Distance-regular graphs

 related to
the binary Golay code

 andtheir spherical representation

Akihiro Munemasa

based on joint work with
Masaaki Kitazume and

William Martin

A distance-regular graph (DRG) is a connected finite undirected graph Γ of diameter d such that
is well-defined. More precisely,

$$
\left.\left.\begin{array}{rl}
a_{i} & =\mid\left\{y \mid d_{\Gamma}(x, y)\right. \\
b_{i} & =\mid\left\{y \mid d_{\Gamma}(x, y)\right. \\
=1, d_{\Gamma}(y, z) & =i\} \mid, \\
c_{i} & =\mid\left\{y \mid d_{\Gamma}(x, z)\right.
\end{array}=i+1\right\} \mid, ~=1, d_{\Gamma}(y, z)=i-1\right\} \mid, ~ l
$$

are independent of x, z as long as $d_{\Gamma}(x, z)=i$.

The numbers a_{i}, b_{i}, c_{i} are called the parameters or the intersection numbers of the DRG Γ.

Soicher (1995) discovered a DRG with 672 vertices:

Meixner (1991) discovered a DRG with 1344 vertices:
$A_{1}=$ the adjacency matrix of Γ

$$
\left(A_{1}\right)_{x y}= \begin{cases}1 & x \text { is adjacent to } y \\ 0 & \text { otherwise }\end{cases}
$$

Let λ be an eigenvalue of A_{1} (also called an eigenvalue of Γ), $n=|V(\Gamma)|$.
\mathbb{R}^{n} : the vector space with unit vectors e_{x} indexed by $V(\Gamma)$.

$$
W_{\lambda}=\left\{v \in \mathbb{R}^{n} \mid A_{1} v=\lambda v\right\} .
$$

$\pi_{\lambda}: \mathbb{R}^{n} \rightarrow W_{\lambda}$: orthogonal projection.

The spherical representation of Γ is

$$
\left\{\pi_{\lambda}\left(e_{x}\right) \mid x \in V(\Gamma)\right\}
$$

The binary Golay code is the subspace of \mathbb{F}_{2}^{23} spanned by the row vectors of the following matrix.
$\left(\begin{array}{l}10000000000011111111111 \\ 01000000000010100011101 \\ 00100000000011010001110 \\ 00010000000001101000111 \\ 00001000000010110100011 \\ 00000100000011011010001 \\ 00000010000011101101000 \\ 00000001000001110110100 \\ 0000000000000111011010 \\ 0000000010000011101101 \\ 00000000001010001110110 \\ 00000000000101000111011\end{array}\right)$

The truncated binary Golay code G_{22} is the subspace of \mathbb{F}_{2}^{22} spanned by the row vectors of the matrix obtained from the above matrix by deleting one column.

1344 vectors of weight 11 in the truncated binary Golay code G_{22} consists of 672 complementary pairs.

Meixner's graph $\tilde{\Gamma}$ is defined by:
$V(\tilde{\Gamma})=1344$ vectors of weight 11 in G_{22}.
$V(\tilde{\Gamma}) \ni u, v$ are adjacent if and only if
(i) $\mathrm{wt}(u * v)=3$, or
(ii) $\mathrm{wt}(u * v)=7$ and \nexists hexad h with wt $(h * u * v)=5$, or
(iii) $\operatorname{wt}(u * v)=6$ and \exists hexad h with $\mathrm{wt}(h * u * v)=5$.
where $*$ denotes the entrywise multiplication.
$\left|\operatorname{Aut}\left(G_{22}\right): M_{22}\right|=2$.
M_{22} has two orbits on the set of 1344 vectors of weight 11. Soicher's graph is the induced subgraph of $\tilde{\Gamma}$ on either one of the orbits of M_{22}.

Spherical representation.
$\tilde{\Gamma}$ has eigenvalue 44 with multiplicity 56 .

$$
96\left(\pi_{44}\left(e_{x}\right), \pi_{44}\left(e_{y}\right)\right)=4,1,0,-1,-4
$$

according as $d_{\widetilde{\Gamma}}(x, y)=0,1,2,3,4$.
Γ has eigenvalue 26 with multiplicity 55 .

$$
\begin{aligned}
& \quad 672\left(\pi_{26}\left(e_{x}\right), \pi_{26}\left(e_{y}\right)\right)=55,13,-1,-15 \\
& \text { according as } d_{\tilde{\Gamma}}(x, y)=0,1,2,3 .
\end{aligned}
$$

Also, Γ has the Frobenius eigenvalue 110 with multiplicity 1 .
$672\left(\pi_{110}\left(e_{x}\right), \pi_{110}\left(e_{y}\right)\right)=1$ for all $x, y \in \Gamma$.

Define $\pi: V(\Gamma) \rightarrow \mathbb{R}^{56}=W_{110} \oplus W_{26}$ by

$$
\pi=\pi_{110} \oplus \pi_{26}
$$

Then

$$
672\left(\pi\left(e_{x}\right), \pi\left(e_{y}\right)\right)=4,1,0,-1
$$

according as $d_{\Gamma}(x, y)=0,1,2,3$.

Note

$$
\left(\pi\left(e_{x}\right),-\pi\left(e_{y}\right)\right)=-4,-1,0,1
$$

according as $d_{\Gamma}(x, y)=0,1,2,3$.

It turns out that

$$
\left\{ \pm \pi\left(e_{x}\right) \mid x \in V(\Gamma)\right\}
$$

gives the spherical representation π_{44} of $\tilde{\Gamma}$ (up to scaling).

Combinatorially

$$
\tilde{\Gamma}=
$$

In terms of the adjacency matrix:

$$
\tilde{A}_{1}=\left(\begin{array}{ll}
A_{1} & A_{3} \\
A_{3} & A_{1}
\end{array}\right)
$$

where

$$
\left(A_{3}\right)_{x y}= \begin{cases}1 & \text { if } d_{\Gamma}(x, y)=3 \\ 0 & \text { otherwise }\end{cases}
$$

Theorem. \widetilde{A}_{1} is the adjacency matrix of Meixner's graph Γ.

Theorem. Let Γ be a non-bipartite DRG of diameter 3 , Let $A_{i}(i=1,3)$ be the matrix defined by

$$
\left(A_{i}\right)_{x y}= \begin{cases}1 & \text { if } d_{\Gamma}(x, y)=i \\ 0 & \text { otherwise }\end{cases}
$$

Then the matrix

$$
\tilde{A}_{1}=\left(\begin{array}{ll}
A_{1} & A_{3} \\
A_{3} & A_{1}
\end{array}\right)
$$

is the adjacency matrix of a DRG if and only if Γ has parameters

$$
\begin{aligned}
& b_{0}=(p q+p+q)(q+1) / 2 \\
& b_{1}=(p+1)(q+2)(q-1) / 2 \\
& b_{2}=q(p+q) / 4 \\
& c_{2}=(p+q)(q+2) / 4 \\
& c_{3}=q(p+1)(q+1) / 2
\end{aligned}
$$

for some integers p, q.
The parameters of the resulting graph $\tilde{\Gamma}$ with adjacency matrix \tilde{A}_{1} coincides with a family of dual bipartite Q-polynomial DRGs given by Dickie and Terwilliger (1996).

p	q	v	comments
2	2	35	$J(7,3)$
4	2	64	Halved 7-cube
8	4	672	Soicher
9	3	378	$O(7,3) ?$
16	4	1408	
20	4	1782	Suz?

