The regular two－graph on 276 vertices revisited

宗政 昭弘
東北大学 情報科学研究科
joint work with Jack Koolen

2020年8月20日

The regular two-graph on 276 vertices revisited

joint work with Jack Koolen

- Goethals-Seidel (1975) "The regular two-graph on 276 vertices"
- Godsil-Royle "Algebraic Graph Theory"
- Chapter 11 "Two-Graphs"
- Section 11.8 "The Two-Graph on 276 vertices"
- Two-graph = Switching class of graphs
- McLaughlin (1969): Sporadic finite simple group $\boldsymbol{M c L}$ acting on a graph with 275 vertices (McLaughlin graph).
- $M_{22} \leq M c L \leq$ Co.3; Mathieu (1873), Conway (1968-1969).
- Goethals-Seidel (1975) "The regular two-graph on 276 vertices"
- Godsil-Royle "Algebraic Graph Theory"
- Chapter 11 "Two-Graphs"
- Section 11.8 "The Two-Graph on 276 vertices"
- Two-graph = Switching class of graphs
- McLaughlin (1969): Sporadic finite simple group $\boldsymbol{M c L}$ acting on a graph with 275 vertices (McLaughlin graph).
- $M_{22} \leq M c L \leq \boldsymbol{C o . 3}$; Mathieu (1873), Conway (1968-1969).

Switching of $\boldsymbol{\Gamma}=(\boldsymbol{V}, \boldsymbol{E})$ with respect to $\boldsymbol{U} \subseteq \boldsymbol{V}$ is $\Gamma^{U}=\left(\boldsymbol{V}, \boldsymbol{E}^{U}\right)$, where

$$
\begin{aligned}
E^{U}= & \{\{x, y\} \in E: x, y \in U\} \\
& \cup\{\{x, y\} \in E: x, y \in V \backslash U\} \\
& \cup\{\{x, y\} \notin E: x \in U, y \in V \backslash U\} .
\end{aligned}
$$

The switching class of Γ is

$$
\left\{\Gamma^{U}: U \subseteq V\right\}
$$

It consists of $2^{|V|-1}$ graphs, since

$$
\Gamma^{U}=\Gamma^{V \backslash U}
$$

Let $\boldsymbol{\Gamma}=\boldsymbol{L}\left(\boldsymbol{K}_{\mathbf{8}}\right)$: line graph of $\boldsymbol{K}_{\mathbf{8}}$, is strongly regular with parameters
$S R G(28,12,6,4)$.

$$
\begin{aligned}
V & =V\left(L\left(K_{8}\right)\right) \\
& =\left\{e_{i}+e_{j}: 1 \leq i<j \leq 8\right\} \subseteq \mathbb{R}^{8} .
\end{aligned}
$$

For $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V}$,

$$
u \sim v \Longleftrightarrow(u, v)=1
$$

The switching class of $\boldsymbol{\Gamma}$ contains $\boldsymbol{K}_{\mathbf{1}} \cup$ Sch, where Sch is the Schläfli graph
$\operatorname{SRG}(27,16,10,8)$.

Let $\boldsymbol{\Gamma}=\boldsymbol{L}\left(\boldsymbol{K}_{\mathbf{8}}\right)$: line graph of $\boldsymbol{K}_{\mathbf{8}}$, is strongly regular with parameters
$S R G(28,12,6,4)$.

$$
\begin{aligned}
V & =V\left(L\left(K_{8}\right)\right) \\
& =\left\{e_{i}+e_{j}: 1 \leq i<j \leq 8\right\} \subseteq \mathbb{R}^{8} .
\end{aligned}
$$

For $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V}$,

$$
u \sim v \Longleftrightarrow(u, v)=1
$$

The switching class of $\boldsymbol{\Gamma}$ contains $\boldsymbol{K}_{\mathbf{1}} \cup \mathrm{Sch}$, where Sch is the Schläfli graph
$\operatorname{SRG}(27,16,10,8)$.

$$
\begin{aligned}
(r, r) & =2 \\
V & =\left\{e_{i}+e_{j}: 1 \leq i<j \leq 8\right\} \subseteq H
\end{aligned}
$$

$$
\begin{aligned}
r & =\frac{1}{2}(1,1,1,1,1,1,1,1) \\
H & =\left\{x \in \mathbb{R}^{8}:(r, x)=1\right\}
\end{aligned}
$$

