Maximality of Seidel matrices and

switching roots of graphs

Akihiro Munemasa
Tohoku University
(joint work with Meng-Yue Cao, Jack H. Koolen and Kiyoto Yoshino)

2021 Ural Seminar on
Group Theory and Combinatorics
February 16, 2021

Related to my talk on Ural Workshop on Group Theory and Combinatorics August 24, 2020
The regular two-graph
on 276 vertices revisited
(joint work with Jack Koolen)

Contents

(1) Equiangular lines and the absolute bound
(2) $L\left(K_{8}\right)$ and $\mathrm{D}_{8} \subseteq \mathrm{E}_{8}$
(3) Root systems and Seidel matrices of largest eigenvalue 3
(4) Maximality of Seidel matrices
(5) Results and conjectures
$L\left(K_{8}\right)$ denotes the line graph of the complete graph K_{8}. Also known as the triangular graph T_{8}, or Johnson graph $J(8,2)$.

$$
\mathrm{D}_{n}=\left\{x \in \mathbb{Z}^{n}: \sum_{i=1}^{n} x_{i} \in 2 \mathbb{Z}\right\} .
$$

The set of roots

$$
R\left(\mathrm{D}_{n}\right)=\left\{\text { permutations of }\left((\pm 1)^{2} 0^{n-2}\right)\right\} .
$$

contains
\{permutations of $\left.\left(1^{2} 0^{n-2}\right)\right\}$
which can be regarded as the vertex set of $L\left(K_{n}\right)$.

Equiangular lines and the absolute bound

- Goethals-Seidel (1975) "The regular two-graph on 276 vertices" established the uniqueness (up to complement)
- Two-graph $=$ Switching class of graphs
- The regular two-graph on $276=$ the switching class of $M c L \cup K_{1}$, where $M c L=S R G(275,162,105,81)$ is the McLaughlin graph.
- Co.3 $\geq M c L: 2$, index $=276$.

The number of equiangular lines in \mathbb{R}^{d} is bounded by the absolute bound (Gerzon bound):

$$
\frac{d(d+1)}{2} .
$$

This bound is known to be achieved for $d=2,3,7,23$, and achievability is unknown in general for large d.

Some d were ruled out by Delsarte-Goethals-Seidel (1977), Makhnev (2003), Bannai-M.-Venkov (2004), Nebe-Venkov (2013).

Let $\Gamma=(V, E)$ be a graph. Switching of Γ with respect to $U \subseteq V$ is $\Gamma^{U}=\left(V, E^{U}\right)$, where

$$
\begin{aligned}
E^{U}= & \{\{x, y\} \in E: x, y \in U\} \\
& \cup\{\{x, y\} \in E: x, y \in V \backslash U\} \\
& \cup\{\{x, y\} \notin E: x \in U, y \in V \backslash U\}
\end{aligned}
$$

The switching class of Γ is

$$
\left\{\Gamma^{U}: U \subseteq V\right\}
$$

The Seidel matrix $S(\Gamma)$ of Γ is

$$
S(\Gamma)=J-I-2 A(\Gamma),
$$

where $A(\Gamma)$ is the adjacency matrix. Then switching corresponds to the operation

$$
S(\Gamma) \mapsto \Delta S(\Gamma) \Delta
$$

where Δ is the diagonal matrix with ± 1 on the diagonal.

$L\left(K_{s}\right)$ and $D_{s} \subset E_{s}$

A representation of norm m of a graph $\Gamma=(V, E)$ means an injective mapping $V \rightarrow \mathbb{R}^{d}, x \mapsto u_{x}$, where

$$
\left(u_{x}, u_{y}\right)= \begin{cases}m & \text { if } x=y \\ 1 & \text { if }\{x, y\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

Such a representation exists if and only if its Gram matrix $A(\Gamma)+m I$ is positive semidefinite, or equivalently, $\lambda_{\text {min }}(A) \geq-m$.

