Digraphs with Hermitian spectral radius at most 2

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University
joint work with A. Gavrilyuk
August 28, 2019

JCCA 2019
National Institute of Technology, Miyakonojo

What is the spectrum of a graph

The spectrum of a graph means the multiset of eigenvalues of its adjacency matrix.

$$
\operatorname{Spec}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\operatorname{Spec}\left(A_{2}\right)=\{1,-1\}
$$

$\operatorname{Spec}\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]=\operatorname{Spec}\left(A_{3}\right)=\{\sqrt{2}, 0,-\sqrt{2}\}$,
Spec $\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]=\operatorname{Spec}\left(\tilde{A}_{3}\right)=\left\{2,[0]^{2},-2\right\}$,

$$
\operatorname{Spec}\left(\tilde{A}_{4}\right)=\left\{2,\left[2 \cos \frac{2 \pi}{5}\right]^{2},\left[2 \cos \frac{4 \pi}{5}\right]^{2}\right\}
$$

The spectral radius $\rho(\cdot)$ of a graph

Denote by $\rho(\cdot)$ the maximum of the absolute value of the spectrum of a graph.

$$
\begin{aligned}
& \rho\left(A_{2}\right)=1, \\
& \rho\left(A_{3}\right)=\sqrt{2}, \\
& \rho\left(\tilde{A}_{3}\right)=2, \\
& \rho\left(\tilde{A}_{4}\right)=2 .
\end{aligned}
$$

Smith (1970), Lemmens and Seidel (1974): Every graph with $\rho \leq 2$ is a subgraph of one of the following:

$$
\tilde{A}_{n}=\text { cycle, } \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8}
$$

Hermitian adjacency matrix of a digraph

The Hermitian adjacency matrix $H=H(\Delta)$ of a digraph Δ, introduced by Li-Liu (2015), Guo-Mohar (2017):

$$
H_{x y}= \begin{cases}1 & \text { if } x \rightleftarrows y \\ i & \text { if } x \rightarrow y \\ -i & \text { if } x \leftarrow y \\ 0 & \text { otherwise }\end{cases}
$$

Guo-Mohar (2017) classified digraphs with Hermitian spectral radius <2.
Can we classify digraphs with Hermitian spectral radius $=2$? This will include $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8}$. In the undirected case, to go from " <2 " to " $=2$ ", it suffice to add one vertex: from A_{n} (path) to \tilde{A}_{n} (cycle).

Isomorphism and switching equivalence

Two undirected graphs G and G^{\prime} with respective adjacency matrices A and A^{\prime} are isomorphic if \exists permutation matrix P such that

$$
P^{\top} A P=A^{\prime} .
$$

Two digraphs Δ and Δ^{\prime} with respective Hermitian adjacency matrices H and H^{\prime} are switching equivalent if \exists monomial matrix P with entries in $\{0, \pm 1, \pm i\}$ such that

$$
P^{*} H P=H^{\prime} \text { or } P^{*} \bar{H} P=H^{\prime} .
$$

Guo-Mohar (2017) classified digraphs with Hermitian spectral radius <2, up to switching equivalence.

Cyclotomic matrices classified by Greaves

Greaves (2012) classified maximal Hermitian matrices with
(1) entries are in $\{0,1,-1, i,-i\}$,
(2) diagonals $=0$,
(3) spectral radius ≤ 2
up to equivalence: $H \sim H^{\prime} \Longleftrightarrow$
\exists monomial matrix $P, P^{*} H P= \pm H^{\prime}$ or $P^{*} \bar{H} P= \pm H^{\prime}$.
Hermitian adjacency matrices of digraphs with $\rho \leq 2$ should all appear.
But they are mixed with matrices with -1 in its entries, due to weaker equivalence.

Toral tesselation: $\operatorname{Spec}\left(T_{2 k}\right)=\left\{[2]^{k},[-2]^{k}\right\}$

The signed graph $T_{2 k}$

is equivalent to the Hermitian adjacency matrix of the digraph $\Delta_{2 k}$:

Is there another digraph Δ such that $H(\Delta) \sim T_{2 k}$ but Δ is not switching equivalent to $\Delta_{2 k}$ above? (actually, no). It seems difficult to classify all subdigraphs of $\Delta_{2 k}$.

Cameron-Goethals-Seidel-Shult (1976)

Every graph with $\lambda_{\text {min }} \geq-2$ can be represented by a root system of type A_{n}, D_{n} or E_{6}, E_{7}, E_{8}.
$A+2 /$ is positive semidefinite, so it is the Gram matrix of a set of vectors of norm 2.

$$
D_{n}=\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\} .
$$

$T_{2 k}+2 l$ is positive semidefinite. Indeed, represented by

$$
\left\{e_{p} \pm e_{p+1} \mid 1 \leq p \leq k\right\}
$$

From $T_{2 k}$ to $\Delta_{2 k}$ (k even)

The digraph $\Delta_{2 k}$ is represented by

$$
\left\{e_{p} \pm e_{p+1} \mid p \text { even }\right\} \cup\left\{i\left(e_{p} \pm e_{p+1}\right) \mid p \text { odd }\right\}
$$

(The case k odd is slightly more complicated.)

Classification

Theorem

Let Δ be a connected digraph with $\rho(\Delta) \leq 2$. Then Δ is switching equivalent to a subdigraph of: (all $\rho(\Delta)=2$)
(1) $\Delta_{2 k}, \Delta_{2 k}^{(i)}$,
(2) one of the three "exceptional" digraphs ($8,14,16$ vertices).

The digraph $\Delta_{2 k}^{(i)}(k$ odd) is represented by

$$
\left\{e_{p} \pm e_{p+1} \mid p \text { even }\right\} \cup\left\{i\left(e_{p} \pm e_{p+1}\right) \mid p \text { odd }\right\} \cup\left\{i e_{k} \pm e_{1}\right\}
$$

(The case k even is slightly more complicated.)

Can we recover Guo-Mohar classification?

(1) Our result relies on Greaves's classification: $\rho \leq 2$ \& "maximal"
(2) In principle, if we consider all subdigraphs, we should be able to recover. . .
(3) McKee-Smyth (2007) classified signed graphs with $\rho<2$.

A signed graph is a graph with edge weight +1 or -1 . The adjacency matrix is then a $(0, \pm 1)$ matrix.

- Switching equivalence $=$ conjugation by a $(0, \pm 1)$ monomial matrix
The associated signed graph G of a digraph Δ :

$$
H(\Delta)=A+i B \quad\left(A=A^{\top}, B=-B^{\top}\right) \Longrightarrow A(G)=\left[\begin{array}{cc}
A & B \\
B^{\top} & A
\end{array}\right]
$$

- Spec $H(\Delta)^{\times 2}=\operatorname{Spec} A(G)$, so $\rho(\Delta)=\rho(G)$.

A digraph with $\rho<2$

The signed graph (in McKee-Smyth)

is equivalent to the digraph

This digraph is missing in the Guo-Mohar classification.

