Maximality of Seidel matrices and switching roots of graphs

Akihiro Munemasa Tohoku University (joint work with Meng-Yue Cao, Jack H. Koolen and Kiyoto Yoshino)

> 2021 Ural Seminar on Group Theory and Combinatorics February 16, 2021

1

Related to my talk on Ural Workshop on Group Theory and Combinatorics August 24, 2020 The regular two-graph on 276 vertices revisited

(joint work with Jack Koolen)

Contents

Equiangular lines and the absolute bound

2
$$L(K_8)$$
 and $\mathsf{D}_8 \subseteq \mathsf{E}_8$

- Root systems and Seidel matrices of largest eigenvalue 3
- Maximality of Seidel matrices
- Results and conjectures

 $L(K_8)$ denotes the line graph of the complete graph K_8 . Also known as the triangular graph T_8 , or Johnson graph J(8, 2).

$$\mathsf{D}_n = \{ x \in \mathbb{Z}^n : \sum_{i=1}^n x_i \in 2\mathbb{Z} \}.$$

The set of roots

 $R(\mathsf{D}_n) = \{ \mathsf{permutations of } ((\pm 1)^2 \, 0^{n-2}) \}.$

contains

{permutations of $(1^2 0^{n-2})$ }

which can be regarded as the vertex set of $L(K_n)$.

Equiangular lines and the absolute bound

- Goethals–Seidel (1975) "The regular two-graph on 276 vertices" established the uniqueness (up to complement)
- Two-graph = Switching class of graphs
- The regular two-graph on 276 = the switching class of $McL \cup K_1$, where McL = SRG(275, 162, 105, 81) is the McLaughlin graph.
- $Co._3 \ge McL : 2$, index= 276.

The number of equiangular lines in \mathbb{R}^d is bounded by the absolute bound (Gerzon bound):

$$\frac{d(d+1)}{2}$$

This bound is known to be achieved for d = 2, 3, 7, 23, and achievability is unknown in general for large d.

Some *d* were ruled out by Delsarte–Goethals–Seidel (1977), Makhnev (2003), Bannai–M.–Venkov (2004), Nebe–Venkov (2013).

Let $\Gamma = (V, E)$ be a graph. Switching of Γ with respect to $U \subseteq V$ is $\Gamma^U = (V, E^U)$, where

$$E^{U} = \{\{x, y\} \in E : x, y \in U\}$$
$$\cup \{\{x, y\} \in E : x, y \in V \setminus U\}$$
$$\cup \{\{x, y\} \notin E : x \in U, y \in V \setminus U\}.$$

The switching class of Γ is

$$\{\Gamma^U: U \subseteq V\}.$$

The Seidel matrix $S(\Gamma)$ of Γ is

$$S(\Gamma) = J - I - 2A(\Gamma),$$

where $A(\Gamma)$ is the adjacency matrix. Then switching corresponds to the operation

$$S(\Gamma) \mapsto \Delta S(\Gamma) \Delta$$

where Δ is the diagonal matrix with ± 1 on the diagonal.

$L(K_8)$ and $\mathsf{D}_8 \subseteq \mathsf{E}_8$

A representation of norm m of a graph $\Gamma = (V, E)$ means an injective mapping $V \to \mathbb{R}^d$, $x \mapsto u_x$, where

$$(u_x, u_y) = \begin{cases} m & \text{if } x = y, \\ 1 & \text{if } \{x, y\} \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Such a representation exists if and only if its Gram matrix $A(\Gamma) + mI$ is positive semidefinite, or equivalently, $\lambda_{\min}(A) \geq -m$.

For $\Gamma = L(K_8)$, $\lambda_{\min}(\Gamma) = -2$. It has a representation of norm 2 as follows:

$$V = V(L(K_8))$$

= { $e_i + e_j : 1 \le i < j \le 8$ }
= {permutations of $(1^2 0^{n-2})$ }
 $\subseteq D_8 \subseteq \mathbb{R}^8$.

