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Projective Geometry
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(GF (q)n+1 − {0})/ ∼
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Projective Geometry

PG(n, q) = n-dim. projective space over GF (q)
(GF (q)n+1 − {0})/ ∼
“point” = projective point
1-dim. vector subspace

“line” = projective line
2-dim. vector subspace

“spread” = a set of lines which partition the points of
PG(n, q)

“packing” = “resolution” = “ parallelism” = a set of
spreads which partition the set of lines

∃ packing in PG(n, q) =⇒ n: odd ( ⇐= : open)
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PG(n, q), n: even

“packing” = “resolution” = “ parallelism” = a set of
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∃ packing in PG(n, q) =⇒ n: odd
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PG(n, q), n: even

“packing” = “resolution” = “ parallelism” = a set of
spreads which partition the set of points

∃ packing in PG(n, q) =⇒ n: odd

Question 1. Does there exist a partition of the set of
lines of PG(2n, q) into spreads of hyperplanes?
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PG(n, q), n: even

“packing” = “resolution” = “ parallelism” = a set of
spreads which partition the set of points

∃ packing in PG(n, q) =⇒ n: odd

Question 1. Does there exist a partition of the set of
lines of PG(2n, q) into spreads of hyperplanes?
When the answer to Question 1 is affirmative, we say
that PG(2n, q) is (2n − 1)-partitionable.
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PG(n, q), n: even

“packing” = “resolution” = “ parallelism” = a set of
spreads which partition the set of points

∃ packing in PG(n, q) =⇒ n: odd

Question 1. Does there exist a partition of the set of
lines of PG(2n, q) into spreads of hyperplanes?
When the answer to Question 1 is affirmative, we say
that PG(2n, q) is (2n − 1)-partitionable.

#(lines) =
(qn+1 − 1)(qn − 1)

(q2 − 1)(q − 1)
=

(qn+1 − 1)

(q − 1)
· (qn − 1)

(q2 − 1)

= #(hyperplanes) × #

(
lines in a spread
of a hyperplane

)
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Fuji-hara, Jimbo and Vanstone
(1986)

Question 2. Does there exist a spread SH for each
hyperplane H of PG(2n, q), such that

lines of PG(2n, q) =
⋃
H

SH (disjoint),

where H runs through all hyperplanes of PG(2n, q)?
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Question 2. Does there exist a spread SH for each
hyperplane H of PG(2n, q), such that

lines of PG(2n, q) =
⋃
H

SH (disjoint),

where H runs through all hyperplanes of PG(2n, q)?
Yes for (2n, q) = (4, 2), (4, 3), (6, q), etc.
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Fuji-hara, Jimbo and Vanstone
(1986)

Question 2. Does there exist a spread SH for each
hyperplane H of PG(2n, q), such that

lines of PG(2n, q) =
⋃
H

SH (disjoint),

where H runs through all hyperplanes of PG(2n, q)?
Yes for (2n, q) = (4, 2), (4, 3), (6, q), etc.

The answer was unknown for (4, 4), (4, 5), (4, 7), etc.
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Singer Cycle

σ = Singer cycle of PG(2n, q)

= cyclic automorphism of order
q2n+1 − 1

q − 1
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〈σ〉 has

{
only one orbit on points
only one orbit on hyperplanes
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Singer Cycle

σ = Singer cycle of PG(2n, q)

= cyclic automorphism of order
q2n+1 − 1

q − 1

〈σ〉 has

{
only one orbit on points
only one orbit on hyperplanes

In PG(2n, q),

H = L1 ∪ L2 ∪ · · · ∪ Ls : spread of H

Hσ = Lσ
1 ∪ Lσ

2 ∪ · · · ∪ Lσ
s : spread of Hσ

...
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Orbits of Singer Cycle

In PG(2n, q),

H = L1 ∪ L2 ∪ · · · ∪ Ls : spread of H

Hσ = Lσ
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2 ∪ · · · ∪ Lσ
s : spread of Hσ

