Hoffman's Limit Theorem

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University

joint work with A. Gavrilyuk, Y. Sano, T. Taniguchi September 26, 2019

East China Normal University Shanghai, China

History ($\lambda_{\text {min }}=$ smallest eigenvalue $)$

$$
\lim _{t \rightarrow \infty} \lambda_{\min }\left[\begin{array}{cc}
\boldsymbol{A} & \boldsymbol{C} \otimes \mathbf{1}_{t} \\
\boldsymbol{C}^{\top} \otimes \mathbf{1}_{t}^{\top} & \boldsymbol{I} \otimes\left(J_{t}-\boldsymbol{I}_{t}\right)
\end{array}\right]=\lambda_{\min }\left(\boldsymbol{A}-\boldsymbol{C} \boldsymbol{C}^{\top}\right) .
$$

- Hoffman (SIAM, 1969) stated a theorem (Hoffman's limit theorem), "is shown in [4]" where [4]=Hoffman \& Ostrowski, "to appear" was never published.
- Hoffman (LAA, 1977), citing above, proved a theorem about graphs with $\lambda_{\text {min }} \in(-2,-1)$ and $\lambda_{\text {min }} \in(-1-\sqrt{2},-2)$.
- Jang-Koolen-M.-Taniguchi (AMC, 2014) gave a graph theoretic proof.
- Hoffman (Geom. Ded. 1977), proved signed graph version of the limit theorem.
Today, we give a Hermitian matrix version of the limit theorem and an application to signed graphs with $\lambda_{\text {min }} \in(-2,-1)$.

What is the spectrum of a graph

The spectrum of a graph means the multiset of eigenvalues of its adjacency matrix.

$$
\begin{aligned}
\operatorname{Spec}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & =\{1,-1\}, \\
\operatorname{Spec}\left(K_{n}\right)=\operatorname{Spec}\left(J_{n}-I_{n}\right) & =\left\{[n-1]^{1},[-1]^{n-1}\right\}, \\
\operatorname{Spec}\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] & =\{\sqrt{2}, 0,-\sqrt{2}\}, \\
\operatorname{Spec}\left[\begin{array}{ccc}
0 & 0 & \mathbf{1}_{t} \\
0 & 0 & \mathbf{1}_{t} \\
\mathbf{1}_{t}^{\top} & \mathbf{1}_{t}^{\top} & J_{t}-I_{t}
\end{array}\right] & =?
\end{aligned}
$$

\rightarrow on blackboard

The smallest eigenvalue of a graph

Denote by $\lambda_{\min }(\cdot)$ the smallest eigenvalue of a matrix or a graph.

$$
\begin{aligned}
\lambda_{\min }\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & =-1, \\
\lambda_{\min }\left(K_{n}\right)=\lambda_{\min }\left(J_{n}-I_{n}\right) & =-1, \\
\lambda_{\min }\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] & =-\sqrt{2}, \\
\lambda_{\min }\left[\begin{array}{ccc}
0 & 0 & \mathbf{1}_{t} \\
0 & 0 & \mathbf{1}_{t} \\
\mathbf{1}_{t}^{\top} & \mathbf{1}_{t}^{\top} & J_{t}-I_{t}
\end{array}\right] & =?
\end{aligned}
$$

Γ is connected and $\lambda_{\min }(\Gamma)=-1 \Longrightarrow \Gamma \cong K_{n}$.
$\operatorname{Spec}\left[\begin{array}{ccc}0 & 0 & \mathbf{1}_{t} \\ 0 & 0 & \mathbf{1}_{t} \\ \mathbf{1}_{t}^{\top} & \mathbf{1}_{t}^{\top} & J_{t}-I_{t}\end{array}\right]=\operatorname{Spec}\left[\begin{array}{ccc}0 & 0 & t \\ 0 & 0 & t \\ 1 & 1 & t-1\end{array}\right] \cup \operatorname{Spec}\left(-I_{t-1}\right)$.
$\lambda_{\text {min }}\left[\begin{array}{ccc}0 & 0 & \mathbf{1}_{t} \\ 0 & 0 & \mathbf{1}_{t} \\ \mathbf{1}_{t}^{\top} & \mathbf{1}_{t}^{\top} & J_{t}-I_{t}\end{array}\right]=\lambda_{\text {min }}\left[\begin{array}{ccc}0 & 0 & t \\ 0 & 0 & t \\ 1 & 1 & t-1\end{array}\right]$

