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History (λmin = smallest eigenvalue)

lim
t→∞

λmin

[
A C ⊗ 1t

C> ⊗ 1>
t I ⊗ (Jt − It)

]
= λmin(A− CC>).

Hoffman (SIAM, 1969) stated a theorem (Hoffman’s limit
theorem), “is shown in [4]” where [4]=Hoffman & Ostrowski,
“to appear” was never published.
Hoffman (LAA, 1977), citing above, proved a theorem about
graphs with λmin ∈ (−2,−1) and λmin ∈ (−1−

√
2,−2).

Jang–Koolen–M.–Taniguchi (AMC, 2014) gave a graph
theoretic proof.
Hoffman (Geom. Ded. 1977), proved signed graph version
of the limit theorem.

Today, we give a Hermitian matrix version of the limit theorem
and an application to signed graphs with λmin ∈ (−2,−1).
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What is the spectrum of a graph

The spectrum of a graph means the multiset of eigenvalues of
its adjacency matrix.

Spec
[
0 1
1 0

]
= {1, − 1},

Spec(Kn) = Spec(Jn − In) = {[n − 1]1, [− 1]n−1},

Spec

0 0 1
0 0 1
1 1 0

 = {
√

2,0, −
√

2},

Spec

 0 0 1t

0 0 1t

1>
t 1>

t Jt − It

 = ?

→ on blackboard
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The smallest eigenvalue of a graph

Denote by λmin(·) the smallest eigenvalue of a matrix or a graph.

λmin

[
0 1
1 0

]
= − 1,

λmin(Kn) = λmin(Jn − In) = − 1,

λmin

0 0 1
0 0 1
1 1 0

 = −
√

2,

λmin

 0 0 1t

0 0 1t

1>
t 1>

t Jt − It

 =?

Γ is connected and λmin(Γ) = − 1 =⇒ Γ ∼= Kn.
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Spec

 0 0 1t

0 0 1t

1>
t 1>

t Jt − It

 = Spec

0 0 t
0 0 t
1 1 t − 1

 ∪ Spec(−It−1).

λmin

 0 0 1t

0 0 1t

1>
t 1>

t Jt − It

 = λmin

0 0 t
0 0 t
1 1 t − 1


= min{z | z(z2 − (t − 1)z − 2t) = 0}

=
t − 1−

√
t2 + 6t + 1
2

→ − 2 (t →∞).

Shortcut (?)

min{z | (z + 2)− 1
t
(z2 + z) = 0} → min{z | z + 2 = 0} = − 2.
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Hurwitz’s theorem

Rahman & Schmeisser, “Analytic Theory of Polynomials,”
Theorem 1.3.8

Theorem
Let (ft)∞t=1 be a sequence of analytic functions defined in a
region Ω ⊆ C. Suppose

ft → f 6= 0 (t →∞)

uniformly on every compact subset of Ω. Then for ζ ∈ Ω, the
following are equivalent:

1 ζ is a zero of f of multiplicity m,
2 ζ ∈ ∃U ⊆ Ω (neighbourhood), ∀ε > 0, ∃n0 < ∀t , ft has

exactly m zeros in the ε-neighbourhood of ζ.
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Theorem (Hoffman’s limit theorem)
Let [

A C
C> 0

]
be the adjacency matrix of a graph. Then

lim
t→∞

λmin

[
A C ⊗ 1t

C> ⊗ 1>
t I ⊗ (Jt − It)

]
= λmin(A− CC>).

→ on blackboard

A =

[
0 0
0 0

]
,C =

[
1
1

]
,A− CC> = −

[
1 1
1 1

]
,

which has λmin = −2. Note

λmin

 0 0 1t

0 0 1t

1>
t 1>

t Jt − It

 > −2.
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Cameron–Goethals–Seidel–Shult (1976)
Every graph with λmin ≥ −2 can be represented by a root
system of type An,Dn or E6,E7,E8.

A =

 0 0 1t

0 0 1t

1>
t 1>

t Jt − It

 , λmin(A) > −2.

Dn = {±ei ± ej | 1 ≤ i < j ≤ n}.

M =


−1 1
1 1

1 1
1 1
... . . .

 , MM> = A + 2I

Row vectors of M are in the root system Dn.
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Proof of Hoffman’s limit theorem

A : n × n, C : n ×m.

lim
t→∞

λmin

[
A C ⊗ 1t

C> ⊗ 1>
t I ⊗ (Jt − It)

]
= lim

t→∞
λmin

[
A tC

C> (t − 1)I

]
Since ∣∣∣∣zI −

[
A tC

C> (t − 1)I

]∣∣∣∣
= tn(z + 1− t)m−n

∣∣∣∣A− CC> − zI +
z + 1

t
(zI − A)

∣∣∣∣ ,
the spectrum containing λmin → Spec(A− CC>).
λmin → λmin(A− CC>), proving the theorem.
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The same proof shows the Hermitian matrix version:

Theorem
Let [

A C
C∗ 0

]
be a Hermitian matrix, and let D be a positive definite Hermitian
matrix. Then

lim
t→∞

λmin

[
A C ⊗ 1t

C∗ ⊗ 1>
t D ⊗ (Jt − It)

]
= λmin(A− CD−1C∗).
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A signed graph is a graph with edge weight +1 or −1. The
adjacency matrix is then a (0,±1) matrix.