...

if distinct 〈σ〉-orbits =⇒ (2n − 1)-partitionable
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In PG(2n, q),

H = L1 ∪ L2 ∪ · · · ∪ Ls : spread of H

Hσ = Lσ
1 ∪ Lσ

2 ∪ · · · ∪ Lσ
s : spread of Hσ

...

if distinct 〈σ〉-orbits =⇒ (2n − 1)-partitionable

Question 3. Does there exist a spread S of a hyperplane
H in PG(2n, q) such that the members of S belong to
distinct 〈σ〉-orbits?
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Orbits of Singer Cycle

In PG(2n, q),

H = L1 ∪ L2 ∪ · · · ∪ Ls : spread of H

Hσ = Lσ
1 ∪ Lσ

2 ∪ · · · ∪ Lσ
s : spread of Hσ

...

if distinct 〈σ〉-orbits =⇒ (2n − 1)-partitionable

Question 3. Does there exist a spread S of a hyperplane
H in PG(2n, q) such that the members of S belong to
distinct 〈σ〉-orbits?

Such a spread produces a difference system of sets.
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Difference System of Sets

Suppose that there is a spread S of a hyperplane H of
PG(2n, q) such that the members of S belong to
different 〈σ〉-orbits.
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follows.
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follows.
Definition. Let G be a finite group of order v, let λ,m be
positive integers.
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Difference System of Sets

Suppose that there is a spread S of a hyperplane H of
PG(2n, q) such that the members of S belong to
different 〈σ〉-orbits.
Then S becomes a difference system of sets, defined as
follows.
Definition. Let G be a finite group of order v, let λ,m be
positive integers. A family of m-subsets
{B1, B2, . . . , Bk} of G is called a (v, k, λ;m) difference
system of sets if the multiset

{gh−1 | g ∈ Bi, h ∈ Bj, 1 ≤ i, j ≤ k, i 
= j}

coincides with λ(G − {1}).
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Partitionability and DSS

Indeed, identify 〈σ〉 with PG(2n, q). Then
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Partitionability and DSS

Indeed, identify 〈σ〉 with PG(2n, q). Then
{gh−1 | g ∈ Li, h ∈ Lj, 1 ≤ i, j ≤ k, i 
= j}
={gh−1 | g ∈ Li, h ∈ Lj, 1 ≤ i, j ≤ k, g 
= h}
−{gh−1 | g ∈ Li, h ∈ Li, 1 ≤ i ≤ k, g 
= h}
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Partitionability and DSS

Indeed, identify 〈σ〉 with PG(2n, q). Then
{gh−1 | g ∈ Li, h ∈ Lj, 1 ≤ i, j ≤ k, i 
= j}
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= h}
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= h} difference set
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Partitionability and DSS

Indeed, identify 〈σ〉 with PG(2n, q). Then
{gh−1 | g ∈ Li, h ∈ Lj, 1 ≤ i, j ≤ k, i 
= j}
={gh−1 | g ∈ Li, h ∈ Lj, 1 ≤ i, j ≤ k, g 
= h}
−{gh−1 | g ∈ Li, h ∈ Li, 1 ≤ i ≤ k, g 
= h}
={gh−1 | g ∈ H, h ∈ H, g 
= h} difference set
−⋃k

i=1{gh−1 | g ∈ Li, h ∈ Li, g 
= h} difference
family

=qn−1−1
q−1 (G − {1}) − (G − {1}).
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Partitionability and DSS

Indeed, identify 〈σ〉 with PG(2n, q). Then
{gh−1 | g ∈ Li, h ∈ Lj, 1 ≤ i, j ≤ k, i 
= j}
={gh−1 | g ∈ Li, h ∈ Lj, 1 ≤ i, j ≤ k, g 
= h}
−{gh−1 | g ∈ Li, h ∈ Li, 1 ≤ i ≤ k, g 
= h}
={gh−1 | g ∈ H, h ∈ H, g 
= h} difference set
−⋃k

i=1{gh−1 | g ∈ Li, h ∈ Li, g 
= h} difference
family

=qn−1−1
q−1 (G − {1}) − (G − {1}).

