An Introduction to Designs in Spheres and Complex Projective Spaces

Akihiro Munemasa ${ }^{1}$
${ }^{1}$ Graduate School of Information Sciences
Tohoku University

September 14, 2006

Spherical Designs

Why can't we place 5 points on a sphere in a nice way, even though we can easily do the same for 4 points (tetrahedron) or for 6 points (octahedron)?
We will answer this question rigorously by defining spherical design. There is no spherical 2-design in \mathbb{R}^{3} of 4 points, or of 6 points, but not of 5 points.

Spherical Designs

Why can't we place 5 points on a sphere in a nice way, even though we can easily do the same for 4 points (tetrahedron) or for 6 points (octahedron)?
We will answer this question rigorously by defining spherical design.
There is no spherical 2-design in \mathbb{R}^{3} of 4 points, or of 6 points, but
not of 5 points.

Spherical Designs

Why can't we place 5 points on a sphere in a nice way, even though we can easily do the same for 4 points (tetrahedron) or for 6 points (octahedron)?
We will answer this question rigorously by defining spherical design. There is no spherical 2-design in \mathbb{R}^{3} of 4 points, or of 6 points, but not of 5 points.

Definition of Spherical Design

Definition

Let d be a positive integer. Let $\Omega_{d}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid\|\mathbf{x}\|=1\right\}$ be the unit sphere in \mathbb{R}^{d}.
A spherical t-design is a finite nonempty subset X of Ω_{d} satisfying

for all polynomial functions f of degree at most t

Definition of Spherical Design

Definition

Let d be a positive integer. Let $\Omega_{d}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid\|\mathbf{x}\|=1\right\}$ be the unit sphere in \mathbb{R}^{d}.
A spherical t-design is a finite nonempty subset X of Ω_{d} satisfying

$$
\begin{equation*}
\frac{1}{\operatorname{volume}\left(\Omega_{d}\right)} \int_{\Omega_{d}} f(\xi) d \xi=\frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x}) \tag{1}
\end{equation*}
$$

for all polynomial functions f of degree at most t

Definition of Spherical Design

Definition

Let d be a positive integer. Let $\Omega_{d}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid\|\mathbf{x}\|=1\right\}$ be the unit sphere in \mathbb{R}^{d}.
A spherical t-design is a finite nonempty subset X of Ω_{d} satisfying

$$
\begin{equation*}
\frac{1}{\operatorname{volume}\left(\Omega_{d}\right)} \int_{\Omega_{d}} f(\xi) d \xi=\frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x}) \tag{1}
\end{equation*}
$$

for all polynomial functions f of degree at most t.

Existence of Spherical 2-Designs

Theorem (Mimura, 1990)

Let n, d be positive integers with $d \geq 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^{d} unless $n \leq d$ or $n=d+2$ is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^{3}
If n or d is even, then the construction is easy.
If both n and d are odd, we will give a construction which is much simpler than Mimura's.

Existence of Spherical 2-Designs

Theorem (Mimura, 1990)
Let n, d be positive integers with $d \geq 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^{d} unless $n \leq d$ or $n=d+2$ is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^{3}
If n or d is even, then the construction is easy.
If both n and d are odd, we will give a construction which is much simpler than Mimura's.

Existence of Spherical 2-Designs

Theorem (Mimura, 1990)
Let n, d be positive integers with $d \geq 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^{d} unless $n \leq d$ or $n=d+2$ is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^{3}.
If n or d is even, then the construction is easy.
If both n and d are odd, we will give a construction which is much simpler than Mimura's.

Existence of Spherical 2-Designs

Theorem (Mimura, 1990)

Let n, d be positive integers with $d \geq 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^{d} unless $n \leq d$ or $n=d+2$ is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^{3}.
If n or d is even, then the construction is easy.
If both n and d are odd, we will give a construction which is much
simpler than Mimura's.

Existence of Spherical 2-Designs

Theorem (Mimura, 1990)

Let n, d be positive integers with $d \geq 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^{d} unless $n \leq d$ or $n=d+2$ is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^{3}.
If n or d is even, then the construction is easy.
If both n and d are odd, we will give a construction which is much simpler than Mimura's.

