Association Schemes and Spherical Designs*

Akihiro Munemasa
Graduate School of Information Sciences
Tohoku University
Japan

1 Spherical Designs

A spherical t-design X is a finite subset of the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$ such that

$$
\frac{\int_{S^{n-1}} f d \mu}{\int_{S^{n-1}} 1 d \mu}=\frac{1}{|X|} \sum_{x \in X} f(x)
$$

holds for any polynomial $f(x)$ of degree $\leq t$.
This definition is useful if one wants to investigate properties of a spherical design, but not convenient if one wants to prove something is a spherical design. An equivalent condition is:

$$
\begin{equation*}
\sum_{x, y \in X} Q_{j}(\langle x, y\rangle)=0 \quad(j=1,2, \ldots, t), \tag{1}
\end{equation*}
$$

where $\left\{Q_{j}\right\}_{j=0}^{\infty}$ are suitably normalized Gegenbauer polynomials, defined by $Q_{0}(x)=1, Q_{1}(x)=n x$,

$$
\frac{j+1}{n+2 j} Q_{j+1}(x)=x Q_{j}(x)-\frac{n+j-3}{n+2 j-4} Q_{j-1}(x) \quad(j=1,2,3, \ldots)
$$

[^0]
2 Association Schemes

A (symmetric) association scheme is a pair $\left(X,\left\{R_{i}\right\}_{i=0}^{d}\right)$, where X is a finite set, R_{i} is a (symmetric) relation on $X \times X$ such that
(i) R_{0} is the diagonal relation.
(ii) $\left\{R_{i}\right\}_{0 \leq i \leq d}$ is a partition of $X \times X$.
(iii) For any $i, j, k \in\{0,1, \ldots, d\}$, the number

$$
p_{i j}^{k}=\left|\left\{\gamma \in X \mid(\alpha, \gamma) \in R_{i},(\gamma, \beta) \in R_{j}\right\}\right|
$$

is independent of the choice of (α, β) in R_{k}, and $p_{i j}^{k}=p_{j i}^{k}$.
For $i \in\{0, \ldots, d\}$, let A_{i} be the adjacency matrix of the relation R_{i} :

$$
\left(A_{i}\right)_{\alpha, \beta}:= \begin{cases}1 & \text { if }(\alpha, \beta) \in R_{i} \\ 0 & \text { otherwise }\end{cases}
$$

The linear combinations of the adjacency matrices of a symmetric association scheme form a commutative algebra \mathfrak{A} over \mathbb{R} called the Bose-Mesner algebra.

Let E be a primitive idempotent of \mathfrak{A} and $E \neq \frac{1}{|X|} J$. Then E is a real symmetric positive-semidefinite matrix of rank $n=\operatorname{tr} E$. The matrix $\frac{|X|}{n} E$ has all the diagonal entries 1 , and we may write it as

$$
\frac{|X|}{n} E={ }^{t} F F
$$

where F is a $n \times|X|$ matrix $(x$-th column $=\bar{x})$, and

$$
\{\text { column vectors of } F\}=\{\bar{x} \mid x \in X\} \subset S^{n-1} \subset \mathbb{R}^{n} .
$$

If $|X| E=\sum_{i=0}^{d} \theta_{i}^{*} A_{i}$, then

$$
\langle\bar{x}, \bar{y}\rangle=\frac{\theta_{i}^{*}}{n} \quad \text { if }(x, y) \in R_{i} \quad \text { (cosines of the vectors). }
$$

A spherical representation of a symmetric association scheme forms a spherical t-design iff

$$
\sum_{x, y \in X} Q_{j}(\langle\bar{x}, \bar{y}\rangle)=0 \quad(j=1,2, \ldots, t)
$$

Equivalently,

$$
\sum_{i=0}^{d} k_{i} Q_{j}\left(\frac{\theta_{i}^{*}}{n}\right)=0 \quad(j=1,2, \ldots, t)
$$

where k_{i} is the valency of the relation R_{i}, i.e.,

$$
k_{i}=\frac{\left|R_{i}\right|}{|X|}
$$

Note that

$$
\sum_{x, y \in X} k_{i} Q_{j}\left(\frac{\theta_{i}^{*}}{n}\right)=0 \quad(j=1,2)
$$

always hold, so a spherical representation \bar{X} of a symmetric association scheme X always give a spherical 2-design.

