Extremal Finite Sets in Spheres and Projective Spaces

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University

January 6, 2020
ISI Kolkata

About me

- Name: Akihiro Munemasa
- Affiliation: Tohoku University, Sendai, Japan
- Specialization: Algebra \& Combinatorics
- Ph.D (1989) from The Ohio State University, under E. Bannai.

My dissertation committee includes: Dijen K. Ray-Chaudhuri.
Raj Chandra Bose
Dijen K. Ray-Chaudhuri E. Bannai

In the unit sphere $S^{d-1} \subseteq \mathbb{R}^{d}$

Extremal finite sets in S^{d-1} can mean:
(a) Large finite set with few distances or large enough mutual distances
(b) Small finite set which approximates the sphere well

The theory of spherical design (in an appropriate setting):

$$
\begin{aligned}
& \text { maximizing the size of a set in (a) } \\
& =\text { minimizing the size of a set in (b) }
\end{aligned}
$$

(a) is similar to coding theory: Large rate (number of codewords) with large minimum distance.

Equiangular lines

By a set of equiangular lines with angle $\arccos \alpha$ in \mathbb{R}^{d}, we mean

$$
\left\{\mathbb{R} \boldsymbol{x}_{1}, \ldots, \mathbb{R} \boldsymbol{x}_{n}\right\}
$$

where $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$ are unit vectors such that

$$
\left|\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right|=\alpha \quad(1 \leq i<j \leq n),
$$

and

$$
0 \leq \alpha<1 .
$$

Example: $d=2, \alpha=1 / 2$,
$\boldsymbol{x}_{k}=\left(\cos \frac{2 \pi k}{3}, \sin \frac{2 \pi k}{3}\right) \quad(k=1,2,3)$
$\boldsymbol{y}_{k}=\left(\cos \frac{\pi k}{3}, \sin \frac{\pi k}{3}\right) \quad(k=0,1,2)$

12 vertices of the Icosahedron $=6$ lines

Example: $d=3, \alpha=1 / \sqrt{5}$, six diagonals of the icosahedron

$\arccos (1 / \sqrt{5}) \sim 63^{\circ}$.
(illustration by Gary Greaves)

Set of points in $S^{d-1}=\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mid\|\boldsymbol{x}\|=1\right\}$

Equiangular lines:

$$
\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)= \pm \alpha \quad(1 \leq i<j \leq n) .
$$

Maximize the number of lines n :

$$
\begin{aligned}
N_{\alpha}(d) & =\max \left\{|X|\left|X \subseteq S^{d-1}\right|(\boldsymbol{x}, \boldsymbol{y})= \pm \alpha(\forall \boldsymbol{x}, \boldsymbol{y} \in X, \boldsymbol{x} \neq \boldsymbol{y})\right\}, \\
N(d) & =\max \left\{N_{\alpha}(d) \mid 0 \leq \alpha<1\right\} .
\end{aligned}
$$

A similar problem is the sphere packing (kissing number) problem:

$$
\tau(d)=\max \left\{|X|\left|X \subseteq S^{d-1}\right|(\boldsymbol{x}, \boldsymbol{y}) \leq \frac{1}{2}(\forall \boldsymbol{x}, \boldsymbol{y} \in X, \boldsymbol{x} \neq \boldsymbol{y})\right\}
$$

$N(2)=3, \tau(2)=6$ (hexagon)
$N(3)=6$: Haantjes (1948).
$\tau(3)=12$ (icosahedron): Schütte and van der Waerden (1953).

The value α in $N_{\alpha}(d)$

$$
N(2)=N_{1 / 2}(2), \quad N(3)=N_{1 / \sqrt{5}}(3) .
$$

For $d \geq 4$, for which $\alpha \in[0,1), N(d)=N_{\alpha}(d)$ holds?

Theorem (Lemmens-Seidel, P. M. Neumann, 1973)

Suppose $\exists n$ equiangular lines with angle $\arccos \alpha$ in \mathbb{R}^{d}.

$$
n>2 d \Longrightarrow \frac{1}{\alpha} \quad \text { is an odd integer } \geq 3
$$

Is the hypothesis $n>2 d$ restrictive? No.

d	2	3	4	5	6	$7-13$	14	\cdots
$N(d)$	3	6	6	10	16	28	$?$	\cdots
$1 / \alpha$	2	$\sqrt{5}$	$\sqrt{5}$ or 3	3	3	3	3 or 5	
$N(d)=\Theta\left(d^{2}\right)(d \rightarrow \infty)$								

$1 / \alpha=3:$ Root systems

Suppose $\exists n$ equiangular lines with angle $\arccos (1 / 3)$ in \mathbb{R}^{d}. The Gram matrix

$$
G=\left(\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)
$$

has diagonal $=1$, off diagonal $= \pm \frac{1}{3}$.
Let J denote the all-one matrix.

$$
\begin{aligned}
& S=3(G-I) \quad \text { (Seidel matrix): off diagonal }= \pm 1 \\
& A=\frac{1}{2}(J-I+S) \quad \text { (adjacency matrix): off diagonal }=0,1 \\
& C=A+2 I=\frac{1}{2} J+\frac{3}{2} G \geq 0 .
\end{aligned}
$$

C is the Gram matrix of a subset of a root system of type A, D, E.