Then

In fact, $V \cup\{r\}$ is a part of the $\boldsymbol{E}_{\mathbf{8}}$ root system,

$$
H \cap E_{8}=V \cup\{r-u: u \in V\}
$$

Write

$$
\bar{u}=u-\frac{1}{2} r \quad(u \in V)
$$

$$
\{ \pm \bar{u}: u \in V\}
$$

$$
\begin{aligned}
r & =\frac{1}{2}(1,1,1,1,1,1,1,1) \\
H & =\left\{x \in \mathbb{R}^{8}:(r, x)=1\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
(r, r) & =2 \\
V & =\left\{e_{i}+e_{j}: 1 \leq i<j \leq 8\right\} \subseteq H
\end{aligned}
$$

In fact, $V \cup\{r\}$ is a part of the \boldsymbol{E}_{8} root system,

$$
H \cap E_{8}=V \cup\{r-u: u \in V\} .
$$

Write

$$
\bar{u}=u-\frac{1}{2} r \quad(u \in V)
$$

gives a set of $\mathbf{2 8}$ equiangular lines in $\boldsymbol{H} \cong \mathbb{R}^{\mathbf{7}}$.

$$
(u, v)=\left\{\begin{array}{l}
1 \\
0
\end{array} \Longleftrightarrow(\bar{u}, \bar{v})=\left\{\begin{array}{l}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right.\right.
$$

The number of equiangular lines in \mathbb{R}^{d} is bounded by the absolute bound:

$$
\frac{d(d+1)}{2} .
$$

This bound is known to be achieved for $\boldsymbol{d}=$ $2,3,7,23$, and achievability is unknown in general for large \boldsymbol{d}.
Delsarte-Goethals-Seidel (1977), Makhnev (2003), Bannai-M.-Venkov (2004), NebeVenkov (2013).

$$
\{ \pm \bar{u}: u \in V\}
$$

gives a set of $\mathbf{2 8}$ equiangular lines in $\boldsymbol{H} \cong \mathbb{R}^{7}$.

$$
(u, v)=\left\{\begin{array}{l}
1 \\
0
\end{array} \Longleftrightarrow(\bar{u}, \bar{v})=\left\{\begin{array}{l}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right.\right.
$$

The number of equiangular lines in \mathbb{R}^{d} is bounded by the absolute bound:

$$
\frac{d(d+1)}{2}
$$

This bound is known to be achieved for $d=$ $\mathbf{2 , 3}, \mathbf{7}, 23$, and achievability is unknown in general for large \boldsymbol{d}.
Delsarte-Goethals-Seidel (1977), Makhnev (2003), Bannai-M.-Venkov (2004), NebeVenkov (2013).

A graph G in the unique two-graph on 276 vertices is given in Godsil-Royle, Section 11.8. Its adjacency matrix \boldsymbol{A} has the smallest eigenvalue
-3 with multiplicity 252.
so $\exists X \in \mathbb{R}^{\mathbf{2 7 6 \times 2 4}}$ with

$$
\boldsymbol{X} \boldsymbol{X}^{\top}=\boldsymbol{A}+3 \boldsymbol{I} .
$$

Let

$$
V=\{\text { row vectors of } X\}
$$

Then $u \sim v \Longleftrightarrow(u, v)=1$, $\exists r \in \mathbb{R}^{24}$ with

$$
\begin{aligned}
& (r, r)=2 \\
& \quad V \subseteq H=\left\{x \in \mathbb{R}^{24}:(r, x)=1\right\}
\end{aligned}
$$

A graph G in the unique two-graph on 276 vertices is given in Godsil-Royle, Section 11.8. Its adjacency matrix \boldsymbol{A} has the smallest eigenvalue
-3 with multiplicity 252.
so $\exists X \in \mathbb{R}^{276 \times 24}$ with

$$
\boldsymbol{X} \boldsymbol{X}^{\top}=\boldsymbol{A}+3 \boldsymbol{I} .
$$

Let

$$
\boldsymbol{V}=\{\text { row vectors of } \boldsymbol{X}\}
$$

Then $u \sim v \Longleftrightarrow(u, v)=1$, $\exists r \in \mathbb{R}^{24}$ with

$$
\begin{aligned}
& (r, r)=2 \\
& \quad V \subseteq H=\left\{x \in \mathbb{R}^{24}:(r, x)=1\right\}
\end{aligned}
$$