For $\Gamma=L\left(K_{8}\right), \lambda_{\min }(\Gamma)=-2$. It has a representation of norm 2 as follows:

$$
\begin{aligned}
V & =V\left(L\left(K_{8}\right)\right) \\
& =\left\{e_{i}+e_{j}: 1 \leq i<j \leq 8\right\} \\
& =\left\{\text { permutations of }\left(1^{2} 0^{n-2}\right)\right\} \\
& \subseteq \mathrm{D}_{8} \subseteq \mathbb{R}^{8} .
\end{aligned}
$$

For $x, y \in V$,

$$
x \sim y \Longleftrightarrow(x, y)=1
$$

$$
\begin{aligned}
r & =\frac{1}{2}(1,1,1,1,1,1,1,1), \\
H & =\left\{x \in \mathbb{R}^{8}:(r, x)=1\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
(r, r) & =2 \\
V & =\left\{e_{i}+e_{j}: 1 \leq i<j \leq 8\right\} \subseteq H
\end{aligned}
$$

In fact, $V \cup\{r\}$ is a part of the E_{8} root system,

$$
\begin{gathered}
H \cap E_{8}=V \cup\{r-x: x \in V\} . \\
(x, y)=\left\{\begin{array}{l}
1 \\
0
\end{array} \Longleftrightarrow(x, r-y)=\left\{\begin{array}{l}
0 \\
1
\end{array}\right.\right.
\end{gathered}
$$

Root systems and Seidel matrices of

 largest eigenvalue 3Write

$$
\begin{aligned}
\bar{u}= & u-\frac{1}{2} r \quad(u \in V) . \\
& \{ \pm \bar{u}: u \in V\}
\end{aligned}
$$

gives a set of 28 equiangular lines in $H \cong \mathbb{R}^{7}$.
If, for a graph $\Gamma=(V, E)$,

- $\left\{u_{x}: x \in V\right\}$ is a set of vectors of norm 2,
- $\left(r, u_{x}\right)=1$ for all $x \in V$,
- $(r, r)=2$,
then replacing u_{x} by $r-u_{x}$ corresponds to switching.
We call r a switching root of Γ.

Proposition

Suppose $\lambda_{\min }(\Gamma) \geq-2$. Let $\tilde{\Gamma}=\Gamma * K_{1}$. TFAE
(1) there exists a switching root of Γ
(2) $\lambda_{\min }(\tilde{\Gamma}) \geq-2$
(3) $\lambda_{\max }(S(\Gamma)) \leq 3$.

$$
B(\Gamma)=\left[\begin{array}{cc}
A(\Gamma)+2 I & \mathbf{1} \\
\mathbf{1}^{\top} & 2
\end{array}\right]=A(\tilde{\Gamma})+2 I
$$

$\operatorname{rank} B(\Gamma)=\operatorname{rank}(A(\Gamma)+2 I)+1$.

Equiangular lines with angle arccos $1 / 3$
\Longrightarrow Seidel matrix S with $3 I-S \geq 0$, i.e.,
$\lambda_{\max }(S) \leq 3$
$\Longrightarrow \quad \operatorname{Graph} \Gamma$ with $\lambda_{\min }(\tilde{\Gamma}) \geq-2$, i.e.,

$$
A(\tilde{\Gamma})+2 I \geq 0
$$

\Longrightarrow Graph Γ such that
$\tilde{\Gamma}$ has a representation of norm 2 in a root system.
Weren't they all known in 1970's?
$N(d)=$ max. \# equiangular lines in \mathbb{R}^{d}
$N_{\alpha}(d)=$ max. \# equiangular lines in \mathbb{R}^{d} with angle $\arccos (\alpha)$
$N_{\alpha}^{*}(d)=$ max. \# equiangular lines in \mathbb{R}^{d} with angle $\arccos (\alpha)$, rank exactly d

$$
N_{\alpha}(d)=\max _{r \leq d} N_{\alpha}^{*}(r)
$$

Lemmens-Seidel (1973):

d	4	5	6	7	8	\cdots	14
$N(d)=N_{1 / 3}(d)$	6	10	16	28	28	\cdots	28

Glazyrin-Yu (2018):

$$
N_{1 / 3}^{*}(d)<28 \quad(8 \leq d \leq 11)
$$

Lin-Yu (2020):
$N_{1 / 3}^{*}(8)=14 \quad\left(\right.$ achieved only by $\left.L\left(K_{2,7}\right)\right)$

