Digraphs with Hermitian spectral radius at most 2

Akihiro Munemasa

Graduate School of Information Sciences Tohoku University

joint work with A. Gavrilyuk August 28, 2019

JCCA 2019 National Institute of Technology, Miyakonojo

Akihiro Munemasa

Tohoku University

What is the spectrum of a graph

The spectrum of a graph means the multiset of eigenvalues of its adjacency matrix.

$$\begin{split} & \operatorname{Spec} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \operatorname{Spec}(A_2) = \{1, -1\}, \\ & \operatorname{Spec} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \operatorname{Spec}(A_3) = \{\sqrt{2}, 0, -\sqrt{2}\}, \\ & \operatorname{Spec} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} = \operatorname{Spec}(\tilde{A_3}) = \{2, [0]^2, -2\}, \\ & \operatorname{Spec}(\tilde{A_4}) = \{2, [2\cos\frac{2\pi}{5}]^2, [2\cos\frac{4\pi}{5}]^2\}. \end{split}$$

The spectral radius $\rho(\cdot)$ of a graph

Denote by $\rho(\cdot)$ the maximum of the absolute value of the spectrum of a graph.

$$egin{aligned} &
ho(A_2) = 1, \ &
ho(A_3) = \sqrt{2}, \ &
ho(ilde{A_3}) = 2, \ &
ho(ilde{A_4}) = 2. \end{aligned}$$

Smith (1970), Lemmens and Seidel (1974): Every graph with $\rho \leq 2$ is a subgraph of one of the following:

Hermitian adjacency matrix of a digraph

The Hermitian adjacency matrix $H = H(\Delta)$ of a digraph Δ , introduced by Li–Liu (2015), Guo–Mohar (2017):

$$\mathcal{H}_{xy} = egin{cases} 1 & ext{if } x \rightleftharpoons y \ i & ext{if } x
ightarrow y \ -i & ext{if } x \leftarrow y \ 0 & ext{otherwise} \end{cases}$$

Guo–Mohar (2017) classified digraphs with Hermitian spectral radius < 2.

Can we classify digraphs with Hermitian spectral radius = 2? This will include \tilde{A}_n , \tilde{D}_n , \tilde{E}_6 , \tilde{E}_7 , \tilde{E}_8 . In the undirected case, to go from "< 2" to "= 2", it suffice to add

one vertex: from A_n (path) to \tilde{A}_n (cycle).

Two undirected graphs *G* and *G'* with respective adjacency matrices *A* and *A'* are isomorphic if \exists permutation matrix *P* such that

$$\mathsf{P}^ op\mathsf{A}\mathsf{P}=\mathsf{A}'.$$

Two digraphs Δ and Δ' with respective Hermitian adjacency matrices *H* and *H'* are switching equivalent if \exists monomial matrix *P* with entries in $\{0, \pm 1, \pm i\}$ such that

$$P^*HP = H'$$
 or $P^*\overline{H}P = H'$.

Guo–Mohar (2017) classified digraphs with Hermitian spectral radius < 2, up to switching equivalence.

Greaves (2012) classified maximal Hermitian matrices with

- entries are in $\{0, 1, -1, i, -i\}$,
- 2 diagonals = 0,
- **③** spectral radius \leq 2

up to equivalence: $H \sim H' \iff$

 \exists monomial matrix P, $P^*HP = \pm H'$ or $P^*\overline{H}P = \pm H'$.

Hermitian adjacency matrices of digraphs with $\rho \leq$ 2 should all appear.

But they are mixed with matrices with -1 in its entries, due to weaker equivalence.

Toral tesselation: Spec $(T_{2k}) = \{ [2]^k, [-2]^k \}$

The signed graph T_{2k}

is equivalent to the Hermitian adjacency matrix of the digraph Δ_{2k} :

Is there another digraph Δ such that $H(\Delta) \sim T_{2k}$ but Δ is not switching equivalent to Δ_{2k} above? (actually, no). It seems difficult to classify all subdigraphs of Δ_{2k} .

Cameron–Goethals–Seidel–Shult (1976)

Every graph with $\lambda_{\min} \ge -2$ can be represented by a root system of type A_n , D_n or E_6 , E_7 , E_8 .

A + 2I is positive semidefinite, so it is the Gram matrix of a set of vectors of norm 2.

$$D_n = \{\pm e_i \pm e_j \mid 1 \le i < j \le n\}.$$

 T_{2k} + 21 is positive semidefinite. Indeed, represented by

$$\{\boldsymbol{e}_{\boldsymbol{p}} \pm \boldsymbol{e}_{\boldsymbol{p}+1} \mid 1 \leq \boldsymbol{p} \leq \boldsymbol{k}\},\$$

From T_{2k} to Δ_{2k} (*k* even)

The digraph Δ_{2k} is represented by

$$\{e_p \pm e_{p+1} \mid p \text{ even}\} \cup \{i(e_p \pm e_{p+1}) \mid p \text{ odd}\}$$

(The case k odd is slightly more complicated.)

Akihiro Munemasa

Tohoku University

Classification

Theorem

Let Δ be a connected digraph with $\rho(\Delta) \leq 2$. Then Δ is switching equivalent to a subdigraph of: (all $\rho(\Delta) = 2$)

one of the three "exceptional" digraphs (8, 14, 16 vertices).

The digraph $\Delta_{2k}^{(i)}$ (k odd) is represented by

 $\{e_{p} \pm e_{p+1} \mid p \text{ even}\} \cup \{i(e_{p} \pm e_{p+1}) \mid p \text{ odd}\} \cup \{ie_{k} \pm e_{1}\}$

(The case k even is slightly more complicated.)

Can we recover Guo–Mohar classification?

- Our result relies on Greaves's classification: ρ ≤ 2 & "maximal"
- In principle, if we consider all subdigraphs, we should be able to recover...
- Solution McKee–Smyth (2007) classified signed graphs with ρ < 2.
- A signed graph is a graph with edge weight +1 or -1. The adjacency matrix is then a $(0,\pm 1)$ matrix.
 - Switching equivalence = conjugation by a (0, ±1) monomial matrix

The associated signed graph *G* of a digraph Δ :

$$H(\Delta) = A + iB \quad (A = A^{\top}, \ B = -B^{\top}) \implies A(G) = \begin{bmatrix} A & B \\ B^{\top} & A \end{bmatrix}$$

• Spec
$$H(\Delta)^{\times 2}$$
 = Spec $A(G)$, so $\rho(\Delta) = \rho(G)$.

A digraph with ρ < 2

The signed graph (in McKee–Smyth)

is equivalent to the digraph

This digraph is missing in the Guo–Mohar classification.

Akihiro Munemasa

Tohoku University