Write

$$
\bar{u}=u-\frac{1}{2} r \quad(u \in V)
$$

Then

$$
\{ \pm \bar{u}: u \in V\}
$$

gives a set of 276 equiangular lines in $H \cong \mathbb{R}^{23}$.

$$
(u, v)=\left\{\begin{array}{l}
1 \\
0
\end{array} \Longleftrightarrow(\bar{u}, \bar{v})=\left\{\begin{array}{l}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right.\right.
$$

Recall: switching class $\cong\left\{2^{276}\right.$ choices for $\left.\pm\right\}$, it contains the graph $\boldsymbol{K}_{\mathbf{1}} \cup \boldsymbol{\Gamma}$, where $\boldsymbol{\Gamma}$ is the McLaughlin graph
$S R G(275,162,105,81)$,
and a large number of (Haemers-Tonchev 1996; Nozaki, 2009) $S R G(276,135,78,54)$.

Write

$$
\bar{u}=u-\frac{1}{2} r \quad(u \in V)
$$

Then

$$
\{ \pm \bar{u}: u \in \boldsymbol{V}\}
$$

gives a set of 276 equiangular lines in $H \cong \mathbb{R}^{23}$.

$$
(u, v)=\left\{\begin{array}{l}
1 \\
0
\end{array} \Longleftrightarrow(\bar{u}, \bar{v})=\left\{\begin{array}{l}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right.\right.
$$

Recall: switching class $\cong\left\{\mathbf{2}^{\mathbf{2 7 6}}\right.$ choices for $\left.\pm\right\}$, it contains the graph $\boldsymbol{K}_{\mathbf{1}} \cup \boldsymbol{\Gamma}$, where $\boldsymbol{\Gamma}$ is the McLaughlin graph

$$
S R G(275,162,105,81)
$$

and a large number of (Haemers-Tonchev 1996; Nozaki, 2009) $\operatorname{SRG}(276,135,78,54)$.
$V=\{276$ row vectors of $X\}$, $(r, r)=2$,

$$
V \subseteq H=\left\{x \in \mathbb{R}^{24}:(r, x)=1\right\}
$$

\boldsymbol{H} "contains" every graph in the switching class, since

$$
V \cup\{r-x: x \in V\} \subseteq H
$$

Let L be the lattice generated by $V \cup\{r\} . L$ is a discrete subgroup of \mathbb{R}^{24}, and a free \mathbb{Z}-module of rank 24.

$$
\begin{aligned}
\{x \in L & :(x, x)=2\}=\{ \pm r\} \\
\{x \in L: & (x, x)=3\} \\
& =V \cup\{r-x: x \in V\} \\
& \cup(-V) \cup\{-(r-x): x \in V\}
\end{aligned}
$$

$$
\begin{aligned}
V & =\{276 \text { row vectors of } X\} \\
(r, r) & =2, \\
V & \subseteq H=\left\{x \in \mathbb{R}^{24}:(r, x)=1\right\}
\end{aligned}
$$

\boldsymbol{H} "contains" every graph in the switching class, since

$$
V \cup\{r-x: x \in V\} \subseteq H
$$

Let L be the lattice generated by $V \cup\{r\}$. L is a discrete subgroup of $\mathbb{R}^{\mathbf{2 4}}$, and a free \mathbb{Z}-module of rank 24 .

$$
\begin{aligned}
\{x \in L: & (x, x)=2\}=\{ \pm r\} \\
\{x \in L: & (x, x)=3\} \\
& =V \cup\{r-x: x \in V\} \\
& \cup(-V) \cup\{-(r-x): x \in V\}
\end{aligned}
$$

Theorem (Koolen-M.)

For a proper sublattice $\boldsymbol{L}^{\prime} \varsubsetneqq \boldsymbol{L}$, TFAE:
(1) $\boldsymbol{\Gamma}^{\prime}=\boldsymbol{L}^{\prime} \cap \boldsymbol{H}$ is a connected graph in the switching class (hence $\left|L^{\prime} \cap H\right|=276$),
(2) $r \notin L,\left|L: L^{\prime}\right|=2$.

In this case, Γ^{\prime} is one of the four graphs corresponding to three maximal subgroups

$$
L_{3}(4): D_{12}, M_{23}, 3^{5}:\left(2 \times M_{11}\right)
$$

and a non-maximal subgroup $\boldsymbol{U}_{\mathbf{3}}(5): 2$, of Co. 3 .

The latter statement is verified by computer by examining the orbit of Co.3 on $L / 2 L$.

None of the four graphs is (strongly) regular.

