Singer difference sets and difference system of sets

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University

(joint work with Vladimir D. Tonchev)
November 18, 2004

Projective Geometry

$\square P G(n, q)=n$-dim. projective space over $G F(q)$ $\left(G F(q)^{n+1}-\{0\}\right) / \sim$

Projective Geometry

$\square P G(n, q)=n$-dim. projective space over $G F(q)$ $\left(G F(q)^{n+1}-\{0\}\right) / \sim$
" oin" = projective point
1-dim. vector subspace

Projective Geometry

$\square P G(n, q)=n$-dim. projective space over $G F(q)$ $\left(G F(q)^{n+1}-\{0\}\right) / \sim$
-" oin" = projective point
1-dim. vector subspace

- " \quad " = projective line 2-dim. vector subspace

Projective Geometry

$\square P G(n, q)=n$-dim. projective space over $G F(q)$ $\left(G F(q)^{n+1}-\{0\}\right) / \sim$
-"poin" = projective point
1-dim. vector subspace
-" n" = projective line
2-dim. vector subspace
"s " = a set of lines which partition the points of $P G(n, q)$

Projective Geometry

$\square P G(n, q)=n$-dim. projective space over $G F(q)$ $\left(G F(q)^{n+1}-\{0\}\right) / \sim$
-" ${ }^{\text {"oin " }=\text { projective point }}$
1-dim. vector subspace

- " " = projective line

2-dim. vector subspace
\square "s " = a set of lines which partition the points of $P G(n, q)$
■ "p " = "resolution" = " parallelism" = a set of spreads which partition the set of lines

Projective Geometry

$\square P G(n, q)=n$-dim. projective space over $G F(q)$ $\left(G F(q)^{n+1}-\{0\}\right) / \sim$
-" poin" = projective point
1-dim. vector subspace

- " " = projective line

2-dim. vector subspace
\square "s " = a set of lines which partition the points of $P G(n, q)$
口"p " = "resolution" = " parallelism" = a set of spreads which partition the set of lines
$\square \exists$ packing in $P G(n, q) \Longrightarrow n$: odd $(\Longleftarrow$: open $)$

$P G(n, q), n:$ even

"packing" = "resolution" = " parallelism" = a set of spreads which partition the set of points
$\square \exists$ packing in $P G(n, q) \Longrightarrow n$: odd
$P G(n, q), n$: even
" "packing" = "resolution" = " parallelism" = a set of spreads which partition the set of points
$\square \exists$ packing in $P G(n, q) \Longrightarrow n$: odd
Question 1. Does there exist a partition of the set of lines of $P G(\quad, q)$ into spreads of hyperplanes?
" "packing" = "resolution" = " parallelism" = a set of spreads which partition the set of points
$\square \exists$ packing in $P G(n, q) \Longrightarrow n$: odd
Question 1. Does there exist a partition of the set of lines of $P G(\quad, q)$ into spreads of hyperplanes? When the answer to Question 1 is affirmative, we say that $P G(2 n, q)$ is $(2 n-1)$-partitionable.

$P G(n, q), n:$ even

" "packing" = "resolution" = " parallelism" = a set of spreads which partition the set of points
$\square \exists$ packing in $P G(n, q) \Longrightarrow n$: odd
Question 1. Does there exist a partition of the set of lines of $P G(\quad, q)$ into spreads of hyperplanes? When the answer to Question 1 is affirmative, we say that $P G(2 n, q)$ is $(2 n-1)$-partitionable.
$\#($ lines $)=\frac{\left(q^{n+1}-1\right)\left(q^{n}-1\right)}{\left(q^{2}-1\right)(q-1)}=\frac{\left(q^{n+1}-1\right)}{(q-1)} \cdot \frac{\left(q^{n}-1\right)}{\left(q^{2}-1\right)}$
$=\#$ (hyperplanes) $\times \#$ $\left.\begin{array}{l}\text { lines in a spread } \\ \text { of a hyperplane }\end{array}\right)$

Question 2. Does there exist a spread S_{H} for each hyperplane H of $\operatorname{PG}(2 n, q)$, such that

$$
\text { lines of } P G(2 n, q)=\bigcup_{H} S_{H} \text { (disjoint), }
$$

where H runs through all hyperplanes of $P G(2 n, q)$?

Question 2. Does there exist a spread S_{H} for each hyperplane H of $P G(2 n, q)$, such that

$$
\text { lines of } P G(2 n, q)=\bigcup_{H} S_{H} \text { (disjoint), }
$$

where H runs through all hyperplanes of $P G(2 n, q)$? for $(2 n, q)=(4,2),(4,3),(6, q)$, etc.

