Hermitian adjacency matrices of digraphs and root lattices over the Gaussian integers

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University
joint work with A. Gavrilyuk
September 22, 2019

The International Conference on Algebraic Combinatorics Henan Polytechnic University

The spectrum of a graph

It means the multiset of eigenvalues of its adjacency matrix.
$\operatorname{Spec}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\operatorname{Spec}\left(A_{2}\right)=\{1,-1\}$,
$\operatorname{Spec}\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]=\operatorname{Spec}\left(A_{3}\right)=\{\sqrt{2}, 0,-\sqrt{2}\}$,
Spec $\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]=\operatorname{Spec}\left(\tilde{A}_{3}\right)=\left\{2,[0]^{2},-2\right\}$,

$$
\operatorname{Spec}\left(\tilde{A}_{4}\right)=\left\{2,\left[2 \cos \frac{2 \pi}{5}\right]^{2},\left[2 \cos \frac{4 \pi}{5}\right]^{2}\right\} .
$$

$A_{n}=$ path with n vertices $\tilde{A}_{n}=n+1$-cycle

The spectral radius $\rho(\cdot)$ of a graph

Denote by $\rho(\cdot)$ the maximum of the absolute value of the spectrum of a graph.

$$
\begin{array}{ll}
\rho\left(A_{2}\right)=1, & \rho\left(A_{3}\right)=\sqrt{2}, \\
\rho\left(\tilde{A}_{3}\right)=2, & \rho\left(\tilde{A}_{4}\right)=2 .
\end{array}
$$

Smith (1970), Lemmens and Seidel (1974): Every graph with $\rho \leq 2$ is a subgraph of one of the following:

$$
\tilde{A}_{n}=\text { cycle, } \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8}
$$

Subgraphs are $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$, and these graphs have $\rho<2$.

The Hermitian adjacency matrix $H=H(\Delta)$ of a digraph Δ, introduced by Liu-Li (2015), Guo-Mohar (2017):

$$
H_{x y}= \begin{cases}1 & \text { if } x \rightleftarrows y \\ i & \text { if } x \rightarrow y \\ -i & \text { if } x \leftarrow y \\ 0 & \text { otherwise }\end{cases}
$$

Guo-Mohar (2017) classified digraphs with Hermitian spectral radius <2. The result includes $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$. Can we classify digraphs with Hermitian spectral radius $=2$? This will include $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8}$. In the undirected case, to go from " <2 " to " $=2$ ", it suffice to add one vertex: from A_{n} (path) to \tilde{A}_{n} (cycle).

Isomorphism and switching equivalence

Two undirected graphs G and G^{\prime} with respective adjacency matrices A and A^{\prime} are isomorphic if \exists permutation matrix P such that

$$
P^{\top} A P=A^{\prime} .
$$

Two digraphs Δ and Δ^{\prime} with respective Hermitian adjacency matrices H and H^{\prime} are switching equivalent if \exists monomial matrix P with entries in $\{0, \pm 1, \pm i\}$ such that

$$
P^{*} H P=H^{\prime} \text { or } P^{*} \bar{H} P=H^{\prime} .
$$

Guo-Mohar (2017) classified digraphs with Hermitian spectral radius <2, up to switching equivalence.

Cyclotomic matrices classified by Greaves

Greaves (2012) classified maximal Hermitian matrices with
(1) entries are in $\{0,1,-1, i,-i\}$,
(2) diagonals $=0$,
(3) spectral radius ≤ 2
up to equivalence: $H \sim H^{\prime} \Longleftrightarrow$
\exists monomial matrix $P, P^{*} H P= \pm H^{\prime}$ or $P^{*} \bar{H} P= \pm H^{\prime}$.
Hermitian adjacency matrices of digraphs with $\rho \leq 2$ should all appear.
But they are mixed with matrices with -1 in its entries, due to weaker equivalence.

The dotted edge means a "minus" edge.

is equivalent to the digraph

Toral tesselation: $\operatorname{Spec}\left(T_{2 k}\right)=\left\{[2]^{k},[-2]^{k}\right\}$

The signed graph $T_{2 k}$ (dotted edge means a "minus" edge)

is equivalent to the Hermitian adjacency matrix of the digraph $\Delta_{2 k}$:

Is there another digraph Δ such that $H(\Delta) \sim T_{2 k}$ but Δ is not switching equivalent to $\Delta_{2 k}$ above? (actually, no). It seems difficult to classify all subdigraphs of $\Delta_{2 k}$.

