An Introduction to Designs in Spheres and Complex Projective Spaces

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University

September 14, 2006

Akihiro Munemasa Designs in Spheres Tohoku University

< □ > < 同 >

Spherical Designs

Why can't we place 5 points on a sphere in a nice way, even though we can easily do the same for 4 points (tetrahedron) or for 6 points (octahedron)?

We will answer this question rigorously by defining spherical design. There is no spherical 2-design in \mathbb{R}^3 of 4 points, or of 6 points, but not of 5 points.

Spherical Designs

Why can't we place 5 points on a sphere in a nice way, even though we can easily do the same for 4 points (tetrahedron) or for 6 points (octahedron)? We will answer this question rigorously by defining spherical design. There is no spherical 2-design in \mathbb{R}^3 of 4 points, or of 6 points, but not of 5 points.

Spherical Designs

Why can't we place 5 points on a sphere in a nice way, even though we can easily do the same for 4 points (tetrahedron) or for 6 points (octahedron)? We will answer this question rigorously by defining spherical design. There is no spherical 2-design in \mathbb{R}^3 of 4 points, or of 6 points, but not of 5 points.

Definition of Spherical Design

Definition

Let *d* be a positive integer. Let $\Omega_d = \{\mathbf{x} \in \mathbb{R}^d \mid \|\mathbf{x}\| = 1\}$ be the unit sphere in \mathbb{R}^d . A spherical *t*-design is a finite nonempty subset *X* of Ω_d satisfying $\frac{1}{\text{volume}(\Omega_d)} \int_{\Omega_d} f(\xi) d\xi = \frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x})$ (1)

Tohoku University

for all polynomial functions f of degree at most t.

Akihiro Munemasa Designs in Spheres

Definition of Spherical Design

Definition

Let *d* be a positive integer. Let $\Omega_d = \{\mathbf{x} \in \mathbb{R}^d \mid ||\mathbf{x}|| = 1\}$ be the unit sphere in \mathbb{R}^d . A *spherical t-design* is a finite nonempty subset *X* of Ω_d satisfying

$$\frac{1}{\text{volume}(\Omega_d)} \int_{\Omega_d} f(\xi) d\xi = \frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x})$$
(1)

A B > A B > A B
A

Tohoku University

for all polynomial functions f of degree at most t.

Akihiro Munemasa

Definition of Spherical Design

Definition

Let *d* be a positive integer. Let $\Omega_d = \{\mathbf{x} \in \mathbb{R}^d \mid ||\mathbf{x}|| = 1\}$ be the unit sphere in \mathbb{R}^d . A *spherical t-design* is a finite nonempty subset *X* of Ω_d satisfying

$$\frac{1}{\text{volume}(\Omega_d)} \int_{\Omega_d} f(\xi) d\xi = \frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x})$$
(1)

Tohoku University

for all polynomial functions f of degree at most t.

Akihiro Munemasa Designs in Spheres

Theorem (Mimura, 1990)

Let n, d be positive integers with $d \ge 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^d unless $n \le d$ or n = d + 2 is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^3 . If *n* or *d* is even, then the construction is easy. If both *n* and *d* are odd, we will give a construction which is much simpler than Mimura's.

Theorem (Mimura, 1990)

Let n, d be positive integers with $d \ge 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^d unless $n \le d$ or n = d + 2 is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^3 . If *n* or *d* is even, then the construction is easy. If both *n* and *d* are odd, we will give a construction which is much simpler than Mimura's.

Theorem (Mimura, 1990)

Let n, d be positive integers with $d \ge 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^d unless $n \le d$ or n = d + 2 is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^3 .

If n or d is even, then the construction is easy. If both n and d are odd, we will give a construction which is much simpler than Mimura's.

Theorem (Mimura, 1990)

Let n, d be positive integers with $d \ge 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^d unless $n \le d$ or n = d + 2 is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^3 . If *n* or *d* is even, then the construction is easy.

If both *n* and *d* are odd, we will give a construction which is much simpler than Mimura's.

Theorem (Mimura, 1990)

Let n, d be positive integers with $d \ge 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^d unless $n \le d$ or n = d + 2 is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^3 . If *n* or *d* is even, then the construction is easy. If both *n* and *d* are odd, we will give a construction which is much simpler than Mimura's.

Angle Set of Spherical Design

The angle set of a finite set $X \subset \Omega_d$ is

$A(X) = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in X, \ \mathbf{x} \neq \mathbf{y}\} \subset [-1, 1).$

If we regard it as a multiset, then the property of being a spherical *t*-design can be described in terms of the angle set.