Theorem (Cao-Koolen-M.-Yoshino, 2021+)

d	4	5	6	7	≥ 8
$N_{1 / 3}^{*}(d)$	6	10	16	28	$2(d-1)$

The only bound-achieving Seidel matrices $S(\Gamma)$ are

d	4	5	6	7	≥ 8
Γ	$L\left(K_{2,3}\right)$	$L\left(K_{5}\right)$	$L\left(K_{6}\right) \cup K_{1}$	$L\left(K_{8}\right)$	$L\left(K_{2, d-1}\right)$

$$
\begin{aligned}
& \mathrm{E}_{8}=\mathrm{D}_{8}+\frac{1}{2} \mathbb{Z} \mathbf{1} \\
& \mathrm{E}_{7}=\left\{u \in \mathrm{E}_{8}:\left(u, e_{1}-e_{2}\right)=0\right\} \\
& \mathrm{E}_{6}=\left\{u \in \mathrm{E}_{8}:\left(u, e_{1}-e_{2}\right)=\left(u, e_{2}-e_{3}\right)=0\right\} .
\end{aligned}
$$

Containment relations between root systems is as follows (Cameron-Goethals-Seidel-Shult, 1978):

$$
\begin{aligned}
& \mathrm{D}_{4} \subset \mathrm{D}_{5} \subset \cdots, \\
& \mathrm{E}_{6} \subset \mathrm{E}_{7} \subset \mathrm{E}_{8}, \\
& \mathrm{D}_{6} \not \subset \mathrm{E}_{6}, \\
& \mathrm{D}_{7} \not \subset \mathrm{E}_{7}, \\
& \mathrm{D}_{8} \subset \mathrm{E}_{8}, \\
& \mathrm{E}_{n} \not \subset \mathrm{D}_{n^{\prime}} \text { for } n \text { and } n^{\prime} .
\end{aligned}
$$

Let $R=\mathrm{D}_{n}$ or E_{n}. Fix $r \in R$. Then

$$
N=\{x \in R:(r, x)=1\}
$$

can be regarded as a switching class of a graph. We call this the switching class of R. Indeed, let $r=\left(1,1,0^{n-2}\right) \in R\left(\mathrm{D}_{n}\right)$. Then

$$
N=\left\{\left(1,0,\left[(\pm 1)^{1}, 0^{n-3}\right]\right)\right\} \cup\left\{\left(0,1,\left[(\pm 1)^{1}, 0^{n-3}\right]\right)\right\}
$$

represents the switching class of $L\left(K_{2, n-2}\right)$.

- $\mathrm{E}_{6}: L\left(K_{5}\right)$
- $\mathrm{E}_{7}: L\left(K_{6}\right) \cup K_{1}$
- $\mathrm{E}_{8}: L\left(K_{8}\right)$

Maximality of Seidel matrices

Recall that a Seidel matrix is a symmetric matrix with zero diagonal, \pm in off-diagonal entries.

If S is a principal submatrix of a Seidel matrix S^{\prime}, then

$$
\begin{aligned}
\lambda_{\max }(S) & \leq \lambda_{\max }\left(S^{\prime}\right) \\
\operatorname{rank}(S) & \leq \operatorname{rank}\left(S^{\prime}\right)
\end{aligned}
$$

We say that S is maximal if there is no larger Seidel matrix S^{\prime} satisfying

$$
\begin{aligned}
\lambda_{\max }(S) & =\lambda_{\max }\left(S^{\prime}\right) \\
\operatorname{rank}(S) & =\operatorname{rank}\left(S^{\prime}\right) .
\end{aligned}
$$

Lin-Yu (2020) call equiangular lines obtained from maximal Seidel matrices saturated.

