The regular two-graph on 276 vertices revisited

Akihiro Munemasa Tohoku University (joint work with Jack Koolen)

2020 Ural Workshop on Group Theory and Combinatorics August 24, 2020

The regular two-graph on 276 vertices revisited

• Goethals–Seidel (1975) "The regular two-graph on 276 vertices" established the uniqueness (up to complement)

- Two-graph = Switching class of graphs
- The regular two-graph on 276 = the switching class of $K_1 \cup McL$, where McL = SRG(275, 162, 105, 81) is the McLaughlin graph.
- $McL \leq Co._3$.

joint work with Jack Koolen

- Goethals-Seidel (1975) "The regular two-graph on 276 vertices" established the uniqueness (up to complement)
- Two-graph = Switching class of graphs
- The regular two-graph on 276 = the switching class of $K_1 \cup McL$, where McL = SRG(275, 162, 105, 81) is the McLaughlin graph.
- $McL \leq Co._3$.

Switching of $\Gamma = (V, E)$ with respect to $U \subseteq V$ is $\Gamma^U = (V, E^U)$, where

$$E^U = \{\{x,y\} \in E: x,y \in U\} \ \cup \{\{x,y\} \in E: x,y \in V \setminus U\} \ \cup \{\{x,y\}
otin E: x \in U, y \in V \setminus U\}.$$

The switching class of Γ is

 $\{\Gamma^U: U\subseteq V\}.$

Switching of $\Gamma=(V,E)$ with respect to $U\subseteq V$ is $\Gamma^U=(V,E^U),$ where

$$E^U = \{\{x,y\} \in E: x,y \in U\} \ \cup \{\{x,y\} \in E: x,y \in V \setminus U\} \ \cup \{\{x,y\}
otin E: x \in U, \ y \in V \setminus U\}.$$

The switching class of
$$\Gamma$$
 is

$$\{\Gamma^U: U\subseteq V\}.$$

 $\Gamma = L(K_8)$: line graph of K_8 , can be defined as

$$egin{aligned} V &= V(L(K_8)) \ &= \{e_i + e_j : 1 \leq i < j \leq 8\} \ &\subseteq D_8 \subseteq \mathbb{R}^8. \end{aligned}$$

For $u,v\in V$,

$$u\sim v \iff (u,v)=1.$$

The switching class of Γ contains $K_1 \cup Sch$, where Sch is the Schläfli graph

SRG(27, 16, 10, 8).

 $\Gamma = L(K_8)$: line graph of K_8 , can be defined as

$$egin{aligned} V &= V(L(K_8)) \ &= \{e_i + e_j : 1 \leq i < j \leq 8\} \ &\subseteq oldsymbol{D}_8 \subseteq \mathbb{R}^8. \end{aligned}$$

 $r = \frac{1}{2}(1, 1, 1, 1, 1, 1, 1, 1),$ $H = \{x \in \mathbb{R}^8 : (r, x) = 1\}.$

Then

$$egin{aligned} & (r,r) = 2, \ & V = \{e_i + e_j : 1 \leq i < j \leq 8\} \subseteq H. \end{aligned}$$

For $u,v\in V$,

$$u\sim v \iff (u,v)=1.$$

The switching class of Γ contains $K_1 \cup Sch$, where Sch is the Schläfli graph

In fact, $V \cup \{r\}$ is a part of the E_8 root system,

$$egin{aligned} r &= rac{1}{2}(1,1,1,1,1,1,1,1),\ H &= \{x \in \mathbb{R}^8: (r,x) = 1\}. \end{aligned}$$

Then

$$egin{aligned} (r,r) &= 2, \ V &= \{e_i + e_j : 1 \leq i < j \leq 8\} \subseteq H. \end{aligned}$$

In fact, $V \cup \{r\}$ is a part of the E_8 root system,

$$\overline{u} = u - rac{1}{2}r \hspace{0.4cm} (u \in V).
onumber \ \{\pm \overline{u}: u \in V\}$$

Write

gives a set of 28 equiangular lines in $H \cong \mathbb{R}^7$. The number of equiangular lines in \mathbb{R}^d is bounded by the absolute bound (Gerzon bound):

$$\frac{d(d+1)}{2}.$$

This bound is known to be achieved for d = 2, 3, 7, 23, and achievability is unknown in general for large d.