For $x, y \in V$,

$$x \sim y \iff (x,y) = 1.$$

$$r = \frac{1}{2}(1, 1, 1, 1, 1, 1, 1, 1),$$
$$H = \{x \in \mathbb{R}^8 : (r, x) = 1\}.$$

Then

7

$$(r, r) = 2,$$

 $V = \{e_i + e_j : 1 \le i < j \le 8\} \subseteq H.$

In fact, $V \cup \{r\}$ is a part of the E_8 root system,

$$H \cap E_8 = V \cup \{r - x : x \in V\}.$$
$$(x, y) = \begin{cases} 1\\ 0 \end{cases} \iff (x, r - y) = \begin{cases} 0\\ 1 \end{cases}$$

Root systems and Seidel matrices of largest eigenvalue 3

Write

$$\overline{u} = u - \frac{1}{2}r \quad (u \in V).$$
$$\{\pm \overline{u} : u \in V\}$$

gives a set of 28 equiangular lines in $H \cong \mathbb{R}^7$. If, for a graph $\Gamma = (V, E)$,

• $\{u_x : x \in V\}$ is a set of vectors of norm 2,

•
$$(r, u_x) = 1$$
 for all $x \in V$,

•
$$(r,r) = 2$$
,

then replacing u_x by $r - u_x$ corresponds to switching. We call r a switching root of Γ .

Proposition

Suppose $\lambda_{\min}(\Gamma) \geq -2$. Let $\tilde{\Gamma} = \Gamma * K_1$. TFAE

① there exists a switching root of Γ

2
$$\lambda_{\min}(\Gamma) \ge -2$$

 $\lambda_{\max}(S(\Gamma)) \leq 3.$

$$B(\Gamma) = \begin{bmatrix} A(\Gamma) + 2I & \mathbf{1} \\ \mathbf{1}^{\top} & 2 \end{bmatrix} = A(\tilde{\Gamma}) + 2I$$
$$\operatorname{rank} B(\Gamma) = \operatorname{rank}(A(\Gamma) + 2I) + 1.$$

Equiangular lines with angle $\arccos 1/3$

 \implies Seidel matrix S with $3I - S \ge 0$, i.e., $\lambda_{\max}(S) \le 3$

$$\implies \operatorname{Graph} \Gamma \text{ with } \lambda_{\min}(\tilde{\Gamma}) \geq -2, \text{ i.e.,} \\ A(\tilde{\Gamma}) + 2I \geq 0$$

 \implies Graph Γ such that

 $\tilde{\Gamma}$ has a representation of norm 2 in a root system. Weren't they all known in 1970's?

$$\begin{split} N(d) &= \max. \ \# \ \text{equiangular lines in } \mathbb{R}^d \\ N_\alpha(d) &= \max. \ \# \ \text{equiangular lines in } \mathbb{R}^d \\ & \text{with angle } \arccos(\alpha) \\ N_\alpha^*(d) &= \max. \ \# \ \text{equiangular lines in } \mathbb{R}^d \\ & \text{with angle } \arccos(\alpha), \ \text{rank exactly } d \end{split}$$

$$N_{\alpha}(d) = \max_{r \le d} N_{\alpha}^{*}(r).$$

Lemmens–Seidel (1973):							
d	4	5	6	7	8	• • •	14
$N(d) = N_{1/3}(d)$	6	10	16	28	28	• • •	28

Glazyrin-Yu (2018):

 $N_{1/3}^*(d) < 28 \quad (8 \le d \le 11).$

Lin-Yu (2020):

 $N_{1/3}^{*}(8) = 14$ (achieved only by $L(K_{2,7})$)

Theorem (Cao–Koolen–M.–Yoshino, 2021+)

		5			≥ 8
$N_{1/3}^{*}(d)$	6	10	16	28	2(d-1)

The only bound-achieving Seidel matrices $S(\Gamma)$ are

d	4	5	6	7	<u>≥8</u>
Γ	$L(K_{2,3})$	$L(K_5)$	$L(K_6) \cup K_1$	$L(K_8)$	$L(K_{2,d-1})$

$$\begin{split} \mathsf{E}_8 &= \mathsf{D}_8 + \frac{1}{2} \mathbb{Z} \mathbf{1}, \\ \mathsf{E}_7 &= \{ u \in \mathsf{E}_8 : (u, e_1 - e_2) = 0 \}, \\ \mathsf{E}_6 &= \{ u \in \mathsf{E}_8 : (u, e_1 - e_2) = (u, e_2 - e_3) = 0 \}. \end{split}$$

Containment relations between root systems is as follows (Cameron–Goethals–Seidel–Shult, 1978):

$$D_4 \subset D_5 \subset \cdots,$$

$$E_6 \subset E_7 \subset E_8,$$

$$D_6 \not\subset E_6,$$

$$D_7 \not\subset E_7,$$

$$D_8 \subset E_8,$$

$$E_n \not\subset D_{n'} \text{ for } n \text{ and } n'.$$

Let $R = \mathsf{D}_n$ or E_n . Fix $r \in R$. Then

$$N = \{ x \in R : (r, x) = 1 \}$$

can be regarded as a switching class of a graph. We call this the switching class of R. Indeed, let $r = (1, 1, 0^{n-2}) \in R(D_n)$. Then

$$N = \{ (1, 0, [(\pm 1)^1, 0^{n-3}]) \} \cup \{ (0, 1, [(\pm 1)^1, 0^{n-3}]) \}$$

represents the switching class of $L(K_{2,n-2})$.

