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The spectrum of a graph
It means the multiset of eigenvalues of its adjacency matrix.

Spec
[
0 1
1 0

]
= Spec(A2) = {1, − 1},

Spec

0 0 1
0 0 1
1 1 0

 = Spec(A3) = {
√

2,0, −
√

2},

Spec


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 = Spec(Ã3) = {2, [0]2, − 2},

Spec(Ã4) = {2, [2 cos
2π
5
]2, [2 cos

4π
5
]2}.

An = path with n vertices Ãn = n + 1-cycle
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The spectral radius ρ(·) of a graph

Denote by ρ(·) the maximum of the absolute value of the
spectrum of a graph.

ρ(A2) = 1, ρ(A3) =
√

2,

ρ(Ã3) = 2, ρ(Ã4) = 2.

Smith (1970), Lemmens and Seidel (1974): Every graph with
ρ ≤ 2 is a subgraph of one of the following:

Ãn = cycle, D̃n, Ẽ6, Ẽ7, Ẽ8

D̃n

Subgraphs are An, Dn, E6,E7,E8, and these graphs have ρ < 2.
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The Hermitian adjacency matrix H = H(∆) of a digraph ∆,
introduced by Liu–Li (2015), Guo–Mohar (2017):

Hxy =


1 if x � y
i if x → y
−i if x ← y
0 otherwise

Guo–Mohar (2017) classified digraphs with Hermitian spectral
radius < 2. The result includes An,Dn,E6,E7,E8.
Can we classify digraphs with Hermitian spectral radius = 2?
This will include Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8.
In the undirected case, to go from “< 2” to “= 2”, it suffice to add
one vertex: from An (path) to Ãn (cycle).
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Isomorphism and switching equivalence

Two undirected graphs G and G′ with respective adjacency
matrices A and A′ are isomorphic if ∃ permutation matrix P such
that

P>AP = A′.

Two digraphs ∆ and ∆′ with respective Hermitian adjacency
matrices H and H ′ are switching equivalent if ∃ monomial matrix
P with entries in {0,±1,±i} such that

P∗HP = H ′ or P∗HP = H ′.

Guo–Mohar (2017) classified digraphs with Hermitian spectral
radius < 2, up to switching equivalence.
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Cyclotomic matrices classified by Greaves

Greaves (2012) classified maximal Hermitian matrices with
1 entries are in {0,1, − 1, i ,−i},
2 diagonals = 0,
3 spectral radius ≤ 2

up to equivalence: H ∼ H ′ ⇐⇒

∃ monomial matrix P, P∗HP = ± H ′ or P∗HP = ± H ′.

Hermitian adjacency matrices of digraphs with ρ ≤ 2 should all
appear.
But they are mixed with matrices with −1 in its entries, due to
weaker equivalence.
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The dotted edge means a “minus” edge.

i

is equivalent to the digraph
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Toral tesselation: Spec(T2k) = {[2]k , [−2]k}
The signed graph T2k (dotted edge means a “minus” edge)

. . .
1

2

1

2

is equivalent to the Hermitian adjacency matrix of the digraph
∆2k :

. . .
1

2

1

2

Is there another digraph ∆ such that H(∆) ∼ T2k but ∆ is not
switching equivalent to ∆2k above? (actually, no).
It seems difficult to classify all subdigraphs of ∆2k .
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Cameron–Goethals–Seidel–Shult (1976)
Every graph with λmin ≥ −2 can be represented by a root
system of type An,Dn or E6,E7,E8.

A + 2I is positive semidefinite, so it is the Gram matrix of a set of
vectors of norm 2.

Dn = {±ei ± ej | 1 ≤ i < j ≤ n}.
T2k + 2I is positive semidefinite. Indeed, represented by

{ep ± ep+1 | 1 ≤ p ≤ k},

. . .
e1 + e2

e1 − e2

e2 + e3

e2 − e3

e1 + e2

e1 − e2
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From T2k to ∆2k (k even)

. . .
e1 + e2

e1 − e2

e2 + e3

e2 − e3

e1 + e2

e1 − e2

The digraph ∆2k is represented by

{ep ± ep+1 | p even} ∪ {i(ep ± ep+1) | p odd}

. . .
i(e1 + e2)

i(e1 − e2)

e2 + e3

e2 − e3

i(e1 + e2)

i(e1 − e2)

(The case k odd is slightly more complicated.)
Akihiro Munemasa Tohoku University Jiaozuo 2019 10 / 15



Classification

Theorem
Let ∆ be a connected digraph with ρ(∆) ≤ 2. Then ∆ is
switching equivalent to a subdigraph of: (all ρ(∆) = 2)

1 ∆2k ,∆
(i)
2k ,

2 one of the three “exceptional” digraphs (8,14,16 vertices).

The digraph ∆
(i)
2k (k odd) is represented by

{ep ± ep+1 | p even} ∪ {i(ep ± ep+1) | p odd} ∪ {iek ± e1}

. . .
i(e1 + e2)

i(e1 − e2)

e2 + e3

e2 − e3

iek + e1

iek − e1

i(e1 + e2)

i(e1 − e2)

(The case k even is slightly more complicated.)
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Can we recover Guo–Mohar classification?
1 Our result relies on Greaves’s classification: ρ ≤ 2 &

“maximal”
2 In principle, if we consider all subdigraphs, we should be

able to recover. . .
3 McKee–Smyth (2007) classified signed graphs with ρ < 2.

A signed graph is a graph with edge weight +1 or −1. The
adjacency matrix is then a (0,±1) matrix.

Switching equivalence = conjugation by a (0,±1) monomial
matrix

The associated signed graph S(∆) of a digraph ∆:

H(∆) = A + iB (A = A>, B = −B>) =⇒ A(S(∆)) =

[
A B

B> A

]
Spec H(∆)×2 = Spec A(S(∆)), so ρ(∆) = ρ(S(∆)).
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Gaussian root lattice

∆
S−→ S(∆)

↓ ↓

H(∆) = A + Bi −→
[

A B
B> A

]
Gaussian lattice ←− Euclidean lattice

H(∆) + 2I
[

A B
B> A

]
+ 2I

A lattice is

Euclidean:free Z-module with positive definite sym. bil. form
Gaussian:free Z[i ]-module with positive definite Hermitian form

This Euclidean lattice is a (not necessarily irreducible) root
lattice (classified).
←− by Kitazume–M. (2002).
By a similar idea ∆←− S(∆).
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A digraph with ρ < 2
The signed graph (in McKee–Smyth)

i

is equivalent to the digraph

This digraph is missing in the Guo–Mohar classification.
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