We say that S is strongly maximal if there is no larger Seidel matrix S^{\prime} satisfying

$$
\lambda_{\max }(S)=\lambda_{\max }\left(S^{\prime}\right)
$$

$\mathrm{D}_{4} \subset \mathrm{D}_{5} \subset \cdots$,
$\mathrm{E}_{6} \subset \mathrm{E}_{7} \subset \mathrm{E}_{8}$,
$\mathrm{D}_{6} \not \subset \mathrm{E}_{6}$,
$\mathrm{D}_{7} \not \subset \mathrm{E}_{7}$,
$\mathrm{D}_{8} \subset \mathrm{E}_{8}$,
$\mathrm{E}_{n} \not \subset \mathrm{D}_{n^{\prime}}$ for n and n^{\prime}.

- $\mathrm{D}_{n}: L\left(K_{2, n-2}\right)$
- $\mathrm{E}_{6}: L\left(K_{5}\right)$
- $\mathrm{E}_{7}: L\left(K_{6}\right) \cup K_{1}$
- $\mathrm{E}_{8}: L\left(K_{8}\right)$

Theorem

Let $S=S(\Gamma), \lambda_{\max }(S)=3, \operatorname{rank}(3 I-S)=d$. Suppose S is maximal.
(1) If $d=5$, then $\Gamma=L\left(K_{5}\right), L\left(K_{2,4}\right)$,
(2) If $d=6$, then $\Gamma=L\left(K_{6}\right) \cup K_{1}, L\left(K_{2,5}\right)$,
(3) If $d=7$, then $\Gamma=L\left(K_{8}\right)$,
(9) If $d=3,4$ or $r \geq 8$, then $\Gamma=L\left(K_{2, r-1}\right)$, up to switching.

If S is strongly maximal, then $\Gamma=L\left(K_{8}\right)$ up to switching.

Results and conjectures

Theorem

A Seidel matrix S of order n achieving the absolute bound

$$
n=\frac{d(d+1)}{2},
$$

where $d=\operatorname{rank}\left(\lambda_{\max }(S) I-S\right)$, is strongly maximal.
Examples: $d=2,3,7,23$.
$d=2, \lambda=2$: Unique set of 3 lines with angle $\pi / 3$.

$$
S=\left[\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right]
$$

$d=3, \lambda=\sqrt{5}$: Unique set of 6 lines (the diagonals of the icosahedron). These are the unique strongly maximal Seidel matrices (up to switching) of largest eigenvalue 2 and $\sqrt{5}$.

Classification of root systems is essential in proving the uniqueness of strongly maximal Seidel matrix with $\lambda_{\max }=3$, but no similar tools are available for $\lambda_{\max }=5$ $(M c L)$.
For n odd, $\overline{K_{n}}$ is strongly maximal, with $\lambda_{\max }=n-1$.

$$
B_{\theta}(\Gamma)=\left[\begin{array}{cc}
A(\Gamma)+\theta I & \mathbf{1} \\
\mathbf{1}^{\top} & 2
\end{array}\right]
$$

Theorem

TFAE:
(1) $B_{\theta}(\Gamma) \geq 0$
(2) $\lambda_{\max } S(\Gamma) \leq 2 \theta-1$.

If $\lambda_{\max }(S(\Gamma))=5$, for example, $\Gamma=M c L \cup K_{1}$, then

$$
\left[\begin{array}{cc}
A(\Gamma)+3 I & \mathbf{1} \\
\mathbf{1}^{\top} & 2
\end{array}\right]
$$

Γ has a representation of norm 3 in \mathbb{R}^{24} contained in an affine hyperplane

$$
H=\left\{x \in \mathbb{R}^{24}:(r, x)=1\right\}
$$

where $(r, r)=2$.
The lattice generated by the image of Γ admits $C o .3$ as automorphism group.
As an analogue to the case $\lambda_{\max }(S)=3$, we ask:

Problem

Is $M c L \cup K_{1}$ the only strongly maximal Seidel matrix with largest eigenvalue 5 , up to switching?

