Distance-regular graphs related to the binary Golay code and their spherical representation

Akihiro Munemasa based on joint work with Masaaki Kitazume and William Martin

A distance-regular graph (DRG) is a connected finite undirected graph Γ of diameter d such that

is well-defined. More precisely,

$$a_{i} = |\{y \mid d_{\Gamma}(x, y) = 1, \ d_{\Gamma}(y, z) = i\}|,$$

$$b_{i} = |\{y \mid d_{\Gamma}(x, y) = 1, \ d_{\Gamma}(y, z) = i + 1\}|,$$

$$c_{i} = |\{y \mid d_{\Gamma}(x, y) = 1, \ d_{\Gamma}(y, z) = i - 1\}|,$$

are independent of x, z as long as $d_{\Gamma}(x, z) = i$.

The numbers a_i, b_i, c_i are called the parameters or the intersection numbers of the DRG Γ . Soicher (1995) discovered a DRG with 672 vertices:

Meixner (1991) discovered a DRG with 1344 vertices:

 $A_1 =$ the adjacency matrix of Γ

$$(A_1)_{xy} = \begin{cases} 1 & x \text{ is adjacent to } y \\ 0 & \text{otherwise} \end{cases}$$

Let λ be an eigenvalue of A_1 (also called an eigenvalue of Γ), $n = |V(\Gamma)|$.

 \mathbb{R}^n : the vector space with unit vectors e_x indexed by $V(\Gamma)$.

 $W_{\lambda} = \{ v \in \mathbb{R}^n \mid A_1 v = \lambda v \}.$

 $\pi_{\lambda} : \mathbb{R}^n \to W_{\lambda}$: orthogonal projection.

The spherical representation of Γ is

 $\{\pi_{\lambda}(e_x) \mid x \in V(\Gamma)\}$

The binary Golay code is the subspace of \mathbb{F}_2^{23} spanned by the row vectors of the following matrix.

The truncated binary Golay code G_{22} is the subspace of \mathbb{F}_2^{22} spanned by the row vectors of the matrix obtained from the above matrix by deleting one column.

1344 vectors of weight 11 in the truncated binary Golay code G_{22} consists of 672 complementary pairs.

Meixner's graph $\tilde{\Gamma}$ is defined by:

 $V(\tilde{\Gamma}) = 1344$ vectors of weight 11 in G_{22} .

 $V(\tilde{\Gamma}) \ni u, v$ are adjacent if and only if (i) wt(u * v) = 3, or (ii) wt(u * v) = 7 and $\not\exists$ hexad h with wt(h * u * v) = 5, or (iii) wt(u * v) = 6 and \exists hexad h with wt(h * u * v) = 5.

where * denotes the entrywise multiplication.

 $|\operatorname{Aut}(G_{22}): M_{22}| = 2.$

 M_{22} has two orbits on the set of 1344 vectors of weight 11. Soicher's graph is the induced subgraph of $\tilde{\Gamma}$ on either one of the orbits of M_{22} . Spherical representation.

 $\tilde{\Gamma}$ has eigenvalue 44 with multiplicity 56.

 $96(\pi_{44}(e_x), \pi_{44}(e_y)) = 4, 1, 0, -1, -4$ according as $d_{\tilde{\Gamma}}(x, y) = 0, 1, 2, 3, 4.$

 Γ has eigenvalue 26 with multiplicity 55.

 $672(\pi_{26}(e_x), \pi_{26}(e_y)) = 55, 13, -1, -15$ according as $d_{\tilde{\Gamma}}(x, y) = 0, 1, 2, 3.$

Also, Γ has the Frobenius eigenvalue 110 with multiplicity 1.

 $672(\pi_{110}(e_x), \pi_{110}(e_y)) = 1$ for all $x, y \in \Gamma$.

Define $\pi: V(\Gamma) \to \mathbb{R}^{56} = W_{110} \oplus W_{26}$ by $\pi = \pi_{110} \oplus \pi_{26}.$

Then

$$672(\pi(e_x),\pi(e_y)) = 4,1,0,-1,$$

according as $d_{\Gamma}(x, y) = 0, 1, 2, 3.$

Note

 $(\pi(e_x), -\pi(e_y)) = -4, -1, 0, 1,$ according as $d_{\Gamma}(x, y) = 0, 1, 2, 3.$ It turns out that

 $\{\pm \pi(e_x) \mid x \in V(\Gamma)\}$

gives the spherical representation π_{44} of $\tilde{\Gamma}$ (up to scaling).

Combinatorially

 $\tilde{\Gamma} =$

In terms of the adjacency matrix:

$$\tilde{A}_1 = \begin{pmatrix} A_1 & A_3 \\ A_3 & A_1 \end{pmatrix}$$

where

$$(A_3)_{xy} = \begin{cases} 1 & \text{if } d_{\Gamma}(x,y) = 3, \\ 0 & \text{otherwise} \end{cases}$$

Theorem. \tilde{A}_1 is the adjacency matrix of Meixner's graph $\tilde{\Gamma}$.

Theorem. Let Γ be a non-bipartite DRG of diameter 3, Let A_i (i = 1, 3) be the matrix defined by

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } d_{\Gamma}(x,y) = i, \\ 0 & \text{otherwise} \end{cases}$$

Then the matrix

$$\tilde{A}_1 = \begin{pmatrix} A_1 & A_3 \\ A_3 & A_1 \end{pmatrix}$$

is the adjacency matrix of a DRG if and only if Γ has parameters

$$b_{0} = (pq + p + q)(q + 1)/2$$

$$b_{1} = (p + 1)(q + 2)(q - 1)/2$$

$$b_{2} = q(p + q)/4$$

$$c_{2} = (p + q)(q + 2)/4$$

$$c_{3} = q(p + 1)(q + 1)/2$$

for some integers p, q.

The parameters of the resulting graph $\tilde{\Gamma}$ with adjacency matrix \tilde{A}_1 coincides with a family of dual bipartite Q-polynomial DRGs given by Dickie and Terwilliger (1996).

p	q	v	comments
2	2	35	<i>J</i> (7,3)
4	2	64	Halved 7-cube
8	4	672	Soicher
9	3	378	<i>O</i> (7,3)?
16	4	1408	
20	4	1782	Suz?