$$
=\min \left\{z \mid z\left(z^{2}-(t-1) z-2 t\right)=0\right\}
$$

$$
=\frac{t-1-\sqrt{t^{2}+6 t+1}}{2} \rightarrow-2 \quad(t \rightarrow \infty) .
$$

Shortcut (?)
$\min \left\{z \left\lvert\,(z+2)-\frac{1}{t}\left(z^{2}+z\right)=0\right.\right\} \rightarrow \min \{z \mid z+2=0\}=-2$.

Hurwitz's theorem

Rahman \& Schmeisser, "Analytic Theory of Polynomials," Theorem 1.3.8

Theorem

Let $\left(f_{t}\right)_{t=1}^{\infty}$ be a sequence of analytic functions defined in a region $\Omega \subseteq \mathbb{C}$. Suppose

$$
f_{t} \rightarrow f \neq 0 \quad(t \rightarrow \infty)
$$

uniformly on every compact subset of Ω. Then for $\zeta \in \Omega$, the following are equivalent:
(1) ζ is a zero of f of multiplicity m,
(2) $\zeta \in \exists U \subseteq \Omega$ (neighbourhood), $\forall \varepsilon>0, \exists n_{0}<\forall t, f_{t}$ has exactly m zeros in the ε-neighbourhood of ζ.

Theorem (Hoffman's limit theorem)

Let

$$
\left[\begin{array}{cc}
A & C \\
C^{\top} & 0
\end{array}\right]
$$

be the adjacency matrix of a graph. Then

$$
\lim _{t \rightarrow \infty} \lambda_{\min }\left[\begin{array}{cc}
A & C \otimes \mathbf{1}_{t} \\
C^{\top} \otimes \mathbf{1}_{t}^{\top} & I \otimes\left(J_{t}-I_{t}\right)
\end{array}\right]=\lambda_{\min }\left(A-C C^{\top}\right) .
$$

\rightarrow on blackboard

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], C=\left[\begin{array}{l}
1 \\
1
\end{array}\right], A-C C^{\top}=-\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],
$$

which has $\lambda_{\text {min }}=-2$. Note

$$
\lambda_{\min }\left[\begin{array}{ccc}
0 & 0 & \mathbf{1}_{t} \\
0 & 0 & \mathbf{1}_{t} \\
\mathbf{1}_{t}^{\top} & \mathbf{1}_{t}^{\top} & J_{t}-I_{t}
\end{array}\right]>-2 .
$$

Cameron-Goethals-Seidel-Shult (1976)

Every graph with $\lambda_{\min } \geq-2$ can be represented by a root system of type A_{n}, D_{n} or E_{6}, E_{7}, E_{8}.

$$
\begin{aligned}
& A= {\left[\begin{array}{ccc}
0 & 0 & \mathbf{1}_{t} \\
0 & 0 & \mathbf{1}_{t} \\
\mathbf{1}_{t}^{\top} & \mathbf{1}_{t}^{\top} & J_{t}-l_{t}
\end{array}\right], \quad \lambda_{\min }(A)>-2 . } \\
& D_{n}=\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\} . \\
& M=\left[\begin{array}{cccc}
-1 & 1 & & \\
1 & 1 & & \\
& 1 & 1 & \\
& 1 & & 1 \\
& \vdots & & \ddots
\end{array}\right], M M^{\top}=A+2 l
\end{aligned}
$$

Row vectors of M are in the root system D_{n}.