Question 2. Does there exist a spread S_{H} for each hyperplane H of $\operatorname{PG}(2 n, q)$, such that

$$
\text { lines of } P G(2 n, q)=\bigcup_{H} S_{H} \text { (disjoint), }
$$

where H runs through all hyperplanes of $P G(2 n, q)$? for $(2 n, q)=(4,2),(4,3),(6, q)$, etc.
The answer was unknown for $(4,4),(4,5),(4,7)$, etc.

Singer Cycle

$\sigma=$ Singer cycle of $P G(2 n, q)$
$=$ cyclic automorphism of order $\frac{q^{2 n+1}-1}{q-1}$

Singer Cycle

$\sigma=$ Singer cycle of $P G(2 n, q)$
$=$ cyclic automorphism of order $\frac{q^{2 n+1}-1}{q-1}$
$\langle\sigma\rangle$ has $\left\{\begin{array}{l}\text { only one orbit on points } \\ \text { only one orbit on hyperplanes }\end{array}\right.$

Singer Cycle

$\sigma=$ Singer cycle of $P G(2 n, q)$

$=$ cyclic automorphism of order $\frac{q^{2 n+1}-1}{q-1}$
$\langle\sigma\rangle$ has $\left\{\begin{array}{l}\text { only one orbit on points } \\ \text { only one orbit on hyperplanes }\end{array}\right.$
In $P G(2 n, q)$,

$$
\begin{aligned}
H & =L_{1} \cup L_{2} \cup \cdots \cup L_{s}: \text { spread of } H \\
H^{\sigma} & =L_{1}^{\sigma} \cup L_{2}^{\sigma} \cup \cdots \cup L_{s}^{\sigma}: \text { spread of } H^{\sigma}
\end{aligned}
$$

Orbits of Singer Cycle

In $P G(2 n, q)$,

$$
\begin{aligned}
H & =L_{1} \cup L_{2} \cup \cdots \cup L_{s}: \text { spread of } H \\
H^{\sigma} & =L_{1}^{\sigma} \cup L_{2}^{\sigma} \cup \cdots \cup L_{s}^{\sigma}: \text { spread of } H^{\sigma}
\end{aligned}
$$

if distinct $\langle\sigma\rangle$-orbits $\Longrightarrow(2 n-1)$-partitionable

Orbits of Singer Cycle

In $P G(2 n, q)$,

$$
\begin{aligned}
H & =L_{1} \cup L_{2} \cup \cdots \cup L_{s}: \text { spread of } H \\
H^{\sigma} & =L_{1}^{\sigma} \cup L_{2}^{\sigma} \cup \cdots \cup L_{s}^{\sigma}: \text { spread of } H^{\sigma}
\end{aligned}
$$

if distinct $\langle\sigma\rangle$-orbits $\Longrightarrow(2 n-1)$-partitionable
Question 3. Does there exist a spread S of a hyperplane H in $P G(2 n, q)$ such that the members of S belong to distinct $\langle\sigma\rangle$-orbits?

Orbits of Singer Cycle

In $P G(2 n, q)$,

$$
\begin{aligned}
H & =L_{1} \cup L_{2} \cup \cdots \cup L_{s}: \text { spread of } H \\
H^{\sigma} & =L_{1}^{\sigma} \cup L_{2}^{\sigma} \cup \cdots \cup L_{s}^{\sigma}: \text { spread of } H^{\sigma}
\end{aligned}
$$

if distinct $\langle\sigma\rangle$-orbits $\Longrightarrow(2 n-1)$-partitionable
Question 3. Does there exist a spread S of a hyperplane H in $P G(2 n, q)$ such that the members of S belong to distinct $\langle\sigma\rangle$-orbits?
Such a spread produces a difference system of sets.

Difference System of Sets

Suppose that there is a spread S of a hyperplane H of $P G(2 n, q)$ such that the members of S belong to different $\langle\sigma\rangle$-orbits.

Difference System of Sets

Suppose that there is a spread S of a hyperplane H of $P G(2 n, q)$ such that the members of S belong to different $\langle\sigma\rangle$-orbits.
Then S becomes a difference system of sets, defined as follows.

Difiference System of Sets

Suppose that there is a spread S of a hyperplane H of $P G(2 n, q)$ such that the members of S belong to different $\langle\sigma\rangle$-orbits.
Then S becomes a difference system of sets, defined as follows.
Definition. Let G be a finite group of order v, let λ, m be positive integers.