Thus

(
qn+1 − 1

q − 1
,
qn − 1

q − 1
,
qn−1 − q

q − 1
; q + 1) d.s.s.
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PG(4, 4)

Let H be a hyperplane in PG(4, 4). Define a graph Γ as
follows.

vertices = lines of H

Singer difference sets and difference system of sets – p.9/13
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Let H be a hyperplane in PG(4, 4). Define a graph Γ as
follows.

vertices = lines of H

edges = pairs {L,L′} of skew lines such that
L′ /∈ L〈σ〉.
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PG(4, 4)

Let H be a hyperplane in PG(4, 4). Define a graph Γ as
follows.

vertices = lines of H

edges = pairs {L,L′} of skew lines such that
L′ /∈ L〈σ〉.

Every clique of size q2 + 1 = 17 in Γ gives a spread such
that its members belong to distinct 〈σ〉-orbits.
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PG(4, 4)

Let H be a hyperplane in PG(4, 4). Define a graph Γ as
follows.

vertices = lines of H

edges = pairs {L,L′} of skew lines such that
L′ /∈ L〈σ〉.

Every clique of size q2 + 1 = 17 in Γ gives a spread such
that its members belong to distinct 〈σ〉-orbits.
Γ has

357 vertices, 42, 976 edges,

and using MAGMA, we see that Γ has no clique of size
17.
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PG(4, q) with q ≡ 2 or 3 (mod 5)

When q > 4, the exhaustive search like the case of
PG(4, 4) does not work.
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PG(4, 4) does not work. So we try to perform a more
restrictive search, by assuming more symmetry
(Frobenius automorphism).
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PG(4, q) with q ≡ 2 or 3 (mod 5)

When q > 4, the exhaustive search like the case of
PG(4, 4) does not work. So we try to perform a more
restrictive search, by assuming more symmetry
(Frobenius automorphism).
• GF (q5) ↔ GF (q)5 → PG(4, q)
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When q > 4, the exhaustive search like the case of
PG(4, 4) does not work. So we try to perform a more
restrictive search, by assuming more symmetry
(Frobenius automorphism).
• GF (q5) ↔ GF (q)5 → PG(4, q)
• 〈f〉 = AutGF (q5).
Regard f as an automorphism of PG(4, q).
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PG(4, q) with q ≡ 2 or 3 (mod 5)

When q > 4, the exhaustive search like the case of
PG(4, 4) does not work. So we try to perform a more
restrictive search, by assuming more symmetry
(Frobenius automorphism).
• GF (q5) ↔ GF (q)5 → PG(4, q)
• 〈f〉 = AutGF (q5).
Regard f as an automorphism of PG(4, q).
• f fixes a unique hyperplane H , but none of the lines of
H .
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PG(4, q) with q ≡ 2 or 3 (mod 5)

When q > 4, the exhaustive search like the case of
PG(4, 4) does not work. So we try to perform a more
restrictive search, by assuming more symmetry
(Frobenius automorphism).
• GF (q5) ↔ GF (q)5 → PG(4, q)
• 〈f〉 = AutGF (q5).
Regard f as an automorphism of PG(4, q).
• f fixes a unique hyperplane H , but none of the lines of
H .
Look for an f -invariant spread

S = {L1, L
f
1 , L

f2

1 , Lf3

1 , Lf4

1 , . . . Lf4

q2+1
5

}

of H , such that its members belong to distinct 〈σ〉-orbits.Singer difference sets and difference system of sets – p.10/13



PG(4, 8)

In graph theoretic terms again, define a graph Γ as
follows.

vertices = {L〈f〉 | L : line of H}: sets of skew lines
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PG(4, 8)

