The regular two-graph on 276 vertices revisited

Akihiro Munemasa
Tohoku University
(joint work with Jack Koolen)

2020 Ural Workshop on
Group Theory and Combinatorics
August 24, 2020

The regular two-graph

 on 276 vertices revisited- Goethals-Seidel (1975) "The regular two-graph on 276 vertices" established the uniqueness (up to complement)
- Two-graph $=$ Switching class of graphs
- The regular two-graph on $276=$ the switching class of $K_{1} \cup M c L$, where $M c L=S R G(275,162,105,81)$ is the McLaughlin graph.
- $M c L \leq C o .3$.
joint work with Jack Koolen

Switching of $\boldsymbol{\Gamma}=(\boldsymbol{V}, \boldsymbol{E})$ with respect to $\boldsymbol{U} \subseteq \boldsymbol{V}$ is $\Gamma^{U}=\left(\boldsymbol{V}, \boldsymbol{E}^{U}\right)$, where

$$
\begin{aligned}
E^{U}= & \{\{x, y\} \in E: x, y \in U\} \\
& \cup\{\{x, y\} \in E: x, y \in V \backslash U\} \\
& \cup\{\{x, y\} \notin E: x \in U, y \in V \backslash U\}
\end{aligned}
$$

The switching class of $\boldsymbol{\Gamma}$ is

$$
\left\{\Gamma^{U}: U \subseteq V\right\}
$$

- $\mathrm{McL} \leq \mathrm{Co}_{\mathbf{3}}$.

Switching of $\boldsymbol{\Gamma}=(\boldsymbol{V}, \boldsymbol{E})$ with respect to $\boldsymbol{U} \subseteq \boldsymbol{V} \quad \boldsymbol{\Gamma}=\boldsymbol{L}\left(\boldsymbol{K}_{\mathbf{8}}\right)$: line graph of $\boldsymbol{K}_{\mathbf{8}}$, can be defined is $\Gamma^{U}=\left(\boldsymbol{V}, \boldsymbol{E}^{U}\right)$, where

$$
\begin{aligned}
E^{U}= & \{\{x, y\} \in E: x, y \in U\} \\
& \cup\{\{x, y\} \in E: x, y \in V \backslash U\} \\
& \cup\{\{x, y\} \notin E: x \in U, y \in V \backslash U\}
\end{aligned}
$$

as

$$
\begin{aligned}
V & =V\left(L\left(K_{8}\right)\right) \\
& =\left\{e_{i}+e_{j}: 1 \leq i<j \leq 8\right\} \\
& \subseteq D_{8} \subseteq \mathbb{R}^{8} .
\end{aligned}
$$

The switching class of $\boldsymbol{\Gamma}$ is

$$
\left\{\Gamma^{U}: U \subseteq V\right\}
$$

For $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V}$,

$$
u \sim v \Longleftrightarrow(u, v)=1
$$

The switching class of $\boldsymbol{\Gamma}$ contains $\boldsymbol{K}_{\mathbf{1}} \cup \boldsymbol{S c h}$, where $\boldsymbol{S c h}$ is the Schläfli graph
$S R G(27,16,10,8)$.
$\boldsymbol{\Gamma}=\boldsymbol{L}\left(\boldsymbol{K}_{\mathbf{8}}\right)$: line graph of $\boldsymbol{K}_{\mathbf{8}}$, can be defined as

$$
\begin{aligned}
V & =V\left(L\left(K_{8}\right)\right) \\
& =\left\{e_{i}+e_{j}: 1 \leq i<j \leq 8\right\} \\
& \subseteq D_{8} \subseteq \mathbb{R}^{8}
\end{aligned}
$$

For $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V}$,

$$
u \sim v \Longleftrightarrow(u, v)=1
$$

The switching class of $\boldsymbol{\Gamma}$ contains $\boldsymbol{K}_{\mathbf{1}} \cup \boldsymbol{S c h}$, where $\boldsymbol{S c h}$ is the Schläfli graph

$$
S R G(27,16,10,8)
$$

$$
\begin{aligned}
r & =\frac{1}{2}(1,1,1,1,1,1,1,1) \\
H & =\left\{x \in \mathbb{R}^{8}:(r, x)=1\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
(r, r) & =2 \\
V & =\left\{e_{i}+e_{j}: 1 \leq i<j \leq 8\right\} \subseteq H
\end{aligned}
$$