Moreover, \bar{X} is a 3-design iff $(E \circ E) E=0$.
We formulate conditions in terms of parameters for a spherical representation to become a spherical t-design for $t \geq 4$, only for Q -polynomial association schemes. Suppose X is Q-polynomial, i.e., if $\exists v_{i}^{*}(x)$: polynomial of degree i, such that

$$
E_{i}=\frac{1}{|X|} v_{i}^{*}(|X| E) \quad(i=0,1, \ldots, d)
$$

are all the primitive idempotents of \mathfrak{A}.
Then

$$
x v_{i}^{*}(x)=c_{i+1}^{*} v_{i+1}^{*}(x)+a_{i}^{*} v_{i}^{*}(x)+b_{i-1}^{*} v_{i-1}^{*}(x) .
$$

Lemma 1. Let \bar{X} denote the embedding of a Q-polynomial association scheme X into the unit sphere via the primitive idempotent $E=E_{1}$.
(i) \bar{X} is a 3-design if and only if $a_{1}^{*}=0$.
(ii) \bar{X} is a 4-design if and only if $a_{1}^{*}=0$ and

$$
b_{0}^{*} b_{1}^{*} c_{2}^{*}+2\left(b_{1}^{*} c_{2}^{*}-b_{0}^{* 2}+b_{0}^{*}\right)=0
$$

(iii) \bar{X} is a 5 -design if and only if \bar{X} is a 4 -design and $a_{2}^{*}=0$.

Among the known infinite families of P - and Q -polynomial association schemes, only the following family produces spherical 4-designs, when embedded into the unit sphere via the primitive idempotent $E=E_{1}$.

The dual polar graph associated with the unitary group $U_{2 d}(2)$ is defined by:

$$
\begin{array}{ll}
\text { vertices: } & \text { maximal totally isotropic subspaces } \\
\text { adjacency: } & \text { intersect at dimension } d-1
\end{array}
$$

Then

$$
n=\operatorname{rank} E_{1}=\frac{2^{2 d}+2}{3}, \quad \frac{\theta_{j}^{*}}{n}=\left(-\frac{1}{2}\right)^{j}
$$

In fact, this gives a spherical 5 -design if $d \geq 3$ ([3]).

3 Martinet's Lattices

A lattice whose shortest vectors form a spherical 5-design is called strongly perfect.

Up to dimension ≤ 9, only certain root lattices and their duals are stronlgy perfect.

Theorem 1 (Nebe-Venkov [4]). There are exactly two strongly perfect lattices in dimension 10: Martinet's lattice K_{10}^{\prime} and its dual $\left(K_{10}^{\prime}\right)^{*}$.

The lattice K_{10}^{\prime} has 270 shortest vectors of norm 4, while the lattice ($\left.K_{10}^{\prime}\right)^{*}$ has 240 shortest vectors of norm 6 .

Since these lattices look very special, it must be very nice. Do the set of shortest vectors form association schemes?

There is a sufficient condition for a spherical t-design to carry a structure of an association scheme. We need a definition to state the condition.

The degree of a finite subset $\Omega \subset S^{n-1}$ is

$$
|\{(x, y) \mid x, y \in \Omega, x \neq y\}| .
$$

Theorem 2 (Delsarte-Goethals-Seidel [1]). If Ω is a spherical t-design of degree s and $2 s-2 \leq t$, then Ω carry a structure of an association scheme.

The shortest vectors of K_{10}^{\prime} have norm 4, with degree

$$
s=|\{2,1,0,-1,-2,-4\}|=6,
$$

while $t=5$. The shortest vectors of $\left(K_{10}^{\prime}\right)^{*}$ have norm 6 , with degree

$$
s=|\{3,2,1,0,-1,-2,-3,-6\}|=8,
$$

while $t=5$. Thus, we can apply Theorem 2 in neither case.
In our case, however, there is an easy way to prove a stronger result if we use a computer a little.