•
$$E_6: L(K_5)$$

•
$$\mathsf{E}_7$$
: $L(K_6) \cup K_1$

• $E_8: L(K_8)$

Maximality of Seidel matrices

Recall that a Seidel matrix is a symmetric matrix with zero diagonal, \pm in off-diagonal entries.

If S is a principal submatrix of a Seidel matrix S', then

$$\lambda_{\max}(S) \le \lambda_{\max}(S'),$$

rank $(S) \le \operatorname{rank}(S').$

We say that S is maximal if there is no larger Seidel matrix S^\prime satisfying

$$\lambda_{\max}(S) = \lambda_{\max}(S')$$

rank(S) = rank(S').

Lin–Yu (2020) call equiangular lines obtained from maximal Seidel matrices saturated.

We say that S is strongly maximal if there is no larger Seidel matrix S^\prime satisfying

$$\lambda_{\max}(S) = \lambda_{\max}(S')$$

$$D_4 \subset D_5 \subset \cdots,$$

$$E_6 \subset E_7 \subset E_8,$$

$$D_6 \not\subset E_6,$$

$$D_7 \not\subset E_7,$$

$$D_8 \subset E_8,$$

$$E_n \not\subset D_{n'} \text{ for } n \text{ and } n'.$$

•
$$\mathsf{D}_n$$
: $L(K_{2,n-2})$

•
$$E_6$$
. $L(K_5)$
• E_7 : $L(K_6) \cup K_1$

•
$$E_7$$
: $L(K_6) \cup L$
• E_8 : $L(K_8)$

<u>Theorem</u>

Let $S = S(\Gamma)$, $\lambda_{\max}(S) = 3$, $\operatorname{rank}(3I - S) = d$. Suppose S is maximal.

1) If
$$d = 5$$
, then $\Gamma = L(K_5), L(K_{2,4})$,

2 If
$$d = 6$$
, then $\Gamma = L(K_6) \cup K_1, L(K_{2,5})$,

) If
$$d=7$$
, then $\Gamma=L(K_8)$,

(a) If
$$d = 3, 4$$
 or $r \ge 8$, then $\Gamma = L(K_{2,r-1})$,

up to switching.

If S is strongly maximal, then $\Gamma = L(K_8)$ up to switching.

Theorem

A Seidel matrix ${\cal S}$ of order n achieving the absolute bound

$$n = \frac{d(d+1)}{2},$$

where $d = \operatorname{rank}(\lambda_{\max}(S)I - S)$, is strongly maximal.

Examples: d = 2, 3, 7, 23. $d = 2, \lambda = 2$: Unique set of 3 lines with angle $\pi/3$.

$$S = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$

d = 3, $\lambda = \sqrt{5}$: Unique set of 6 lines (the diagonals of the icosahedron). These are the unique strongly maximal Seidel matrices (up to switching) of largest eigenvalue 2 and $\sqrt{5}$.

Classification of root systems is essential in proving the uniqueness of strongly maximal Seidel matrix with $\lambda_{\text{max}} = 3$, but no similar tools are available for $\lambda_{\text{max}} = 5$ (*McL*).

For n odd, $\overline{K_n}$ is strongly maximal, with $\lambda_{\max} = n - 1$.

$$B_{\theta}(\Gamma) = \begin{bmatrix} A(\Gamma) + \theta I & \mathbf{1} \\ \mathbf{1}^{\top} & 2 \end{bmatrix}$$

Theorem FFAE:

- $B_{\theta}(\Gamma) \ge 0$
- $2 \ \lambda_{\max} S(\Gamma) \le 2\theta 1.$

If $\lambda_{\max}(S(\Gamma)) = 5$, for example, $\Gamma = McL \cup K_1$, then

$$\begin{bmatrix} A(\Gamma) + 3I \ \mathbf{1} \\ \mathbf{1}^{\top} & 2 \end{bmatrix}$$

 Γ has a representation of norm 3 in \mathbb{R}^{24} contained in an affine hyperplane

$$H = \{ x \in \mathbb{R}^{24} : (r, x) = 1 \},\$$

where (r, r) = 2.

The lattice generated by the image of Γ admits $Co_{.3}$ as automorphism group.

As an analogue to the case $\lambda_{\max}(S) = 3$, we ask:

Problem

Is $McL \cup K_1$ the only strongly maximal Seidel matrix with largest eigenvalue 5, up to switching?