Extremal Finite Sets in Spheres and Projective Spaces

Akihiro Munemasa

Graduate School of Information Sciences Tohoku University

> January 6, 2020 ISI Kolkata

About me

- Name: Akihiro Munemasa
- Affiliation: Tohoku University, Sendai, Japan
- Specialization: Algebra & Combinatorics
- Ph.D (1989) from The Ohio State University, under E. Bannai.
- My dissertation committee includes: Dijen K. Ray-Chaudhuri.

In the unit sphere $S^{d-1} \subseteq \mathbb{R}^d$

Extremal finite sets in S^{d-1} can mean:

- (a) Large finite set with few distances or large enough mutual distances
- (b) Small finite set which approximates the sphere well

The theory of spherical design (in an appropriate setting):

maximizing the size of a set in (a) = minimizing the size of a set in (b)

(a) is similar to coding theory: Large rate (number of codewords) with large minimum distance.

Equiangular lines

By a set of equiangular lines with angle $\arccos \alpha$ in \mathbb{R}^d , we mean

 $\{\mathbb{R}\boldsymbol{x}_1,\ldots,\mathbb{R}\boldsymbol{x}_n\},\$

where $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \in \mathbb{R}^d$ are unit vectors such that

$$|(\boldsymbol{x}_i, \boldsymbol{x}_j)| = lpha \quad (1 \leq i < j \leq n),$$

and

12 vertices of the lcosahedron = 6 lines

Example: d = 3, $\alpha = 1/\sqrt{5}$, six diagonals of the icosahedron $\arccos(1/\sqrt{5}) \sim 63^{\circ}$.

(illustration by Gary Greaves)

Set of points in $S^{d-1} = \{ \boldsymbol{x} \in \mathbb{R}^d \mid ||\boldsymbol{x}|| = 1 \}$

Equiangular lines:

$$(\boldsymbol{x}_i, \boldsymbol{x}_j) = \pm \alpha \quad (1 \leq i < j \leq n).$$

Maximize the number of lines n:

$$\begin{split} & \mathcal{N}_{\alpha}(\boldsymbol{d}) = \max\{|\boldsymbol{X}| \mid \boldsymbol{X} \subseteq \boldsymbol{S}^{d-1} \mid (\boldsymbol{x}, \boldsymbol{y}) = \pm \alpha \; (\forall \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{X}, \; \boldsymbol{x} \neq \boldsymbol{y})\}, \\ & \mathcal{N}(\boldsymbol{d}) = \max\{\mathcal{N}_{\alpha}(\boldsymbol{d}) \mid \boldsymbol{0} \leq \alpha < 1\}. \end{split}$$

A similar problem is the sphere packing (kissing number) problem:

$$\tau(d) = \max\{|X| \mid X \subseteq S^{d-1} \mid (\boldsymbol{x}, \boldsymbol{y}) \leq \frac{1}{2} \; (\forall \boldsymbol{x}, \boldsymbol{y} \in X, \; \boldsymbol{x} \neq \boldsymbol{y})\}.$$

$$N(2) = 3$$
, $\tau(2) = 6$ (hexagon)
 $N(3) = 6$: Haantjes (1948).
 $\tau(3) = 12$ (icosahedron): Schütte and van der Waerden (1953).

The value α in $N_{\alpha}(d)$

$$N(2) = N_{1/2}(2), \quad N(3) = N_{1/\sqrt{5}}(3).$$

For $d \ge 4$, for which $\alpha \in [0, 1)$, $N(d) = N_{\alpha}(d)$ holds?

Theorem (Lemmens–Seidel, P. M. Neumann, 1973)

Suppose $\exists n$ equiangular lines with angle $\arccos \alpha$ in \mathbb{R}^d .

$$n > 2d \implies \frac{1}{\alpha}$$
 is an odd integer ≥ 3 .

Is the hypothesis n > 2d restrictive? No.

d	2	3	4	5	6	7–13	14	
N(d)	3	6	6	10	16	28	?	
$1/\alpha$	2	$\sqrt{5}$	$\sqrt{5}$ or 3	3	3	3	3 <mark>or</mark> 5	

 $N(d) = \Theta(d^2) \quad (d \to \infty).$

Suppose $\exists n$ equiangular lines with angle $\arccos(1/3)$ in \mathbb{R}^d . The Gram matrix

$$G = ((\boldsymbol{x}_i, \boldsymbol{x}_j))$$

has diagonal = 1, off diagonal = $\pm \frac{1}{3}$. Let *J* denote the all-one matrix.

 $S = 3(G - I) \quad \text{(Seidel matrix): off diagonal} = \pm 1$ $A = \frac{1}{2}(J - I + S) \quad \text{(adjacency matrix): off diagonal} = 0, 1$ $C = A + 2I = \frac{1}{2}J + \frac{3}{2}G \ge 0.$

C is the Gram matrix of a subset of a root system of type A, D, E.

