Association Schemes and Spherical Designs

Akihiro Munemasa
Graduate School of Information Sciences
Tohoku University Japan

July 24, 2004
Pusan National University

Definition of a Spherical Design

A spherical t-design X is a finite subset of the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$ s.t.

$$
\frac{\int_{S^{n-1}} f d \mu}{\int_{S^{n-1}} 1 d \mu}=\frac{1}{|X|} \sum_{x \in X} f(x)
$$

holds for any polynomial $f(x)$ of degree $\leq t$.
This is useful if one wants to investigate properties of a spherical design, but not convenient if one wants to prove something is a spherical design. ...

Equivalently, $\quad \sum_{x, y \in X} Q_{j}(\langle x, y\rangle)=0 \quad(j=1,2, \ldots, t)$,
where $\left\{Q_{j}\right\}_{j=0}^{\infty}$ are suitably normalized Gegenbauer polynomials, defined by $Q_{0}(x)=1, Q_{1}(x)=n x$,

Association Scheme

A (symmetric) association scheme is a pair $\left(X,\left\{R_{i}\right\}_{i=0}^{d}\right)$, where X is a finite set, R_{i} is a (symmetric) relation on $X \times X$ such that
(i) R_{0} is the diagonal relation.
(ii) $\left\{R_{i}\right\}_{0 \leq i \leq d}$ is a partition of $X \times X$.
(iii) For any $i, j, k \in\{0,1, \ldots, d\}$, the number

$$
p_{i j}^{k}=\left|\left\{\gamma \in X \mid(\alpha, \gamma) \in R_{i},(\gamma, \beta) \in R_{j}\right\}\right|
$$

is independent of the choice of (α, β) in R_{k}, and $p_{i j}^{k}=p_{j i}^{k}$.
For $i \in\{0, \ldots, d\}$, let A_{i} be the adjacency matrix of the relation R_{i} :

$$
\left(A_{i}\right)_{\alpha, \beta}:= \begin{cases}1 & \text { if }(\alpha, \beta) \in R_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Bose-Mesner Algebra

The linear combinations of the adjacency matrices form a commutative algebra over \mathbb{R} called the Bose-Mesner algebra \mathfrak{A}.
Let E be a primitive idempotent of $\mathfrak{A}, E \neq \frac{1}{|X|} J$. Then E is a real symmetric positive-semidefinite matrix of rank $n=\operatorname{tr} E$.

$$
E={ }^{t} F F
$$

where F is a $n \times|X|$ matrix

$$
\frac{|X|}{n} E={ }^{t} F F
$$

$$
\text { diagonals }=1
$$

where F is a $n \times|X|$ matrix (x-th column $=\bar{x}$), and

$$
\{\text { column vectors of } F\}=\{\bar{x} \mid x \in X\} \subset S^{n-1} \subset \mathbb{R}^{n} .
$$

If $|X| E=\sum_{i=0}^{d} \theta_{i}^{*} A_{i}$, then

Spherical Representation

A spherical representation of a symmetric association scheme forms a spherical t-design iff

$$
\sum_{x, y \in X} Q_{j}(\langle\bar{x}, \bar{y}\rangle)=0 \quad(j=1,2, \ldots, t) .
$$

Equivalently,

$$
\sum_{i=0}^{d} k_{i} Q_{j}\left(\frac{\theta_{i}^{*}}{n}\right)=0 \quad(j=1,2, \ldots, t)
$$

where k_{i} is the valency of the relation R_{i}, i.e.,

$$
k_{i}=\frac{\left|R_{i}\right|}{|X|} .
$$

Spherical Representation

$$
\begin{array}{lr}
\sum_{x, y \in X} k_{i} Q_{j}\left(\frac{\theta_{i}^{*}}{n}\right)=0 & (j=1,2, \ldots, t) . \\
\sum_{x, y \in X} k_{i} Q_{j}\left(\frac{\theta_{i}^{*}}{n}\right)=0 & (j=1,2)
\end{array}
$$

always hold, so a spherical representation \bar{X} of a symmetric association scheme X always give a spherical 2 -design.
\bar{X} is a 3 -design iff $(E \circ E) E=0$.
Suppose X is Q-polynomial, i.e., if $\exists v_{i}^{*}(x)$: polynomial of degree i, such that

$$
E_{i}=\frac{1}{|X|} v_{i}^{*}(|X| E) \quad(i=0,1, \ldots, d)
$$

Q-Polynomial Scheme

$$
x v_{i}^{*}(x)=c_{i+1}^{*} v_{i+1}^{*}(x)+a_{i}^{*} v_{i}^{*}(x)+b_{i-1}^{*} v_{i-1}^{*}(x)
$$