Proof of Hoffman's limit theorem

$A: n \times n, C: n \times m$.
$\lim _{t \rightarrow \infty} \lambda_{\text {min }}\left[\begin{array}{cc}A & C \otimes \mathbf{1}_{t} \\ C^{\top} \otimes \mathbf{1}_{t}^{\top} & I \otimes\left(J_{t}-I_{t}\right)\end{array}\right]=\lim _{t \rightarrow \infty} \lambda_{\text {min }}\left[\begin{array}{cc}A & t C \\ C^{\top} & (t-1) I\end{array}\right]$
Since

$$
\begin{aligned}
& \left|z I-\left[\begin{array}{cc}
A & t C \\
C^{\top} & (t-1) I
\end{array}\right]\right| \\
& =t^{n}(z+1-t)^{m-n}\left|A-C C^{\top}-z I+\frac{z+1}{t}(z I-A)\right|,
\end{aligned}
$$

the spectrum containing $\lambda_{\text {min }} \rightarrow \operatorname{Spec}\left(A-C C^{\top}\right)$.
$\lambda_{\text {min }} \rightarrow \lambda_{\text {min }}\left(A-C C^{\top}\right)$, proving the theorem.

The same proof shows the Hermitian matrix version:

Theorem

Let

$$
\left[\begin{array}{cc}
A & C \\
C^{*} & 0
\end{array}\right]
$$

be a Hermitian matrix, and let D be a positive definite Hermitian matrix. Then

$$
\lim _{t \rightarrow \infty} \lambda_{\text {min }}\left[\begin{array}{cc}
A & C \otimes \mathbf{1}_{t} \\
C^{*} \otimes \mathbf{1}_{t}^{\top} & D \otimes\left(J_{t}-I_{t}\right)
\end{array}\right]=\lambda_{\min }\left(A-C D^{-1} C^{*}\right) .
$$

A signed graph is a graph with edge weight +1 or -1 . The adjacency matrix is then a $(0, \pm 1)$ matrix.

- Switching equivalence $=$ conjugation by a $(0, \pm 1)$ monomial matrix
- $\delta(G):=$ minimum degree of G.

Theorem

There exists a function $f:(-2,-1) \rightarrow \mathbb{R}$ such that, for each $\lambda \in(-2,-1)$, if G is a connected signed graph with $\lambda_{\min }(G) \geq \lambda$, $\delta(G) \geq f(\lambda)$, then G is switching equivalent to a complete graph.

The proof is a simplification of Hoffman's original by incorporating Cameron-Goethals-Seidel-Shult (1976), Greaves-Koolen-M.-Sano-Taniguchi (2015).

Proof (part 1)

Fix $\lambda \in(-2,-1)$. To prove this theorem, it suffices to show that,

$$
\begin{aligned}
& \lambda_{\min }(G) \geq \lambda \\
& \delta(G) \text { sufficiently large }
\end{aligned} \Longrightarrow G \text { is sw. eq. } K_{n} .
$$

By Cameron-Goethals-Seidel-Shult (1976), we may assume G is represented by A_{m} or D_{m} (ignoring E_{6}, E_{7}, E_{8}).

But $A_{m} \subseteq D_{m+1}$, so

Proof (part 2)

$\lambda_{\text {min }}(G) \geq \lambda$
$\delta(G)$ sufficiently large $\Longrightarrow G$ is sw. eq. K_{n}.
G is represented by D_{m}
Greaves-Koolen-M.-Sano-Taniguchi (2015) classified such signed graphs. In particular,

Theorem

Let G be a connected signed graph represented by D_{m} and $\lambda_{\min }(G)>-2$. Then there exists a tree T such that the line graph $L(T)$ of T is switching equivalent to G with possibly one vertex removed.

We illustrate the proof for the case $G=L(T)$.

$$
\begin{aligned}
& \lambda_{\min }(L(T)) \geq \lambda \\
& \delta(L(T)) \text { sufficiently large }
\end{aligned} \Longrightarrow L(T) \cong K_{n} .
$$

Recall the Hermitian adjacency matrix $H=H(\Delta)$ of a digraph Δ :

$$
H_{x y}= \begin{cases}1 & \text { if } x \rightleftarrows y \\ i & \text { if } x \rightarrow y \\ -i & \text { if } x \leftarrow y \\ 0 & \text { otherwise }\end{cases}
$$

Introduced by Liu-Li (2015), Guo-Mohar (2017).