Van Lint-Seidel (1966):

$$
N_{\alpha}(d) \leq 1+\frac{d-1}{1-d \alpha^{2}} \quad \text { if } 1-d \alpha^{2}>0 .
$$

d	3	4	5	6	7
$N_{1 / 3}(d)$	4	6	10	16	28
	$\arccos \frac{1}{3} \sim 70^{\circ}$				

Lemmens-Seidel (1973):
$\left.\begin{array}{rl}\hline d & 3 \\ 4 & 5 \\ \hline\end{array}\right)$

Tremain (2008): $28 \leq N_{1 / 5}(14)$.
Thus

$$
28 \leq N_{1 / 5}(14)=N(14) \leq 30 .
$$

$N(14)$

$$
N(14)=N_{1 / 5}(14)=28 \text { or } 29 \text { or } 30 .
$$

Theorem (Greaves-Koolen-M.-Szöllősi, 2016)
 $N_{1 / 5}(14)<30$.

So

$$
N(14)=N_{1 / 5}(14)=28 \text { or } 29 .
$$

Our method is not powerful enough to rule out 29.

The upper bound of $N_{\alpha}(d)$ for $\alpha \leq 1 / \sqrt{d+2}$

$$
\begin{equation*}
N_{\alpha}(d) \leq 1+\frac{d-1}{1-d \alpha^{2}} \tag{1}
\end{equation*}
$$

For a set $X=\left\{\mathbb{R} \boldsymbol{x}_{1}, \ldots, \mathbb{R} \boldsymbol{x}_{n}\right\}$ of equiangular lines with mutual angle $\arccos \alpha$, the following are equivalent:
(1) X achieves the above upper bound
(2) X is a tight frame
(3) $\left\{ \pm \boldsymbol{x}_{1}, \ldots, \pm \boldsymbol{x}_{n}\right\}$ is a spherical 2-design

Moreover, for $\alpha=1 / \sqrt{d+2}$, the bound is the largest:

$$
\begin{equation*}
N_{\alpha}(d) \leq N_{1 / \sqrt{d+2}}(d)=\frac{d(d+1)}{2} \tag{2}
\end{equation*}
$$

Equality in (2) is achieved if and only if X is a spherical 4-design.

Tight frames and spherical designs

A set of unit vectors $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subseteq \mathbb{R}^{d}$ is a tight frame if $\exists c \neq 0$,

$$
\boldsymbol{x}=c \sum_{i=1}^{n}\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right) \boldsymbol{x}_{i} \quad\left(\forall \boldsymbol{x} \in \mathbb{R}^{d}\right)
$$

X is called a spherical t-design if

$$
\frac{1}{|X|} \sum_{x \in X} f(x)=\int_{S^{d-1}} f(x) d \sigma(x)
$$

for all polynomial functions $f(x)$ of degree at most t.

Complex tight frames

Let H be a Hilbert space. A set of unit vectors $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subseteq H$ is called a tight frame if $\exists c \neq 0$,

$$
\boldsymbol{x}=c \sum_{i=1}^{n}\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right) \boldsymbol{x}_{i} \quad(\forall \boldsymbol{x} \in H) .
$$

If H is over \mathbb{C}, we say that H is equiangular if

$$
\left|\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right| \text { is constant independent of } i \neq j
$$

Zauner's conjecture (SIC-POVM): \exists an equiangular tight frame of size d^{2} in \mathbb{C}^{d}, with

$$
\left|\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right|=\frac{1}{d+1} \quad(i \neq j)
$$

Gerzon bound on $N(d)$

$N(d)=$ the largest size of a set of equiangular lines in d-space

$$
\leq \begin{cases}\frac{1}{2} d(d+1) & \text { over } \mathbb{R} \\ d^{2} & \text { over } \mathbb{C}\end{cases}
$$

The upper bound is believed to be achieved for \mathbb{C} (Zauner's conjecture on SIC-POVM).
The upper bound for \mathbb{R} is achieved for $d=2,3,7,23$ and possibly $d=(2 m+1)^{2}-2(m \in \mathbb{N})$. When the bound is achieved with $d=(2 m+1)^{2}-2$,

$$
N(d)=N_{\alpha}(d) \text { with } \alpha=\frac{1}{2 m+1}
$$

and the set gives a spherical 4-design.

Gerzon bound on $N(d)$ over R

$$
N(d) \leq \frac{d(d+1)}{2}
$$

If equality holds and $d>3$, then $d=(2 m+1)^{2}-2$ for some m. $m=1 \Longrightarrow d=7 \Longrightarrow$ unique (a hyperplane in E_{8} root system). $m=2 \Longrightarrow d=23 \Longrightarrow$ unique.

- Makhnev (2002) ruled out $m=3$
- Bannai-M.-Venkov (2004) ruled out $m=3,4$ and infinitely many others
- Nebe-Venkov (2011) ruled out $m=6$ and infinitely many others

Still open: $m=5$, i.e., $d=119$.
Thank you very much for your attention.