Let G be a finite irreducible subgroup of the real orthogonal group $O(n, \mathbb{R})$. The Molien series of G is

$$
\Phi_{G}(q)=\frac{1}{|G|} \sum_{g \in G} \frac{1}{\operatorname{det}(I-q \cdot g)}
$$

Theorem 3 (Goethals-Seidel [2]). Every G-orbit on the sphere is a spherical t-design iff

$$
\left(1-q^{2}\right) \Phi_{G}(q)=1+\underbrace{0 \cdot q+\cdots+0 \cdot q^{t}}+a_{t+1} q^{t+1}+\cdots
$$

The following MAGMA session constructs the Martinet's lattice, computes the automorphism group and computes the Molien series.

```
Magma V2.11-1 Sat Jul 24 2004 14:19:43 [Seed = 1713821203]
Type ? for help. Type <Ctrl>-D to quit.
> ld:=LatticeDatabase();
> K12:=Lattice(ld,12,27); // Coxeter-Todd lattice
> sv:=ShortestVectors(K12);
> v1:=Random(sv);
> v2s:={ x : x in sv | (v1,x)^2 eq 4 };
> v2:=Random({ v : v in v2s |
> #{ x : x in sv | (v1,x) eq 0 and (v,x) eq 0 } eq 135 });
> v1v2p:={ x : x in sv | (v1,x) eq 0 and (v2,x) eq 0 };
> K:=LatticeWithGram(GramMatrix(Dual(sub< K12 | v1v2p >)));
> G:=AutomorphismGroup(K);
> AutL:=sub< GL(10,Rationals()) | Generators(G) >;
> Pt<q>:=PowerSeriesRing(Rationals(),10);
> (1-q^2)*(Pt!MolienSeries(AutL));
1 + 2*q^6 + 3*q^8 + O(q^10)
```

We obtain

$$
\Phi_{\operatorname{Aut}\left(K_{10}^{\prime}\right)}(q)=1+2 q^{6}+3 q^{8}+\cdots
$$

This means that every orbit of the automorphism group of Martinet's lattice K_{10}^{\prime} is a spherical 5-design. In particular, the set of shortest vectors of the lattice $\left(K_{10}^{\prime}\right)^{*}$ is a spherical 5 -design.

We now give an interpretation of the set of shortest vectors of the lattice $\left(K_{10}^{\prime}\right)^{*}$ in terms of an association scheme. There is a subgroup of index 80 in the projective symplectic group $\operatorname{PSp}(4,3)$:

This gives a permutation representation of degree 80 of $\operatorname{PSp}(4,3)$. Then one obtains a commutative (but not symmetric) association scheme $X=$ $\operatorname{PSp}(4,3) / H$ on 80 points with 2nd eigenmatrix

$$
Q=\left[\begin{array}{cccccc}
1 & 30 & 24 & 15 & 5 & 5 \\
1 & -30 & 24 & 15 & -5 & -5 \\
1 & 0 & 4 & -5 & 5 / \sqrt{-3} & -5 / \sqrt{-3} \\
1 & 0 & 4 & -5 & -5 / \sqrt{-3} & 5 / \sqrt{-3} \\
1 & 10 / 3 & -8 / 3 & 5 / 3 & -5 / 3 & -5 / 3 \\
1 & -10 / 3 & -8 / 3 & 5 / 3 & 5 / 3 & 5 / 3
\end{array}\right]
$$

The direct product of two association schemes X and \mathbb{Z}_{3} has its 2nd eigenmatrix the tensor product:

$$
Q=\left[\begin{array}{cccccc}
1 & 30 & 24 & 15 & 5 & 5 \\
1 & -30 & 24 & 15 & -5 & -5 \\
1 & 0 & 4 & -5 & 5 / \sqrt{-3} & -5 / \sqrt{-3} \\
1 & 0 & 4 & -5 & -5 / \sqrt{-3} & 5 / \sqrt{-3} \\
1 & 10 / 3 & -8 / 3 & 5 / 3 & -5 / 3 & -5 / 3 \\
1 & -10 / 3 & -8 / 3 & 5 / 3 & 5 / 3 & 5 / 3
\end{array}\right] \otimes\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right]
$$