In fact, $\boldsymbol{V} \cup\{r\}$ is a part of the $\boldsymbol{E}_{\mathbf{8}}$ root system,

$$
H \cap E_{8}=V \cup\{r-u: u \in V\}
$$

$$
(u, v)=\left\{\begin{array}{l}
1 \\
0
\end{array} \quad \Longleftrightarrow(u, r-v)=\left\{\begin{array}{l}
0 \\
1
\end{array}\right.\right.
$$

$$
\begin{aligned}
r & =\frac{1}{2}(1,1,1,1,1,1,1,1) \\
H & =\left\{x \in \mathbb{R}^{8}:(r, x)=1\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
(r, r) & =2 \\
V & =\left\{e_{i}+e_{j}: 1 \leq i<j \leq 8\right\} \subseteq H
\end{aligned}
$$

In fact, $V \cup\{r\}$ is a part of the \boldsymbol{E}_{8} root system,

$$
H \cap E_{8}=V \cup\{r-u: u \in V\}
$$

$$
(u, v)=\left\{\begin{array}{l}
1 \\
0
\end{array} \Longleftrightarrow(u, r-v)=\left\{\begin{array}{l}
0 \\
1
\end{array}\right.\right.
$$

Write

$$
\begin{gathered}
\bar{u}=u-\frac{1}{2} r \quad(u \in V) . \\
\{ \pm \bar{u}: u \in V\}
\end{gathered}
$$

gives a set of $\mathbf{2 8}$ equiangular lines in $\boldsymbol{H} \cong \mathbb{R}^{\mathbf{7}}$. The number of equiangular lines in $\mathbb{R}^{\boldsymbol{d}}$ is bounded by the absolute bound (Gerzon bound):

$$
\frac{d(d+1)}{2}
$$

This bound is known to be achieved for $\boldsymbol{d}=$ $2,3,7,23$, and achievability is unknown in general for large \boldsymbol{d}.
Delsarte-Goethals-Seidel (1977), Makhnev (2003), Bannai-M.-Venkov (2004), NebeVenkov (2013).

Write

$$
\begin{gathered}
\bar{u}=u-\frac{1}{2} r \quad(u \in V) \\
\{ \pm \bar{u}: u \in V\}
\end{gathered}
$$

gives a set of $\mathbf{2 8}$ equiangular lines in $\boldsymbol{H} \cong \mathbb{R}^{\mathbf{7}}$. The number of equiangular lines in $\mathbb{R}^{\boldsymbol{d}}$ is bounded by the absolute bound (Gerzon bound):

$$
\frac{d(d+1)}{2}
$$

This bound is known to be achieved for $d=$ $2,3,7,23$, and achievability is unknown in general for large \boldsymbol{d}.
Delsarte-Goethals-Seidel (1977), Makhnev (2003), Bannai-M.-Venkov (2004), NebeVenkov (2013).

$$
\begin{aligned}
& \boldsymbol{E}_{8} \supseteq \text { the switching class } \ni \boldsymbol{K}_{1} \cup \boldsymbol{S c h} \\
& \left.\quad \text { (in fact, } \boldsymbol{E}_{8} \cap \boldsymbol{H}\right) \\
& D_{8} \supseteq \boldsymbol{L}\left(\boldsymbol{K}_{8}\right)
\end{aligned}
$$

$$
? ? \supseteq \text { the switching class } \ni K_{1} \cup M c \boldsymbol{L}
$$

$$
? ? \supseteq ? ?, \text { hyperplane? }
$$

Indeed, there exists an integral lattice \boldsymbol{L} and its affine hyperplane \boldsymbol{H} such that