Delsarte–Goethals–Seidel (1977), Makhnev (2003), Bannai–M.–Venkov (2004), Nebe– Venkov (2013). Write

$$ar{u}=u-rac{1}{2}r\quad (u\in V). \ \{\pm\overline{u}:u\in V\}$$

gives a set of 28 equiangular lines in $H \cong \mathbb{R}^7$. The number of equiangular lines in \mathbb{R}^d is bounded by the absolute bound (Gerzon bound):

$$\frac{d(d+1)}{2}$$

This bound is known to be achieved for d = 2, 3, 7, 23, and achievability is unknown in general for large d.

Delsarte–Goethals–Seidel (1977), Makhnev (2003), Bannai–M.–Venkov (2004), Nebe– Venkov (2013). $E_8 \supseteq$ the switching class $i \in K_1 \cup Sch$ (in fact, $E_8 \cap H$) $D_8 \supseteq L(K_8)$

 $\ref{eq: 1.1.1} ?? \supseteq$ the switching class $\ni K_1 \cup McL$ $\ref{eq: 1.1.1} ?? \supseteq ??, hyperplane?$

Indeed, there exists an integral lattice ${old L}$ and its affine hyperplane ${old H}$ such that

 $L\cap H\supseteq$ the switching class $i \in K_1\cup McL$

Moreover, ${\it L}$ contains a unique root (up to $\pm 1)$ such that

$$H = \{ x \in L : (r, x) = 1 \}.$$

 $E_8 \supseteq$ the switching class $i \in K_1 \cup Sch$ (in fact, $E_8 \cap H$) $D_8 \supseteq L(K_8)$

?? \supseteq the switching class $\ni K_1 \cup McL$?? \supseteq ??, hyperplane?

Indeed, there exists an integral lattice \boldsymbol{L} and its affine hyperplane \boldsymbol{H} such that

 $L \cap H \supseteq$ the switching class $\ni K_1 \cup McL$

Moreover, L contains a unique root (up to ± 1) such that

$$H = \{ x \in L : (r, x) = 1 \}.$$

Let

$$L_3 = \{x \in L: (x,x) = 3\},$$

and let $V \subseteq L_3 \cap H$ be the 276-element subset representing an arbitrary member of the switching class of $K_1 \cup McL$. Then

$$L_3\cap H=V\cup\{r-x:x\in V\},$$

$$L_3 = (L \cap H) \cup (-(L \cap H))$$

An analogue of $D_8 \supseteq L(K_8)$? SRG? The switching class is known to contain a large number of SRG(276, 135, 78, 54) (Haemers–Tonchev 1996; Nozaki, 2009).

Let

$$L_3 = \{x \in L: (x,x) = 3\},$$

and let $V \subseteq L_3 \cap H$ be the 276-element subset representing an arbitrary member of the switching class of $K_1 \cup McL$. Then

$$L_3 \cap H = V \cup \{r - x : x \in V\},$$

 $L_3 = (L \cap H) \cup (-(L \cap H))$

An analogue of $D_8 \supseteq L(K_8)$? SRG? The switching class is known to contain a large number of SRG(276, 135, 78, 54) (Haemers–Tonchev 1996; Nozaki, 2009).

Theorem (Koolen–M.)

For a proper sublattice $L' \subsetneq L$, TFAE:

(1) $\Gamma' = L'_3 \cap H$ is a connected graph in the switching class (hence $|L'_3 \cap H| = 276$),

(2)
$$r \notin L$$
, $|L:L'| = 2$.

In this case, Γ' is one of the four graphs corresponding to three maximal subgroups

 $egin{aligned} 3^5:(2 imes M_{11}) \ (\textit{Goethals-Seidel 1975}),\ M_{23} \ (\textit{Godsil-Royle 2001}),\ L_3(4):D_{12} \ (3+105+168), \end{aligned}$

and a non-maximal subgroup $U_3(5): 2$ (1+100+175) of Co.3.

None of the four graphs is (strongly) regular.