Difference System of Sets

Suppose that there is a spread S of a hyperplane H of $P G(2 n, q)$ such that the members of S belong to different $\langle\sigma\rangle$-orbits.
Then S becomes a difference system of sets, defined as follows.
Definition. Let G be a finite group of order v, let λ, m be positive integers. A family of m-subsets $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ of G is called a $(v, k, \lambda ; m)$ if the multiset

$$
\left\{g h^{-1} \mid g \in B_{i}, h \in B_{j}, 1 \leq i, j \leq k, i \neq j\right\}
$$

coincides with $\lambda(G-\{1\})$.

Partitionability and DSS

Indeed, identify $\langle\sigma\rangle$ with $P G(2 n, q)$. Then

Partitionability and DSS

Indeed, identify $\langle\sigma\rangle$ with $P G(2 n, q)$. Then $\left\{g h^{-1} \mid g \in L_{i}, h \in L_{j}, 1 \leq i, j \leq k, i \neq j\right\}$

Partitionability and DSS

Indeed, identify $\langle\sigma\rangle$ with $P G(2 n, q)$. Then $\left\{g h^{-1} \mid g \in L_{i}, h \in L_{j}, 1 \leq i, j \leq k, i \neq j\right\}$
$\left\{g h^{-1} \mid g \in L_{i}, h \in L_{j}, 1 \leq i, j \leq k, g \neq h\right\}$
$-\left\{g h^{-1} \mid g \in L_{i}, h \in L_{i}, 1 \leq i \leq k, g \neq h\right\}$

Partitionability and DSS

Indeed, identify $\langle\sigma\rangle$ with $P G(2 n, q)$. Then $\left\{g h^{-1} \mid g \in L_{i}, h \in L_{j}, 1 \leq i, j \leq k, i \neq j\right\}$
$\left\{g h^{-1} \mid g \in L_{i}, h \in L_{j}, 1 \leq i, j \leq k, g \neq h\right\}$
$-\left\{g h^{-1} \mid g \in L_{i}, h \in L_{i}, 1 \leq i \leq k, g \neq h\right\}$
$\left\{g h^{-1} \mid g \in H, h \in H, g \neq h\right\}$ difference set

- $\bigcup_{i=1}^{k}\left\{g h^{-1} \mid g \in L_{i}, h \in L_{i}, g \neq h\right\}$ difference family

Partitionability and DSS

Indeed, identify $\langle\sigma\rangle$ with $P G(2 n, q)$. Then $\left\{g h^{-1} \mid g \in L_{i}, h \in L_{j}, 1 \leq i, j \leq k, i \neq j\right\}$
$\left\{g h^{-1} \mid g \in L_{i}, h \in L_{j}, 1 \leq i, j \leq k, g \neq h\right\}$
$-\left\{g h^{-1} \mid g \in L_{i}, h \in L_{i}, 1 \leq i \leq k, g \neq h\right\}$
$\left\{g h^{-1} \mid g \in H, h \in H, g \neq h\right\}$ difference set

- $\bigcup_{i=1}^{k}\left\{g h^{-1} \mid g \in L_{i}, h \in L_{i}, g \neq h\right\}$ difference family

$$
\frac{q^{n-1}-1}{q-1}(G-\{1\})-(G-\{1\}) .
$$

Partitionability and DSS

Indeed, identify $\langle\sigma\rangle$ with $P G(2 n, q)$. Then $\left\{g h^{-1} \mid g \in L_{i}, h \in L_{j}, 1 \leq i, j \leq k, i \neq j\right\}$
$\left\{g h^{-1} \mid g \in L_{i}, h \in L_{j}, 1 \leq i, j \leq k, g \neq h\right\}$
$-\left\{g h^{-1} \mid g \in L_{i}, h \in L_{i}, 1 \leq i \leq k, g \neq h\right\}$
$\left\{g h^{-1} \mid g \in H, h \in H, g \neq h\right\}$ difference set
$-\bigcup_{i=1}^{k}\left\{g h^{-1} \mid g \in L_{i}, h \in L_{i}, g \neq h\right\}$ difference
family

$$
\frac{q^{n-1}-1}{q-1}(G-\{1\})-(G-\{1\}) .
$$

Thus

$$
\left(\frac{q^{n+1}-1}{q-1}, \frac{q^{n}-1}{q-1}, \frac{q^{n-1}-q}{q-1} ; q+1\right) \text { d.s.s. }
$$

Let H be a hyperplane in $P G(4,4)$. Define a graph Γ as follows.

- vertices $=$ lines of H

Let H be a hyperplane in $P G(4,4)$. Define a graph Γ as follows.

- vertices = lines of H
edges = pairs $\left\{L, L^{\prime}\right\}$ of skew lines such that $L^{\prime} \notin L^{\langle\sigma\rangle}$.