In graph theoretic terms again, define a graph Γ as
follows.

vertices = {L〈f〉 | L : line of H}: sets of skew lines

edges = pairs {L〈f〉,M 〈f〉} such that Lf i ∩ M f j

= ∅
and Lf i

/∈ M f j 〈σ〉
.
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PG(4, 8)

In graph theoretic terms again, define a graph Γ as
follows.

vertices = {L〈f〉 | L : line of H}: sets of skew lines

edges = pairs {L〈f〉,M 〈f〉} such that Lf i ∩ M f j

= ∅
and Lf i

/∈ M f j 〈σ〉
.

Every clique of size (q2 + 1)/5 = 13 in Γ gives an f -

invariant spread such that its members belong to distinct

〈σ〉-orbits.
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PG(4, 8)

Γ has
715 vertices, 107, 694 edges,
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PG(4, 8)

Γ has
715 vertices, 107, 694 edges,

and using MAGMA, we see that Γ has a clique of size
13.
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PG(4, 8)

Γ has
715 vertices, 107, 694 edges,

and using MAGMA, we see that Γ has a clique of size
13.
Theorem. PG(4, 8) is 3-partitionable.
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PG(4, 8)

Γ has
715 vertices, 107, 694 edges,

and using MAGMA, we see that Γ has a clique of size
13.
Theorem. PG(4, 8) is 3-partitionable.
Somewhat more complicated analysis shows that
PG(4, q) is 3-partitionable for q = 5, 9.
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PG(4, 8)

Γ has
715 vertices, 107, 694 edges,

and using MAGMA, we see that Γ has a clique of size
13.
Theorem. PG(4, 8) is 3-partitionable.
Somewhat more complicated analysis shows that
PG(4, q) is 3-partitionable for q = 5, 9.
They give

(v, k, λ) = (
q5 − 1

q − 1
, q2 + 1, q2 + q; q + 1)

difference system of sets for q = 5, 8, 9.
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Spreads of Planes in PG(5, q) ⊂
PG(6, q)

As before let σ denote a Singer cycle in PG(6, q).
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Spreads of Planes in PG(5, q) ⊂
PG(6, q)

Question 4. Does there exist a spread Π of planes of a
hyperplane H in PG(6, q) such that
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Spreads of Planes in PG(5, q) ⊂
PG(6, q)

Question 4. Does there exist a spread Π of planes of a
hyperplane H in PG(6, q) such that
• the members of Π belong to distinct 〈σ〉-orbits,
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Spreads of Planes in PG(5, q) ⊂
PG(6, q)

Question 4. Does there exist a spread Π of planes of a
hyperplane H in PG(6, q) such that
• the members of Π belong to distinct 〈σ〉-orbits,
• Π forms a difference family.
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Spreads of Planes in PG(5, q) ⊂
PG(6, q)

Question 4. Does there exist a spread Π of planes of a
hyperplane H in PG(6, q) such that
• the members of Π belong to distinct 〈σ〉-orbits,
• Π forms a difference family.
If Π = {P1, P2, . . . , Pq3+q} is such a spread of planes,
then Π forms a

(
q7 − 1

q − 1
, q3 + 1,

q5 − q2

q − 1
;
q3 − 1

q − 1
)

difference system of sets.
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Spreads of Planes in PG(5, q) ⊂
PG(6, q)

Question 4. Does there exist a spread Π of planes of a
hyperplane H in PG(6, q) such that
• the members of Π belong to distinct 〈σ〉-orbits,
• Π forms a difference family.
If Π = {P1, P2, . . . , Pq3+q} is such a spread of planes,
then Π forms a

(
q7 − 1

q − 1
, q3 + 1,

q5 − q2

q − 1
;
q3 − 1

q − 1
)

difference system of sets.

A difference family whose members belong to distinct

〈σ〉-orbits was constructed for q = 2 by Miyakawa–

Munemasa–Yoshiara (1995).
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