Association Schemes and Spherical Designs

Akihiro Munemasa

Graduate School of Information Sciences Tohoku University Japan

> July 24, 2004 Pusan National University

> > Association Schemes and Spherical Designs – p.1/10

Definition of a Spherical Design

A spherical *t*-design X is a finite subset of the unit sphere $S^{n-1} \subset \mathbb{R}^n$ s.t.

$$\frac{\int_{S^{n-1}} f d\mu}{\int_{S^{n-1}} 1 d\mu} = \frac{1}{|X|} \sum_{x \in X} f(x)$$

holds for any polynomial f(x) of degree $\leq t$.

This is useful if one wants to investigate properties of a spherical design, but not convenient if one wants to prove something is a spherical design....

Equivalently,
$$\sum_{x,y\in X} Q_j(\langle x,y\rangle) = 0$$
 $(j = 1, 2, ..., t),$

where $\{Q_j\}_{j=0}^{\infty}$ are suitably normalized Gegenbauer polynomials, defined by $Q_0(x) = 1$, $Q_1(x) = nx$,

Association Schemes and Spherical Designs - p.2/1

Association Scheme

A (symmetric) association scheme is a pair $(X, \{R_i\}_{i=0}^d)$, where X is a finite set, R_i is a (symmetric) relation on $X \times X$ such that

- (i) R_0 is the diagonal relation.
- (ii) $\{R_i\}_{0 \le i \le d}$ is a partition of $X \times X$.
- (iii) For any $i, j, k \in \{0, 1, \dots, d\}$, the number

 $p_{ij}^k = |\{\gamma \in X \mid (\alpha, \gamma) \in R_i, (\gamma, \beta) \in R_j\}|$

is independent of the choice of (α, β) in R_k , and $p_{ij}^k = p_{ji}^k$. For $i \in \{0, \dots, d\}$, let A_i be the adjacency matrix of the relation R_i :

$$(A_i)_{\alpha,\beta} := \begin{cases} 1 & \text{if } (\alpha,\beta) \in R_i, \\ 0 & \text{otherwise.} \end{cases}$$

Bose–Mesner Algebra

The linear combinations of the adjacency matrices form a commutative algebra over \mathbb{R} called the Bose–Mesner algebra \mathfrak{A} . Let *E* be a primitive idempotent of \mathfrak{A} , $E \neq \frac{1}{|X|}J$. Then *E* is a real symmetric positive-semidefinite matrix of rank $n = \operatorname{tr} E$.

 $E = {}^{t}FF$

where F is a $n \times |X|$ matrix

$$\frac{|X|}{n}E = {}^{t}\!FF \qquad \text{diagonals} = 1$$

where F is a $n \times |X|$ matrix (x-th column= \overline{x}), and

{column vectors of F} = { $\overline{x} \mid x \in X$ } $\subset S^{n-1} \subset \mathbb{R}^n$.

If $|X|E = \sum_{i=0}^{d} \theta_i^* A_i$, then

Association Schemes and Spherical Designs – p.4/1

Spherical Representation

A spherical representation of a symmetric association scheme forms a spherical t-design iff

$$\sum_{x,y\in X} Q_j(\langle \overline{x},\overline{y}\rangle) = 0 \qquad (j=1,2,\ldots,t).$$

Equivalently,

$$\sum_{i=0}^{d} k_i Q_j(\frac{\theta_i^*}{n}) = 0 \qquad (j = 1, 2, \dots, t).$$

where k_i is the valency of the relation R_i , i.e.,

$$k_i = \frac{|R_i|}{|X|}.$$

Spherical Representation

$$\sum_{x,y\in X} k_i Q_j(\frac{\theta_i^*}{n}) = 0 \qquad (j = 1, 2, \dots, t).$$

$$\sum_{x,y\in X} k_i Q_j(\frac{\theta_i^*}{n}) = 0 \qquad (j = 1, 2)$$

always hold, so a spherical representation \overline{X} of a symmetric association scheme X always give a spherical 2-design. \overline{X} is a 3-design iff $(E \circ E)E = 0$.

Suppose X is Q-polynomial, i.e., if $\exists v_i^*(x)$: polynomial of degree *i*, such that

$$E_{i} = \frac{1}{|X|} v_{i}^{*}(|X|E) \quad (i = 0, 1, \dots, d)$$

are all the primitive idempotents of \mathfrak{N}

Q-Polynomial Scheme

 $xv_i^*(x) = c_{i+1}^*v_{i+1}^*(x) + a_i^*v_i^*(x) + b_{i-1}^*v_{i-1}^*(x)$

Lemma 1. Let \overline{X} denote the embedding of a Q-polynomial association scheme X into the unit sphere via the primitive idempotent $E = E_1$.

- (i) \overline{X} is a **3**-design if and only if $a_1^* = 0$.
- (ii) \overline{X} is a 4-design if and only if $a_1^* = 0$ and

$$b_0^* b_1^* c_2^* + 2(b_1^* c_2^* - b_0^{*2} + b_0^*) = 0.$$

(iii) \overline{X} is a 5-design if and only if \overline{X} is a 4-design and $a_2^* = 0$.

$U_{2d}(2)$ Dual Polar Graph

Among the known infinite families of P- and Q-polynomial association schemes, only the following family produces spherical 4-designs, when embedded into the unit sphere via the primitive idempotent $E = E_1$:

The dual polar graph associated with the unitary group $U_{2d}(2)$.

vertices: maximal totally isotropic subspaces adjacency: intersect at dimension d - 1

$$n = \operatorname{rank} E_1 = \frac{2^{2d} + 2}{3}, \qquad \frac{\theta_j^*}{n} = (-\frac{1}{2})^j.$$

In fact, this gives a spherical 5-design if $d \ge 3$.