Angle Set of Spherical Design

The angle set of a finite set $X \subset \Omega_{d}$ is

$$
A(X)=\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in X, \mathbf{x} \neq \mathbf{y}\} \subset[-1,1)
$$

If we regard it as a multiset, then the property of being a spherical t-design can be described in terms of the angle set.

Theorem (Delcarte-Gecthals-Seidel)

A finite set $X \subset \Omega_{d}$ is a spherical t-design if and only if

where $P_{k}(x)(k=1,2, \ldots)$ are Gegenbauer polynomials.

Angle Set of Spherical Design

The angle set of a finite set $X \subset \Omega_{d}$ is

$$
A(X)=\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in X, \mathbf{x} \neq \mathbf{y}\} \subset[-1,1)
$$

If we regard it as a multiset, then the property of being a spherical t-design can be described in terms of the angle set.

Theorem (Delsarte-Goethals-Seidel)

A finite set $X \subset \Omega_{d}$ is a spherical t-design if and only if
where $P_{k}(x)(k=1,2, \ldots)$ are Gegenbauer polynomials.

Angle Set of Spherical Design

The angle set of a finite set $X \subset \Omega_{d}$ is

$$
A(X)=\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in X, \mathbf{x} \neq \mathbf{y}\} \subset[-1,1)
$$

If we regard it as a multiset, then the property of being a spherical t-design can be described in terms of the angle set.

Theorem (Delsarte-Goethals-Seidel)

A finite set $X \subset \Omega_{d}$ is a spherical t-design if and only if

$$
\sum_{\mathbf{x}, \mathbf{y} \in X} P_{k}((\mathbf{x}, \mathbf{y}))=0 \quad \text { for } k=1,2, \ldots, t
$$

where $P_{k}(x)(k=1,2, \ldots)$ are Gegenbauer polynomials.

Designs in Complex Projective Spaces

Let $\Omega_{d}(\mathbb{C})$ denote the set of vectors of \mathbb{C}^{d} of unit length. The complex projective space P^{d-1} is the quotient set of $\Omega_{d}(\mathbb{C})$, by the equivalence relation

$$
\mathbf{x} \sim \mathbf{y} \Longleftrightarrow \mathbf{x}=e^{\sqrt{-1} \theta} \mathbf{y} \quad \text { for some } \theta \in \mathbb{R}
$$

Definition

A t-design in P^{d-1} is a finite nonempty subset X of P^{d-1} satisfying

Designs in Complex Projective Spaces

Let $\Omega_{d}(\mathbb{C})$ denote the set of vectors of \mathbb{C}^{d} of unit length. The complex projective space P^{d-1} is the quotient set of $\Omega_{d}(\mathbb{C})$, by the equivalence relation

$$
\mathbf{x} \sim \mathbf{y} \Longleftrightarrow \mathbf{x}=e^{\sqrt{-1} \theta} \mathbf{y} \quad \text { for some } \theta \in \mathbb{R}
$$

Definition

A t-design in P^{d-1} is a finite nonempty subset X of P^{d-1} satisfying

$$
\begin{equation*}
\int_{P^{d-1}} f(\xi) d \xi=\frac{1}{|X|} \sum_{x \in X} f(x) \tag{2}
\end{equation*}
$$

for all $f \in \bigoplus_{k=0}^{t} \operatorname{Hom}(k)$, where $d \xi$ denotes the unique normalized Haar measure invariant under the unitary group $U(d, \mathbb{C})$, and $\operatorname{Hom}(k)$ will be defined later.

Examples of 2-designs

- $d+1$ mutually unbiased bases in \mathbb{C}^{d}
- Symmetric informationally complete positive operator-valued measure (SIC-POVM).

Examples of 2-designs

- $d+1$ mutually unbiased bases in \mathbb{C}^{d}

■ Symmetric informationally complete positive operator-valued measure (SIC-POVM).