Fusing complex conjugates, we obtain

$$
Q=\left[\begin{array}{ccccccc}
1 & 10 & 48 & 30 & 10 & 10 & \cdots \\
1 & 5 & -24 & -15 & -10 & 5 & \cdots \\
1 & 5 & -4 & 5 & 0 & -5 & \cdots \\
1 & 10 / 3 & -16 / 3 & 10 / 3 & 10 / 3 & 10 / 3 & \cdots \\
1 & 5 / 3 & 8 / 3 & -5 / 3 & -10 / 3 & 5 / 3 & \cdots \\
1 & 0 & 8 & -10 & 0 & 0 & \cdots \\
1 & -5 / 3 & 8 / 3 & -5 / 3 & 10 / 3 & -5 / 3 & \cdots \\
1 & -10 / 3 & -16 / 3 & 10 / 3 & -10 / 3 & -10 / 3 & \cdots \\
1 & -5 & -4 & 5 & 0 & 5 & \cdots \\
24 \\
1 & -5 & -24 & -15 & 10 & -5 & \cdots \\
1 & -10 & 48 & 30 & -10 & -10 &
\end{array}\right]
$$

This gives rise to a spherical representation:

This spherical representation realizes the set of 240 shortest vectors of the lattice $\left(K_{10}^{\prime}\right)^{*}$. One can check that this set forms a spherical 5 -design using the definition of the spherical design in terms of the Gegenbauer polynomials (1).

4 Conclusion

- The set of 240 shortest vectors of Martinet's lattice $\left(K_{10}^{\prime}\right)^{*}$ can be reconstructed from

$$
\binom{\text { permutation representation }}{\text { of degree } 80 \text { of } \operatorname{PSp}(4,3)} \bigotimes \mathbb{Z}_{3} \text {. }
$$

Can we generalize this construction to obtain more spherical 5-designs? It seems important to notice the following aspect of this construction:

$$
\text { nonsymmetric } \otimes \text { nonsymmetric } \stackrel{\text { fusion }}{\Longrightarrow} \text { symmetric }
$$

If one were to fuse pairs of nonsymmetric relations before taking the direct product, one only finds a spherical representation of dimension 20 , not 10 .

- A more straightforward construction is as follows. Let F be the matrix ${ }^{t} F \bar{F}=\frac{|X|}{n} E$, where E is the primitive idempotent. The Gram matrix of the set $X \cup \omega X \cup \omega^{2} X \subset \mathbb{C}^{5}$ regarded as vectors of \mathbb{R}^{10} is

$$
\begin{aligned}
\operatorname{Re}\left(\begin{array}{c}
t \\
\omega^{t} F \\
\omega^{2 t} F
\end{array}\right)\left(\begin{array}{lll}
\bar{F} & \overline{\omega F} & \overline{\omega^{2} F}
\end{array}\right) & =\operatorname{Re}^{t} F \bar{F} \otimes W \\
& =E \otimes W+\overline{E \otimes W}
\end{aligned}
$$

where

$$
W=\left(\begin{array}{ccc}
1 & \omega^{2} & \omega \\
\omega & 1 & \omega^{2} \\
\omega^{2} & \omega & 1
\end{array}\right) .
$$

Note that the matrix E above gives an embedding of X into a lattice of rank 5 over $\mathbb{Z}[\omega]$.

- Can the set of 270 shortest vectors of K_{10}^{\prime} be constructed in a similar manner as above?

References

[1] P. Delsarte, J.-M. Goethals and J. J. Seidel, Spherical codes and designs, Geometriae Dedicata 6 (1977), 363-388.
[2] J.-M. Goethals and J. J. Seidel, Spherical designs, Proc. Sympos. Pure Math., XXXIV, 255-272, Amer. Math. Soc., Providence, R.I., 1979.
[3] A. Munemasa, Spherical 5-designs obtained from finite unitary groups, European J. Combin., 25 (2004), 261-267.
[4] G. Nebe and B. Venkov, The strongly perfect lattices of dimension 10, J. Théor. Nombres Bordeaux 12 (2000), 503-518.

[^0]: *talk given on July 24, 2004, at Pusan National University; revised March 16, 2008