Let H be a hyperplane in $P G(4,4)$. Define a graph Γ as follows.

- vertices = lines of H
edges = pairs $\left\{L, L^{\prime}\right\}$ of skew lines such that

$$
L^{\prime} \notin L^{\langle\sigma\rangle} .
$$

Every clique of size $q^{2}+1=17$ in Γ gives a spread such that its members belong to distinct $\langle\sigma\rangle$-orbits.

Let H be a hyperplane in $P G(4,4)$. Define a graph Γ as follows.

- vertices $=$ lines of H
edges = pairs $\left\{L, L^{\prime}\right\}$ of skew lines such that

$$
L^{\prime} \notin L^{\langle\sigma\rangle} .
$$

Every clique of size $q^{2}+1=17$ in Γ gives a spread such that its members belong to distinct $\langle\sigma\rangle$-orbits.
Γ has
357 vertices, 42, 976 edges,
and using MAGMA, we see that Γ has no clique of size 17.

$P G(4, q)$ with $q \equiv 2$ or $3(\bmod 5)$

When $q>4$, the exhaustive search like the case of $P G(4,4)$ does not work.

$P G(4, q)$ with $q \equiv 2$ or $3(\bmod 5)$

When $q>4$, the exhaustive search like the case of $P G(4,4)$ does not work. So we try to perform a more restrictive search, by assuming more symmetry
(Frobenius automorphism).

$P G(4, q)$ with $q \equiv 2$ or $3(\bmod 5)$

When $q>4$, the exhaustive search like the case of $P G(4,4)$ does not work. So we try to perform a more restrictive search, by assuming more symmetry
(Frobenius automorphism).

- $G F\left(q^{5}\right) \leftrightarrow G F(q)^{5} \rightarrow P G(4, q)$

$P G(4, q)$ with $q \equiv 2$ or $3(\bmod 5)$

When $q>4$, the exhaustive search like the case of $P G(4,4)$ does not work. So we try to perform a more restrictive search, by assuming more symmetry
(Frobenius automorphism).

- $G F\left(q^{5}\right) \leftrightarrow G F(q)^{5} \rightarrow P G(4, q)$
- $\langle f\rangle=\operatorname{AutGF}\left(q^{5}\right)$.

$P G(4, q)$ with $q \equiv 2$ or $3(\bmod 5)$

When $q>4$, the exhaustive search like the case of $P G(4,4)$ does not work. So we try to perform a more restrictive search, by assuming more symmetry
(Frobenius automorphism).

- $G F\left(q^{5}\right) \leftrightarrow G F(q)^{5} \rightarrow P G(4, q)$
- $\langle f\rangle=\operatorname{AutGF}\left(q^{5}\right)$.

Regard f as an automorphism of $P G(4, q)$.

$P G(4, q)$ with $q \equiv 2$ or $3(\bmod 5)$

When $q>4$, the exhaustive search like the case of $P G(4,4)$ does not work. So we try to perform a more restrictive search, by assuming more symmetry
(Frobenius automorphism).

- $G F\left(q^{5}\right) \leftrightarrow G F(q)^{5} \rightarrow P G(4, q)$
- $\langle f\rangle=\operatorname{AutGF}\left(q^{5}\right)$.

Regard f as an automorphism of $P G(4, q)$.

- f fixes a unique hyperplane H, but none of the lines of H.

$P G(4, q)$ with $q \equiv 2$ or $3(\bmod 5)$

When $q>4$, the exhaustive search like the case of $P G(4,4)$ does not work. So we try to perform a more restrictive search, by assuming more symmetry
(Frobenius automorphism).

- $G F\left(q^{5}\right) \leftrightarrow G F(q)^{5} \rightarrow P G(4, q)$
- $\langle f\rangle=\operatorname{Aut} G F\left(q^{5}\right)$.

Regard f as an automorphism of $P G(4, q)$.

- f fixes a unique hyperplane H, but none of the lines of H.
Look for an f-invariant spread

$$
S=\left\{L_{1}, L_{1}^{f}, L_{1}^{f^{2}}, L_{1}^{f^{3}}, L_{1}^{f^{4}}, \ldots L_{\frac{q^{2}+1}{5}}^{f^{4}}\right\}
$$

of H, such that its members belong to distinct $\langle\sigma\rangle=0$

In graph theoretic terms again, define a graph $\bar{\Gamma}$ as follows.
\square vertices $=\left\{L^{\langle f\rangle} \mid L\right.$: line of $\left.H\right\}$: sets of skew lines

In graph theoretic terms again, define a graph $\bar{\Gamma}$ as follows.