Theorem (Delsarte-Goethals-Seidel)

A finite set $X \subset \Omega_d$ is a spherical *t*-design if and only if

$$\sum_{\mathbf{x},\mathbf{y}\in X} P_k((\mathbf{x},\mathbf{y})) = 0 \quad \text{for } k = 1, 2, \dots, t,$$

Image: A math a math

Tohoku University

where $P_k(x)$ (k = 1, 2, ...) are Gegenbauer polynomials.

Akihiro Munemasa

Angle Set of Spherical Design

The angle set of a finite set $X \subset \Omega_d$ is

$$A(X) = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in X, \ \mathbf{x} \neq \mathbf{y}\} \subset [-1, 1).$$

If we regard it as a multiset, then the property of being a spherical *t*-design can be described in terms of the angle set.

Theorem (Delsarte-Goethals-Seidel)

A finite set $X \subset \Omega_d$ is a spherical *t*-design if and only if

$$\sum_{\mathbf{x},\mathbf{y}\in X} P_k((\mathbf{x},\mathbf{y})) = 0 \quad \text{for } k = 1, 2, \dots, t,$$

< ロ > < 回 > < 回 >

Tohoku University

where $P_k(x)$ (k = 1, 2, ...) are Gegenbauer polynomials.

Akihiro Munemasa

Angle Set of Spherical Design

The angle set of a finite set $X \subset \Omega_d$ is

$$A(X) = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in X, \ \mathbf{x} \neq \mathbf{y}\} \subset [-1, 1).$$

If we regard it as a multiset, then the property of being a spherical *t*-design can be described in terms of the angle set.

Theorem (Delsarte-Goethals-Seidel)

A finite set $X \subset \Omega_d$ is a spherical *t*-design if and only if

$$\sum_{\mathbf{x},\mathbf{y}\in X} P_k((\mathbf{x},\mathbf{y})) = 0 \quad \text{for } k = 1, 2, \dots, t,$$

Tohoku University

where $P_k(x)$ (k = 1, 2, ...) are Gegenbauer polynomials.

Akihiro Munemasa

Designs in Complex Projective Spaces

Let $\Omega_d(\mathbb{C})$ denote the set of vectors of \mathbb{C}^d of unit length. The complex projective space P^{d-1} is the quotient set of $\Omega_d(\mathbb{C})$, by the equivalence relation

$$\mathbf{x}\sim \mathbf{y}\iff \mathbf{x}=e^{\sqrt{-1} heta}\mathbf{y}$$
 for some $heta\in\mathbb{R}.$

Definition

A *t*-design in P^{d-1} is a finite nonempty subset X of P^{d-1} satisfying

$$\int_{P^{d-1}} f(\xi) d\xi = \frac{1}{|X|} \sum_{x \in X} f(x)$$
 (2)

for all $f \in \bigoplus_{k=0}^{t} \text{Hom}(k)$, where $d\xi$ denotes the unique normalized Haar measure invariant under the unitary group $U(d, \mathbb{C})$, and Hom(k) will be defined later.

Akihiro Munemasa

Designs in Complex Projective Spaces

Let $\Omega_d(\mathbb{C})$ denote the set of vectors of \mathbb{C}^d of unit length. The complex projective space P^{d-1} is the quotient set of $\Omega_d(\mathbb{C})$, by the equivalence relation

$$\mathbf{x}\sim \mathbf{y}\iff \mathbf{x}=e^{\sqrt{-1} heta}\mathbf{y} \quad ext{for some } heta\in\mathbb{R}.$$

Definition

A *t*-design in P^{d-1} is a finite nonempty subset X of P^{d-1} satisfying

$$\int_{P^{d-1}} f(\xi) d\xi = \frac{1}{|X|} \sum_{x \in X} f(x)$$
 (2)

for all $f \in \bigoplus_{k=0}^{t} \text{Hom}(k)$, where $d\xi$ denotes the unique normalized Haar measure invariant under the unitary group $U(d, \mathbb{C})$, and Hom(k) will be defined later.

Akihiro Munemasa

Examples of 2-designs

• d+1 mutually unbiased bases in \mathbb{C}^d

 Symmetric informationally complete positive operator-valued measure (SIC-POVM).

Akihiro Munemasa Designs in Spheres Tohoku University

< 冊

Examples of 2-designs

- d+1 mutually unbiased bases in \mathbb{C}^d
- Symmetric informationally complete positive operator-valued measure (SIC-POVM).