, then

$$\Gamma(x) \cap P = x^{\perp} \cap P = ext{a line of } P ext{ or } P$$

 $\implies |\Gamma(x) \cap C| = 0, 2 ext{ or } 4$

A quadrangle *C* in a Fano plane.

For any line L, $|L \cap C| = 0$ or 2

If this plane P is totally isotropic, then

$$\Gamma(x) \cap P = x^{\perp} \cap P = ext{a line of } P ext{ or } P$$

 $\implies |\Gamma(x) \cap C| = 0, 2 ext{ or } 4$

 \implies C can be used in Godsil–McKay switching.

One cell of size 4 partitioned into 2 parts

$$C = C_1 \cup C_2 \qquad C_i = L_i \setminus (L_1 \cap L_2).$$

A quadrangle is a union of two lines minus the point of intersection.

For any line L, $|L \cap C_1| = |L \cap C_2|$, or $L \cap (C_1 \cup C_2) = C_1$ or C_2 .

One cell of size 4 partitioned into 2 parts

$$C = C_1 \cup C_2 \qquad C_i = L_i \setminus (L_1 \cap L_2).$$

A quadrangle is a union of two lines minus the point of intersection.

For any line L, $|L \cap C_1| = |L \cap C_2|$, or $L \cap (C_1 \cup C_2) = C_1$ or C_2 .

If this plane *P* is totally isotropic, then

 $\Gamma(x) \cap C = C_1$ or C_2 or one point each from C_i , or C

Theorem

Let Γ be a graph whose vertex set is partitioned as $C_1 \cup C_2 \cup D$, where $|C_1| = |C_2| = 2$. Assume that the subgraph of Γ induced on *C* is regular, and that

$$|\Gamma(x) \cap C_1| = |\Gamma(x) \cap C_2|, \text{ or } \\ \Gamma(x) \cap (C_1 \cup C_2) = C_1 \text{ or } C_2.$$

Construct a graph $\overline{\Gamma}$ from Γ by modifying edges between *C* and *D* as follows:

$$\overline{\Gamma}(x) \cap C = \begin{cases} C_2 & \text{if } \Gamma(x) \cap C = C_1, \\ C_1 & \text{if } \Gamma(x) \cap C = C_2, \\ \Gamma(x) \cap C & \text{otherwise,} \end{cases}$$

for $x \in D$. Then $\overline{\Gamma}$ is cospectral with Γ .

$$A(\Gamma) = \begin{array}{c} C_{1} & C_{2} & D \\ C_{2} & \left[\begin{array}{c} * & * & * \\ \hline & * & * \\ \end{array}\right] \\ P = \left[\begin{array}{c} 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \\ \end{array}\right] \\ 0 & I_{D} \end{array}\right] \in O(n, \mathbb{Q}).$$

The original Godsil–McKay switching (with one cell C) uses

$$Q = \begin{bmatrix} \frac{1}{2}(J-2I) & 0\\ 0 & I_D \end{bmatrix},$$

but PQ^{\top} is a permutation matrix, resulting in:

 $P^{\top}A(\Gamma)P$ isomorphic $Q^{\top}A(\Gamma)Q$.

Projective space of order q > 2

 $C = C_1 \cup C_2$ $C_i = L_i \setminus (L_1 \cap L_2)$. Union of two lines minus the point of intersection. |C| = 2q.

For any line L, $|L \cap C_1| = |L \cap C_2|$, or $L \cap (C_1 \cup C_2) = C_1$ or C_2 .

Projective space of order q > 2

 $C = C_1 \cup C_2$ $C_i = L_i \setminus (L_1 \cap L_2)$. Union of two lines minus the point of intersection. |C| = 2q.

For any line *L*, $|L \cap C_1| = |L \cap C_2| = 1$, or $L \cap (C_1 \cup C_2) = C_1$ or C_2 .

Theorem

Let Γ be a graph whose vertex set is partitioned as $C_1 \cup C_2 \cup D$, where $|C_1| = |C_2| = q$. Assume that $C_1 \cup C_2$ is equitable, and that

$$|\Gamma(x) \cap C_1| = |\Gamma(x) \cap C_2|, \text{ or } \\ \Gamma(x) \cap (C_1 \cup C_2) = C_1 \text{ or } C_2.$$

Construct a graph $\overline{\Gamma}$ from Γ by modifying edges between *C* and *D* as follows:

$$\overline{\Gamma}(x) \cap C = \begin{cases} C_2 & \text{if } \Gamma(x) \cap C = C_1, \\ C_1 & \text{if } \Gamma(x) \cap C = C_2, \\ \Gamma(x) \cap C & \text{otherwise,} \end{cases}$$

for $x \in D$. Then $\overline{\Gamma}$ is cospectral with Γ .

$$A(\Gamma) = \begin{array}{ccc} C_1 & C_2 & D \\ R(\Gamma) = \begin{array}{ccc} C_1 & \\ C_2 & \\ D & \end{array} \begin{pmatrix} * & * & * \\ * & * & * \\ \hline * & * & * \\ \end{array} \right) , \quad P = \begin{bmatrix} I - \frac{1}{q}J & \frac{1}{q}J & 0 \\ \frac{1}{q}J & I - \frac{1}{q}J & 0 \\ 0 & 0 & I \end{bmatrix}$$

$$A(\Gamma) = \begin{array}{ccc} C_1 & C_2 & D \\ C_1 & \left[\begin{array}{ccc} * & * & * \\ * & * & * \\ D & \left[\begin{array}{ccc} * & * & * \\ * & * & * \\ \hline * & * & * \end{array} \right] \end{array}, \quad P = \begin{bmatrix} I - \frac{1}{q}J & \frac{1}{q}J & 0 \\ \frac{1}{q}J & I - \frac{1}{q}J & 0 \\ 0 & 0 & I \end{bmatrix}$$