Switching equivalence = conjugation by a (0,±1) monomial
matrix
δ(G) := minimum degree of G.

Theorem

There exists a function f : (−2,−1)→ R such that, for each
λ ∈ (−2,−1), if G is a connected signed graph with λmin(G) ≥ λ,
δ(G) ≥ f (λ), then G is switching equivalent to a complete graph.

The proof is a simplification of Hoffman’s original by
incorporating Cameron–Goethals–Seidel–Shult (1976),
Greaves–Koolen–M.–Sano–Taniguchi (2015).
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Proof (part 1)

Fix λ ∈ (−2,−1). To prove this theorem, it suffices to show that,

λmin(G) ≥ λ
δ(G) sufficiently large =⇒ G is sw. eq. Kn.

By Cameron–Goethals–Seidel–Shult (1976), we may assume G
is represented by Am or Dm (ignoring E6,E7,E8).

But Am ⊆ Dm+1, so
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Proof (part 2)

λmin(G) ≥ λ
δ(G) sufficiently large
G is represented by Dm

=⇒ G is sw. eq. Kn.

Greaves–Koolen–M.–Sano–Taniguchi (2015) classified such
signed graphs. In particular,

Theorem
Let G be a connected signed graph represented by Dm and
λmin(G) > −2. Then there exists a tree T such that the line
graph L(T ) of T is switching equivalent to G with possibly one
vertex removed.

We illustrate the proof for the case G = L(T ).

λmin(L(T )) ≥ λ
δ(L(T )) sufficiently large =⇒ L(T ) ∼= Kn.
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Recall the Hermitian adjacency matrix H = H(∆) of a digraph ∆:

Hxy =


1 if x � y
i if x → y
−i if x ← y
0 otherwise

Introduced by Liu–Li (2015), Guo–Mohar (2017).

Theorem

There exists a function f : (−2,−1)→ R such that, for each
λ ∈ (−2,−1), if ∆ is a connected digraph with λmin(H(∆)) ≥ λ,
δ(∆) ≥ f (λ), then ∆ is switching equivalent to a complete graph.

Switching equivalence = conjugation by a (0,±1,±i)
monomial matrix, and possibly taking the transpose
δ(∆) := minimum degree of the underlying undirected graph
of ∆.
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Theorem

There exists a function f : (−2,−1)→ R such that, for each
λ ∈ (−2,−1),

1 for connected signed graph G, λmin(G) ≥ λ,
δ(G) ≥ f (λ) =⇒ G sw. eq. Kn.

2 for connected digraph ∆, λmin(H(∆)) ≥ λ,
δ(∆) ≥ f (λ) =⇒ ∆ sw. eq. Kn.

The digraph version is immediate from signed graph version by
considering the associated signed graph:

H(∆) = A + iB (A = A>, B = −B>) =⇒ A(G) =

[
A B

B> A

]
Spec H(∆)×2 = Spec G, so λminH(∆) = λminG.
δ(∆) = δ(G).

Further results yet to be generalized: Hoffman (1977):
(−1−

√
2,−2), Woo & Neumaier (1995).
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The idea of associated signed graph comes from
Masaaki Kitazume and A. M., Even unimodular Gaussian
lattices of rank 12, J. Number Theory (2002).

Gaussian lattices of rank 12↔ Euclidean lattices of rank 24

A lattice in Rn is a subgroup L ⊂ Rn,

L = Ze1 ⊕ · · · ⊕ Zen.

for some basis {e1, · · · ,en} of Rn. The dual L is

L] = {y ∈ Rn | (y , x) ∈ Z, ∀x ∈ L},

A lattice L is called

integral if (x , y) ∈ Z for all x , y ∈ L,
even if (x , x) ∈ 2Z for all x ∈ L,

unimodular if L] = L.
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A digraph with n vertices→ its associated signed graph has 2n
vertices:

H(∆) = A + iB (A = A>, B = −B>) =⇒ A(G) =

[
A B

B> A

]
Given a positive definite symmetric matrix S with integer
entries and diagonal 2, find a Hermitian matrix H = A + iB
with entries in {±1,±i ,0} such that

S ∼=
[

A B
B> A

]
Given a signed adjacency matrix S of order 2n, find a
Hermitian matrix H = A + iB of order n such that S is
switching equivalent to [

A B
B> A

]
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