Cameron-Goethals-Seidel-Shult (1976)

Every graph with $\lambda_{\text {min }} \geq-2$ can be represented by a root system of type A_{n}, D_{n} or E_{6}, E_{7}, E_{8}.
$A+2 /$ is positive semidefinite, so it is the Gram matrix of a set of vectors of norm 2.

$$
D_{n}=\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\} .
$$

$T_{2 k}+2 l$ is positive semidefinite. Indeed, represented by

$$
\left\{e_{p} \pm e_{p+1} \mid 1 \leq p \leq k\right\}
$$

From $T_{2 k}$ to $\Delta_{2 k}$ (k even)

The digraph $\Delta_{2 k}$ is represented by

$$
\left\{e_{p} \pm e_{p+1} \mid p \text { even }\right\} \cup\left\{i\left(e_{p} \pm e_{p+1}\right) \mid p \text { odd }\right\}
$$

(The case k odd is slightly more complicated.)

Classification

Theorem

Let Δ be a connected digraph with $\rho(\Delta) \leq 2$. Then Δ is switching equivalent to a subdigraph of: (all $\rho(\Delta)=2$)
(1) $\Delta_{2 k}, \Delta_{2 k}^{(i)}$,
(2) one of the three "exceptional" digraphs ($8,14,16$ vertices).

The digraph $\Delta_{2 k}^{(i)}(k$ odd) is represented by

$$
\left\{e_{p} \pm e_{p+1} \mid p \text { even }\right\} \cup\left\{i\left(e_{p} \pm e_{p+1}\right) \mid p \text { odd }\right\} \cup\left\{i e_{k} \pm e_{1}\right\}
$$

(The case k even is slightly more complicated.)

Can we recover Guo-Mohar classification?

(1) Our result relies on Greaves's classification: $\rho \leq 2$ \& "maximal"
(2) In principle, if we consider all subdigraphs, we should be able to recover. . .
(3) McKee-Smyth (2007) classified signed graphs with $\rho<2$.

A signed graph is a graph with edge weight +1 or -1 . The adjacency matrix is then a $(0, \pm 1)$ matrix.

- Switching equivalence $=$ conjugation by a $(0, \pm 1)$ monomial matrix
The associated signed graph $S(\Delta)$ of a digraph Δ :

$$
H(\Delta)=A+i B \quad\left(A=A^{\top}, B=-B^{\top}\right) \Longrightarrow A(S(\Delta))=\left[\begin{array}{cc}
A & B \\
B^{\top} & A
\end{array}\right]
$$

- Spec $H(\Delta)^{\times 2}=\operatorname{Spec} A(S(\Delta))$, so $\rho(\Delta)=\rho(S(\Delta))$.

Gaussian root lattice

$$
\begin{array}{ccc}
\Delta & \xrightarrow{s} & S(\Delta) \\
\downarrow & & \downarrow \\
H(\Delta)=A+B i & \longrightarrow & \\
& & {\left[\begin{array}{cc}
A & B \\
B^{\top} & A
\end{array}\right]}
\end{array}
$$

Gaussian lattice
\longleftarrow
Euclidean lattice

$$
H(\Delta)+2 l
$$

$$
\left[\begin{array}{rr}
A & B \\
B^{\top} & A
\end{array}\right]+2 I
$$

A lattice is
Euclidean:free \mathbb{Z}-module with positive definite sym. bil. form
Gaussian:free $\mathbb{Z}[i]$-module with positive definite Hermitian form
This Fuclidean lattice is a (not necessarily irreducible) root

A digraph with $\rho<2$

The signed graph (in McKee-Smyth)

is equivalent to the digraph

This digraph is missing in the Guo-Mohar classification.

国［2015］J．Liu and X．Li，Hermitian－adjacency matrices and Hermitian energies of mixed graphs，Linear Algebra Appl． 466 182－207．
：［2017］K．Guo and B．Mohar，Hermitian adjacency matrix of digraphs and mixed graphs，J．Graph Theory 85，217－248．

固［2017］K．Guo and B．Mohar，Digraphs with Hermitian spectral radius below 2 and their cospectrality with paths， Discrete Math．340，2616－2632．
葍［2007］J．McKee and C．Smyth，Integer symmetric matrices having all their eigenvalues in the interval［－2，2］，J．Algebra 317，260－290．
：［2012］G．Greaves，Cyclotomic matrices over the Eisenstein and Gaussian integers，J．Algebra 372，560－583．