Lemma 1. Let \bar{X} denote the embedding of a Q-polynomial association scheme X into the unit sphere via the primitive idempotent $E=E_{1}$.
(i) \bar{X} is a 3 -design if and only if $a_{1}^{*}=0$.
(ii) \bar{X} is a 4 -design if and only if $a_{1}^{*}=0$ and

$$
b_{0}^{*} b_{1}^{*} c_{2}^{*}+2\left(b_{1}^{*} c_{2}^{*}-b_{0}^{* 2}+b_{0}^{*}\right)=0 .
$$

(iii) \bar{X} is a 5 -design if and only if \bar{X} is a 4-design and $a_{2}^{*}=0$.

$U_{2 d}(2)$ Dual Polar Graph

Among the known infinite families of P- and Q-polynomial association schemes, only the following family produces spherical 4 -designs, when embedded into the unit sphere via the primitive idempotent $E=E_{1}$:
The dual polar graph associated with the unitary group $U_{2 d}(2)$.
vertices: maximal totally isotropic subspaces
adjacency: intersect at dimension $d-1$

$$
n=\operatorname{rank} E_{1}=\frac{2^{2 d}+2}{3}, \quad \frac{\theta_{j}^{*}}{n}=\left(-\frac{1}{2}\right)^{j} .
$$

In fact, this gives a spherical 5 -design if $d \geq 3$.

Strongly Perfect Lattices

A lattice whose minimal vectors form a spherical 5 -design is called strongly perfect.
Up to dimension ≤ 9, only certain root lattices and their duals are stronlgy perfect.
Theorem 1 (Nebe-Venkov). There are exactly two strongly perfect lattices in dimension 10: Martinet's lattice K_{10}^{\prime} and its dual $\left(K_{10}^{\prime}\right)^{*}$.
K_{10}^{\prime} has 270 vectors of norm 4.
$\left(K_{10}^{\prime}\right)^{*}$ has 240 vectors of norm 6.
These lattices look very special \rightarrow it must be very nice: \rightarrow association scheme?
sufficient
condition
spherical t-design \qquad association scheme

Degree of a Spherical Design

The degree of a finite subset $\Omega \subset S^{n-1}$ is

$$
|\{(x, y) \mid x, y \in \Omega, x \neq y\}| .
$$

Theorem 2 (Delsarte-Goethals-Seidel). If Ω is a spherical t-design of degree s and $2 s-2 \leq t$, then Ω carry a structure of an association scheme.
The shortest vectors of K_{10}^{\prime} have norm 4, with degree
$s=|\{2,1,0,-1,-2,-4\}|=6$, while $t=5$.
The shortest vectors of $\left(K_{10}^{\prime}\right)^{*}$ have norm 6 , with degree
$s=|\{, 3,2,1,0,-1,-2,-3,-6\}|=8$, while $t=5$.

Molien Series

Let G be a finite irreducible subgroup of the real orthogonal group $O(n, \mathbb{R})$. The Molien series of G is

$$
\Phi_{G}(q)=\frac{1}{|G|} \sum_{g \in G} \frac{1}{\operatorname{det}(I-q \cdot g)} .
$$

Theorem 3 (Goethals-Seidel, 1979). Every G-orbit on the sphere is a spherical t-design iff

$$
\begin{gathered}
\left(1-q^{2}\right) \Phi_{G}(q)=1+\underbrace{0 \cdot q+\cdots+0 \cdot q^{t}}+a_{t+1} q^{t+1}+\cdots \\
\Phi_{\operatorname{Aut}\left(K_{10}^{\prime}\right)}(q)=1+2 q^{6}+3 q^{8}+\cdots
\end{gathered}
$$