- vertices $=\left\{L^{\langle f\rangle} \mid L:\right.$ line of $\left.H\right\}$: sets of skew lines
\square edges $=$ pairs $\left\{L^{\langle f\rangle}, M^{\langle f\rangle}\right\}$ such that $L^{f^{i}} \cap M^{f^{j}}=\emptyset$ and $L^{f^{i}} \notin M^{f^{j}\langle\sigma\rangle}$.

In graph theoretic terms again, define a graph $\bar{\Gamma}$ as follows.

- vertices $=\left\{L^{\langle f\rangle} \mid L\right.$: line of $\left.H\right\}$: sets of skew lines
- edges = pairs $\left\{L^{\langle f\rangle}, M^{\langle f\rangle}\right\}$ such that $L^{f^{i}} \cap M^{f^{j}}=\emptyset$ and $L^{f^{i}} \notin M^{f^{j}\langle\sigma\rangle}$.

Every clique of size $\left(q^{2}+1\right) / 5=13$ in $\bar{\Gamma}$ gives an f invariant spread such that its members belong to distinct $\langle\sigma\rangle$-orbits.
$\bar{\Gamma}$ has

715 vertices, 107, 694 edges,

$\bar{\Gamma}$ has
715 vertices, 107, 694 edges, and using MAGMA, we see that $\bar{\Gamma}$ has a clique of size 13.
$\bar{\Gamma}$ has
715 vertices, 107, 694 edges, and using MAGMA, we see that $\bar{\Gamma}$ has a clique of size 13.

Theorem. $P G(4,8)$ is 3 -partitionable.
$\bar{\Gamma}$ has

715 vertices, 107, 694 edges,

 and using MAGMA, we see that $\bar{\Gamma}$ has a clique of size 13.Theorem. $P G(4,8)$ is 3-partitionable.
Somewhat more complicated analysis shows that $P G(4, q)$ is 3-partitionable for $q=5,9$.
$\bar{\Gamma}$ has

715 vertices, 107, 694 edges,

 and using MAGMA, we see that $\bar{\Gamma}$ has a clique of size 13.Theorem. $P G(4,8)$ is 3 -partitionable.
Somewhat more complicated analysis shows that $P G(4, q)$ is 3-partitionable for $q=5,9$.
They give

$$
(v, k, \lambda)=\left(\frac{q^{5}-1}{q-1}, q^{2}+1, q^{2}+q ; q+1\right)
$$

difference system of sets for $q=5,8,9$.
spreads of Planes in $P G(b, q)$ PG(6,q)

As before let σ denote a Singer cycle in $P G(6, q)$.
of Panes in
$P G(5, q)$ \qquad

Question 4. Does there exist a spread Π of planes of a hyperplane H in $P G(6, q)$ such that

Question 4. Does there exist a spread Π of planes of a hyperplane H in $P G(6, q)$ such that

- the members of Π belong to distinct $\langle\sigma\rangle$-orbits,

Question 4. Does there exist a spread Π of planes of a hyperplane H in $P G(6, q)$ such that

- the members of Π belong to distinct $\langle\sigma\rangle$-orbits,
- Π forms a difference family.

spreads $P G(6, q)$

Question 4. Does there exist a spread Π of planes of a hyperplane H in $P G(6, q)$ such that

- the members of Π belong to distinct $\langle\sigma\rangle$-orbits,
- Π forms a difference family.

If $\Pi=\left\{P_{1}, P_{2}, \ldots, P_{q^{3}+q}\right\}$ is such a spread of planes, then Π forms a

$$
\left(\frac{q^{7}-1}{q-1}, q^{3}+1, \frac{q^{5}-q^{2}}{q-1} ; \frac{q^{3}-1}{q-1}\right)
$$

difference system of sets.

spreads

of Panes
in

Question 4. Does there exist a spread Π of planes of a hyperplane H in $P G(6, q)$ such that

- the members of Π belong to distinct $\langle\sigma\rangle$-orbits,
- Π forms a difference family.

If $\Pi=\left\{P_{1}, P_{2}, \ldots, P_{q^{3}+q}\right\}$ is such a spread of planes, then Π forms a

$$
\left(\frac{q^{7}-1}{q-1}, q^{3}+1, \frac{q^{5}-q^{2}}{q-1} ; \frac{q^{3}-1}{q-1}\right)
$$

difference system of sets.
A difference family whose members belong to distinct $\langle\sigma\rangle$-orbits was constructed for $q=2$ by Miyakawa-Munemasa-Yoshiara (1995).