Theorem

There exists a function $f:(-2,-1) \rightarrow \mathbb{R}$ such that, for each $\lambda \in(-2,-1)$, if Δ is a connected digraph with $\lambda_{\min }(H(\Delta)) \geq \lambda$, $\delta(\bar{\Delta}) \geq f(\lambda)$, then Δ is switching equivalent to a complete graph.

- Switching equivalence $=$ conjugation by a $(0, \pm 1, \pm i)$ monomial matrix, and possibly taking the transpose
- $\delta(\bar{\Delta}):=$ minimum degree of the underlying undirected graph of Δ.

Theorem

There exists a function $f:(-2,-1) \rightarrow \mathbb{R}$ such that, for each $\lambda \in(-2,-1)$,
(1) for connected signed graph $G, \lambda_{\min }(G) \geq \lambda$, $\delta(G) \geq f(\lambda) \Longrightarrow G$ sw. eq. K_{n}.
(2) for connected digraph $\Delta, \lambda_{\min }(H(\Delta)) \geq \lambda$, $\delta(\bar{\Delta}) \geq f(\lambda) \Longrightarrow \Delta$ sw. eq. K_{n}.

The digraph version is immediate from signed graph version by considering the associated signed graph:

$$
H(\Delta)=A+i B \quad\left(A=A^{\top}, B=-B^{\top}\right) \Longrightarrow A(G)=\left[\begin{array}{cc}
A & B \\
B^{\top} & A
\end{array}\right]
$$

- Spec $H(\Delta)^{\times 2}=\operatorname{Spec} G$, so $\lambda_{\min } H(\Delta)=\lambda_{\text {min }} G$.
- $\delta(\bar{\Delta})=\delta(G)$.

Further results yet to be generalized: Hoffman (1977): $(-1-\sqrt{2},-2)$, Woo \& Neumaier (1995).

The idea of associated signed graph comes from

- Masaaki Kitazume and A. M., Even unimodular Gaussian lattices of rank 12, J. Number Theory (2002).

Gaussian lattices of rank $12 \leftrightarrow$ Euclidean lattices of rank 24
A lattice in \mathbb{R}^{n} is a subgroup $L \subset \mathbb{R}^{n}$,

$$
L=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{n} .
$$

for some basis $\left\{e_{1}, \cdots, e_{n}\right\}$ of \mathbb{R}^{n}. The dual L is

$$
L^{\sharp}=\left\{y \in \mathbb{R}^{n} \mid(y, x) \in \mathbb{Z}, \forall x \in L\right\},
$$

A lattice L is called

$$
\text { integral if }(x, y) \in \mathbb{Z} \text { for all } x, y \in L \text {, }
$$

even if $(x, x) \in \mathbb{Z}$ for all $x \in L$,
unimodular if $L^{\sharp}=L$.

A digraph with n vertices \rightarrow its associated signed graph has $2 n$ vertices:

$$
H(\Delta)=A+i B \quad\left(A=A^{\top}, B=-B^{\top}\right) \Longrightarrow A(G)=\left[\begin{array}{cc}
A & B \\
B^{\top} & A
\end{array}\right]
$$

- Given a positive definite symmetric matrix S with integer entries and diagonal 2, find a Hermitian matrix $H=A+i B$ with entries in $\{ \pm 1, \pm i, 0\}$ such that

$$
S \cong\left[\begin{array}{cc}
A & B \\
B^{\top} & A
\end{array}\right]
$$

- Given a signed adjacency matrix S of order $2 n$, find a Hermitian matrix $H=A+i B$ of order n such that S is switching equivalent to

$$
\left[\begin{array}{cc}
A & B \\
B^{\top} & A
\end{array}\right]
$$