$$
L \cap H \supseteq \text { the switching class } \ni K_{1} \cup M c L
$$

Moreover, L contains a unique root (up to $\pm \mathbf{1}$) such that

$$
H=\{x \in L:(r, x)=1\}
$$

$\boldsymbol{E}_{8} \supseteq$ the switching class $\ni \boldsymbol{K}_{\mathbf{1}} \cup \boldsymbol{S c h}$
(in fact, $\boldsymbol{E}_{8} \cap \boldsymbol{H}$)
$D_{8} \supseteq L\left(K_{8}\right)$
?? \supseteq the switching class $\ni K_{1} \cup M c L$
?? 〇??, hyperplane?
Indeed, there exists an integral lattice L and its affine hyperplane \boldsymbol{H} such that
$\boldsymbol{L} \cap \boldsymbol{H} \supseteq$ the switching class $\ni \boldsymbol{K}_{1} \cup \boldsymbol{M c L}$
Moreover, L contains a unique root (up to $\pm \mathbf{1}$) such that

$$
H=\{x \in L:(r, x)=1\}
$$

Let

$$
L_{3}=\{x \in L:(x, x)=3\}
$$

and let $\boldsymbol{V} \subseteq \boldsymbol{L}_{\mathbf{3}} \cap \boldsymbol{H}$ be the $\mathbf{2 7 6}$-element subset representing an arbitrary member of the switching class of $\boldsymbol{K}_{1} \cup M c \boldsymbol{L}$. Then

$$
L_{3} \cap H=V \cup\{r-x: x \in V\}
$$

$$
L_{3}=(L \cap H) \cup(-(L \cap H))
$$

An analogue of $D_{8} \supseteq L\left(\boldsymbol{K}_{8}\right)$? SRG? The switching class is known to contain a large number of $\operatorname{SRG}(\mathbf{2 7 6}, \mathbf{1 3 5}, \mathbf{7 8}, 54)$ (Haemers-Tonchev 1996; Nozaki, 2009).

Theorem (Koolen-M.)

Let

$$
L_{3}=\{x \in L:(x, x)=3\},
$$

and let $\boldsymbol{V} \subseteq \boldsymbol{L}_{\mathbf{3}} \cap \boldsymbol{H}$ be the $\mathbf{2 7 6}$-element subset representing an arbitrary member of the switching class of $\boldsymbol{K}_{\mathbf{1}} \cup \mathbf{M c L}$. Then

$$
\begin{aligned}
L_{3} \cap H & =V \cup\{r-x: x \in V\}, \\
L_{3} & =(L \cap H) \cup(-(L \cap H))
\end{aligned}
$$

An analogue of $D_{8} \supseteq \boldsymbol{L}\left(\boldsymbol{K}_{8}\right)$? SRG? The switching class is known to contain a large number of $\operatorname{SRG}(276,135,78,54)$ (Haemers-Tonchev 1996; Nozaki, 2009).

For a proper sublattice $\boldsymbol{L}^{\prime} \varsubsetneqq \boldsymbol{L}$, TFAE:
(1) $\boldsymbol{\Gamma}^{\prime}=\boldsymbol{L}_{3}^{\prime} \cap \boldsymbol{H}$ is a connected graph in the switching class (hence $\left|L_{\mathbf{3}}^{\prime} \cap H\right|=\mathbf{2 7 6}$),
(2) $\boldsymbol{r} \notin \boldsymbol{L},\left|\boldsymbol{L}: \boldsymbol{L}^{\prime}\right|=\mathbf{2}$.

In this case, Γ^{\prime} is one of the four graphs corresponding to three maximal subgroups

$$
\begin{gathered}
3^{5}:\left(2 \times M_{11}\right)(\text { Goethals-Seidel 1975), } \\
M_{23}(\text { Godsil-Royle 2001), } \\
L_{3}(4): \boldsymbol{D}_{12}(\mathbf{3}+\mathbf{1 0 5}+\mathbf{1 6 8}),
\end{gathered}
$$

and a non-maximal subgroup $\boldsymbol{U}_{3}(5): 2$ $(1+100+175)$ of Co.3.

None of the four graphs is (strongly) regular.