The original Godsil–McKay switching (with one cell C) uses

$$Q = \begin{bmatrix} \frac{1}{q}J - I & \frac{1}{q}J & 0\\ \frac{1}{q}J & \frac{1}{q}J - I & 0\\ 0 & 0 & I_D \end{bmatrix} = \begin{bmatrix} \frac{1}{q}J - I & 0\\ 0 & I_D \end{bmatrix}$$

٠

$$A(\Gamma) = \begin{array}{ccc} C_1 & C_2 & D \\ C_1 & \left[\begin{array}{ccc} * & * & * \\ * & * & * \\ D \end{array} \right], \quad P = \begin{bmatrix} I - \frac{1}{q}J & \frac{1}{q}J & 0 \\ \frac{1}{q}J & I - \frac{1}{q}J & 0 \\ 0 & 0 & I \end{bmatrix}$$

The original Godsil–McKay switching (with one cell C) uses

$$Q = egin{bmatrix} rac{1}{q}J - I & rac{1}{q}J & 0 \ rac{1}{q}J & rac{1}{q}J - I & 0 \ 0 & 0 & I_D \end{bmatrix} = egin{bmatrix} rac{1}{q}J - I & 0 \ 0 & I_D \end{bmatrix}.$$

$$\begin{bmatrix} * \end{bmatrix} \begin{bmatrix} \frac{1}{q} J - I \end{bmatrix} = \begin{cases} \mathbf{1} - * & \text{if } *J = q\mathbf{1} \quad (|\Gamma(x) \cap C| = \frac{1}{2}|C|) \\ \begin{bmatrix} * \end{bmatrix} & \text{if } \begin{bmatrix} * \end{bmatrix} = 0 \text{ or } \mathbf{1} \end{cases}$$

Hypotheses of the two switchings

Two switchings require different hypotheses.

Godsil–McKay: for |C| = 2q,

 $|\Gamma(x) \cap C| = 0, q \text{ or } 2q$

Ours: for $C = C_1 \cup C_2$, $|C_1| = |C_2| = q$,

 $|\Gamma(x) \cap C|$ could possibly be any even number

For q > 2, these two methods in general give non-isomorphic graphs.

Question: Is there a common generalization?

Projective space of order q > 2

 $C = C_1 \cup C_2$ $C_i = L_i \setminus (L_1 \cap L_2)$. Union of two lines minus the point of intersection. |C| = 2q.

For any line L, $|L \cap C_1| = |L \cap C_2|$, or $L \cap (C_1 \cup C_2) = C_1$ or C_2 .

Projective space of order q > 2

 $C = C_1 \cup C_2$ $C_i = L_i \setminus (L_1 \cap L_2)$. Union of two lines minus the point of intersection. |C| = 2q.


```
For any line L,
|L \cap C_1| = |L \cap C_2| = 1, or
L \cap (C_1 \cup C_2) = C_1 or C_2.
```

Let Γ be the graph of non-isotropic points in a hermitian polar space. Two vertices are adjacent iff orthogonal. If *C* consists entirely of non-isotropic points, the switching can be applied.

Let *V* be a vector space over \mathbb{F}_{q^2} equipped with a nondegenerate hermitian form.

Let Γ be the graph of non-isotropic points of V. Two vertices are adjacent iff orthogonal.

Then Γ is a strongly regular graph.

Let *V* be a vector space over \mathbb{F}_{q^2} equipped with a nondegenerate hermitian form.

Let Γ be the graph of non-isotropic points of V. Two vertices are adjacent iff orthogonal.

Then Γ is a strongly regular graph.

For all cliques $\{x, y, z\}$ of Γ , $|\Gamma(x) \cap \Gamma(y) \cap \Gamma(z)|$ is independent of the choice of $\{x, y, z\}$.

After switching, this property will be violated \implies the resulting cospectral graph is not isomorphic to the original graph Γ .

Switching Γ to $\overline{\Gamma}$

 $C = C_1 \cup C_2$ $C_i = L_i \setminus (L_1 \cap L_2)$. Union of two lines minus the point of intersection. |C| = 2q.

Switching Γ to $\overline{\Gamma}$

 $C = C_1 \cup C_2$ $C_i = L_i \setminus (L_1 \cap L_2)$. Union of two lines minus the point of intersection. |C| = 2q.

Switching Γ to $\overline{\Gamma}$

 $C = C_1 \cup C_2$ $C_i = L_i \setminus (L_1 \cap L_2)$. Union of two lines minus the point of intersection. |C| = 2q.

 $|\Gamma(x) \cap \Gamma(y) \cap \Gamma(z) \cap P| > |\overline{\Gamma}(x) \cap \overline{\Gamma}(y) \cap \overline{\Gamma}(z) \cap P|.$ Therefore, $\Gamma \ncong \overline{\Gamma}$.

Akihiro Munemasa (Tohoku University)

• Is there a common generalization for Godsil–McKay switching and our switching?

- Is there a common generalization for Godsil–McKay switching and our switching?
- Pairs of DRG having the same parameters can be obtained by either switching? (yes for twisted Grassmann, Doob).
 For example, Alt(n + 1, q) and Quad(n, q).

- Is there a common generalization for Godsil–McKay switching and our switching?
- Pairs of DRG having the same parameters can be obtained by either switching? (yes for twisted Grassmann, Doob).
 For example, Alt(n + 1, q) and Quad(n, q).

Thank you very much for your attention!