Van Lint–Seidel (1966):

$$N_{\alpha}(d) \leq 1 + rac{d-1}{1-d\alpha^2}$$
 if $1-d\alpha^2 > 0$.

d	3	4	5	6	7
$N_{1/3}(d)$	4	6	10	16	28

arccos
$$\frac{1}{3} \sim 70^\circ$$

Lemmens–Seidel (1973):

Tremain (2008): $28 \le N_{1/5}(14)$. Thus

$$28 \le N_{1/5}(14) = N(14) \le 30.$$

$N(14) = N_{1/5}(14) = 28$ or 29 or 30.

Theorem (Greaves–Koolen–M.–Szöllősi, 2016) $N_{1/5}(14) < 30.$

So

$$N(14) = N_{1/5}(14) = 28 \text{ or } 29.$$

Our method is not powerful enough to rule out 29.

The upper bound of $N_{\alpha}(d)$ for $\alpha \leq 1/\sqrt{d+2}$

$$N_{\alpha}(d) \leq 1 + \frac{d-1}{1-d\alpha^2}$$
(1)

For a set $X = \{\mathbb{R}\boldsymbol{x}_1, \dots, \mathbb{R}\boldsymbol{x}_n\}$ of equiangular lines with mutual angle $\arccos \alpha$, the following are equivalent:

- X achieves the above upper bound
- X is a tight frame
- **3** $\{\pm \boldsymbol{x}_1, \ldots, \pm \boldsymbol{x}_n\}$ is a spherical 2-design

Moreover, for $\alpha = 1/\sqrt{d+2}$, the bound is the largest:

$$N_{\alpha}(d) \leq N_{1/\sqrt{d+2}}(d) = \frac{d(d+1)}{2}.$$
 (2)

Equality in (2) is achieved if and only if X is a spherical 4-design.

Tight frames and spherical designs

A set of unit vectors $X = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^d$ is a tight frame if $\exists c \neq 0$,

$$oldsymbol{x} = oldsymbol{c} \sum_{i=1}^n (oldsymbol{x}, oldsymbol{x}_i) oldsymbol{x}_i \quad (orall oldsymbol{x} \in \mathbb{R}^d).$$

X is called a spherical *t*-design if

$$\frac{1}{|X|}\sum_{x\in X}f(x)=\int_{\mathcal{S}^{d-1}}f(x)d\sigma(x)$$

for all polynomial functions f(x) of degree at most t.

Complex tight frames

Let *H* be a Hilbert space. A set of unit vectors $X = \{x_1, \dots, x_n\} \subseteq H$ is called a tight frame if $\exists c \neq 0$,

$$\boldsymbol{x} = \boldsymbol{c} \sum_{i=1}^{n} (\boldsymbol{x}, \boldsymbol{x}_i) \boldsymbol{x}_i \quad (\forall \boldsymbol{x} \in \boldsymbol{H}).$$

If *H* is over \mathbb{C} , we say that *H* is equiangular if

 $|(\boldsymbol{x}_i, \boldsymbol{x}_j)|$ is constant independent of $i \neq j$

Zauner's conjecture (SIC-POVM): \exists an equiangular tight frame of size d^2 in \mathbb{C}^d , with

$$|(\boldsymbol{x}_i, \boldsymbol{x}_j)| = \frac{1}{d+1} \quad (i \neq j).$$

 $egin{aligned} & \mathcal{N}(d) = ext{the largest size of a set of equiangular lines in d-space} \ & \leq egin{cases} & rac{1}{2}d(d+1) & ext{over } \mathbb{R}, \ & d^2 & ext{over } \mathbb{C}. \end{aligned}$

The upper bound is believed to be achieved for \mathbb{C} (Zauner's conjecture on SIC-POVM).

The upper bound for \mathbb{R} is achieved for d = 2, 3, 7, 23 and possibly $d = (2m + 1)^2 - 2$ ($m \in \mathbb{N}$). When the bound is achieved with $d = (2m + 1)^2 - 2$,

$$N(d) = N_{\alpha}(d)$$
 with $\alpha = \frac{1}{2m+1}$.

and the set gives a spherical 4-design.

Gerzon bound on N(d) over R

$$N(d) \leq rac{d(d+1)}{2}.$$

If equality holds and d > 3, then $d = (2m + 1)^2 - 2$ for some m. $m = 1 \implies d = 7 \implies$ unique (a hyperplane in E_8 root system). $m = 2 \implies d = 23 \implies$ unique.

- Makhnev (2002) ruled out *m* = 3
- Bannai–M.–Venkov (2004) ruled out m = 3, 4 and infinitely many others
- Nebe–Venkov (2011) ruled out m = 6 and infinitely many others

Still open: m = 5, i.e., d = 119. Thank you very much for your attention.