$\operatorname{PSp}(4,3)$

Then one obtains an commutative (but not symmetric) association scheme $X=P S p(4,3) / H$ on 80 points with 2nd eigenmatrix

$$
Q=\left[\begin{array}{cccccc}
1 & 30 & 24 & 15 & 5 & 5 \\
1 & -30 & 24 & 15 & -5 & -5 \\
1 & 0 & 4 & -5 & 5 / \sqrt{-3} & -5 / \sqrt{-3} \\
1 & 0 & 4 & -5 & -5 / \sqrt{-3} & 5 / \sqrt{-3} \\
1 & 10 / 3 & -8 / 3 & 5 / 3 & -5 / 3 & -5 / 3 \\
1 & -10 / 3 & -8 / 3 & 5 / 3 & 5 / 3 & 5 / 3
\end{array}\right]
$$

$80 \times 3=240$

The direct product of two association schemes X and \mathbb{Z}_{3} has its 2nd eigenmatrix the tensor product:
$Q=\left[\begin{array}{cccccc}1 & 30 & 24 & 15 & 5 & 5 \\ 1 & -30 & 24 & 15 & -5 & -5 \\ 1 & 0 & 4 & -5 & 5 / \sqrt{-3} & -5 / \sqrt{-3} \\ 1 & 0 & 4 & -5 & -5 / \sqrt{-3} & 5 / \sqrt{-3} \\ 1 & 10 / 3 & -8 / 3 & 5 / 3 & -5 / 3 & -5 / 3 \\ 1 & -10 / 3 & -8 / 3 & 5 / 3 & 5 / 3 & 5 / 3\end{array}\right] \otimes\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right]$
Fusing complex conjugates. . . .

$80 \times 3=240$

$\left[\begin{array}{cccccccc}1 & 10 & 48 & 30 & 10 & 10 & \ldots \\ 1 & 5 & -24 & -15 & -10 & 5 & \ldots \\ 1 & 5 & -4 & 5 & 0 & -5 & \cdots & \text { valency } \\ 1 & 10 / 3 & -16 / 3 & 10 / 3 & 10 / 3 & 10 / 3 & \cdots & 1 \\ 1 & 5 / 3 & 8 / 3 & -5 / 3 & -10 / 3 & 5 / 3 & \ldots & 24 \\ 1 & 0 & 8 & -10 & 0 & 0 & \cdots \\ 1 & -5 / 3 & 8 / 3 & -5 / 3 & 10 / 3 & -5 / 3 & \ldots \\ 1 & -10 / 3 & -16 / 3 & 10 / 3 & -10 / 3 & -10 / 3 & \cdots \\ 1 & -5 & -4 & 5 & 0 & 5 & \cdots \\ 1 & -5 & -24 & -15 & 10 & -5 & \cdots \\ 1 & -10 & 48 & 30 & -10 & -10 & \end{array}\right]$

Cosine Sequence

$$
\left.\left.\begin{array}{l}
\left.\left.\left[\begin{array}{ccc}
1 & 10 & \cdots \\
1 & 5 & \cdots \\
1 & 5 & \cdots \\
1 & 10 / 3 & \cdots \\
1 & 5 / 3 & \cdots \\
1 & 0 & \cdots \\
1 & -5 / 3 & \cdots \\
1 & -10 / 3 & \cdots \\
1 & -5 & \cdots \\
1 & -5 & \cdots \\
1 & -10 & \cdots
\end{array}\right] \begin{array}{c}
1 \\
24
\end{array}\right\} \begin{array}{c}
27 \\
24 \\
24 \\
2
\end{array}\right\} \quad \text { gives the }
\end{array} \quad \begin{array}{cc}
\\
2
\end{array}\right\} \begin{array}{c}
1 \\
1 / 2 \\
1 / 3 \\
1 / 6 \\
0 \\
24 \\
27 \\
24 \\
24 \\
-1 / 6 \\
-1 / 3 \\
54 \\
-1 / 2 \\
-1
\end{array}\right] \begin{gathered}
1 \\
27 \\
26 \\
1
\end{gathered}
$$

Conclusion

- The set of 240 shortest vectors of Martinet's lattice $\left(K_{10}^{\prime}\right)^{*}$ can be reconstructed from

$$
\binom{\text { permutation representation }}{\text { of degree } 80 \text { of } P S p(4,3)} \bigotimes \mathbb{Z}_{3} .
$$

Can we generalize this construction to obtain more spherical 5-designs?

- 270 shortest vectors of K_{10}^{\prime} form an association scheme?
- Nonsymmetric \otimes Nonsymmetric $\stackrel{\text { fusion }}{\Longrightarrow}$ symmetric?

Thank you for your attention.