Strongly Perfect Lattices

A lattice whose minimal vectors form a spherical 5-design is called strongly perfect. Up to dimension ≤ 9 , only certain root lattices and their duals are stronlgy perfect.

Theorem 1 (Nebe–Venkov). There are exactly two strongly perfect lattices in dimension 10: Martinet's lattice K'_{10} and its dual $(K'_{10})^*$.

 K'_{10} has 270 vectors of norm 4. $(K'_{10})^*$ has 240 vectors of norm 6.

These lattices look very special \rightarrow it must be very nice: \rightarrow association scheme?

sufficient

condition

spherical t-design \implies association scheme

Degree of a Spherical Design

The degree of a finite subset $\Omega \subset S^{n-1}$ is

 $|\{(x,y) \mid x, y \in \Omega, x \neq y\}|.$

Theorem 2 (Delsarte–Goethals–Seidel). If Ω is a spherical *t*-design of degree *s* and $2s - 2 \le t$, then Ω carry a structure of an association scheme.

The shortest vectors of K'_{10} have norm 4, with degree

$$s = |\{4, 2, 1, 0, -1, -2, -4\}| = 6$$
, while $t = 5$.

The shortest vectors of $(K'_{10})^*$ have norm 6, with degree

$$s = |\{6, 3, 2, 1, 0, -1, -2, -3, -6\}| = 8$$
, while $t = 5$.

Molien Series

Let G be a finite irreducible subgroup of the real orthogonal group $O(n, \mathbb{R})$. The Molien series of G is

$$\Phi_G(\boldsymbol{q}) = \frac{1}{|G|} \sum_{\boldsymbol{g} \in G} \frac{1}{\det(I - \boldsymbol{q} \cdot \boldsymbol{g})}.$$

Theorem 3 (Goethals–Seidel, 1979). Every *G*-orbit on the sphere is a spherical *t*-design iff

$$(1-q^2)\Phi_G(q) = 1 + \underbrace{0 \cdot q + \dots + 0 \cdot q^t}_{t+1} + a_{t+1}q^{t+1} + \dots$$

$$\Phi_{\text{Aut}(K'_{10})}(q) = 1 + 2q^6 + 3q^8 + \cdots$$

PSp(4, 3)

$$\begin{array}{ccc} PSp(4,3) \stackrel{40}{\supset} & \text{line stabilizer} \stackrel{2}{\supset} & H \\ & \downarrow & & \downarrow \\ & S_4 & \supset & A_4 \end{array}$$

Then one obtains an commutative (but not symmetric) association scheme X = PSp(4,3)/H on 80 points with 2nd eigenmatrix

$$Q = \begin{bmatrix} 1 & 30 & 24 & 15 & 5 & 5 \\ 1 & -30 & 24 & 15 & -5 & -5 \\ 1 & 0 & 4 & -5 & 5/\sqrt{-3} & -5/\sqrt{-3} \\ 1 & 0 & 4 & -5 & -5/\sqrt{-3} & 5/\sqrt{-3} \\ 1 & 10/3 & -8/3 & 5/3 & -5/3 & -5/3 \\ 1 & -10/3 & -8/3 & 5/3 & 5/3 & 5/3 \end{bmatrix}$$

$$80 \times 3 = 240$$

The direct product of two association schemes X and \mathbb{Z}_3 has its 2nd eigenmatrix the tensor product:

$$Q = \begin{bmatrix} 1 & 30 & 24 & 15 & 5 & 5\\ 1 & -30 & 24 & 15 & -5 & -5\\ 1 & 0 & 4 & -5 & 5/\sqrt{-3} & -5/\sqrt{-3}\\ 1 & 0 & 4 & -5 & -5/\sqrt{-3} & 5/\sqrt{-3}\\ 1 & 10/3 & -8/3 & 5/3 & -5/3 & -5/3\\ 1 & -10/3 & -8/3 & 5/3 & 5/3 & 5/3 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{bmatrix}$$

Fusing complex conjugates....

 $80 \times 3 = 240$

valency

1	10	48	30	10	10	• • • •	1
1	5	-24	-15	-10	5	• • •	2
1	5	-4	5	0	-5	•••	24
1	10/3	-16/3	10/3	10/3	10/3	• • •	27
1	5/3	8/3	-5/3	-10/3	5/3	• • •	54
1	0	8	-10	0	0	• • •	24
1	-5/3	8/3	-5/3	10/3	-5/3	• • •	54
1	-10/3	-16/3	10/3	-10/3	-10/3	• • •	27
1	-5	-4	5	0	5	•••	24
1	-5	-24	-15	10	-5	• • •	2
1	-10	48	30	-10	-10		1

Cosine Sequence

1	10	•••]
1	5	• • •
1	5	• • •
1	10/3	• • •
1	5/3	•••
1	0	•••
1	-5/3	•••
1	-10/3	•••
1	-5	•••
1	-5	•••
1	-10	•••

valency

gives the cosine sequence

Conclusion

The set of 240 shortest vectors of Martinet's lattice (K'₁₀)* can be reconstructed from

 $\left(\begin{array}{c} \text{permutation representation} \\ \text{of degree 80 of } PSp(4,3) \end{array}\right) \bigotimes \mathbb{Z}_3.$

Can we generalize this construction to obtain more spherical 5-designs?

- 270 shortest vectors of K'_{10} form an association scheme?
- Nonsymmetric \otimes Nonsymmetric $\stackrel{\text{fusion}}{\Longrightarrow}$ symmetric?

Thank you for your attention.