An Introduction to Designs in Spheres and Complex Projective Spaces

東北大学大学院情報科学研究科

Graduate School of Information Sciences
Tohoku University
宗政昭弘
Akihiro Munemasa
2006年9月14日

1 Characterization of spherical 2－designs

Definition 1．Let d be a positive integer．Let $\Omega_{d}=\left\{x \in \mathbb{R}^{d} \mid\|x\|=1\right\}$ be the unit sphere in \mathbb{R}^{d} ．A spherical t－design is a finite nonempty subset（multiset）X of Ω_{d} satisfying

$$
\begin{equation*}
\frac{1}{\operatorname{volume}\left(\Omega_{d}\right)} \int_{\Omega_{d}} f(\xi) d \xi=\frac{1}{|X|} \sum_{x \in X} f(x) \tag{1}
\end{equation*}
$$

for all polynomial functions f of degree at most t ．
Let $\operatorname{Hom}(k)$ denote the linear space of homogeneous polynomials of degree k ．

$$
\begin{aligned}
& \operatorname{Hom}(1)=\left\langle x_{i} \mid 1 \leq i \leq d\right\rangle \\
& \operatorname{Hom}(2)=\left\langle x_{i} x_{j}, x_{k}^{2} \mid 1 \leq i<j \leq d, 1 \leq k \leq d\right\rangle
\end{aligned}
$$

For a $d \times n$ matrix，put $W=\sqrt{d / n} X=\left(w_{i k}\right)$ ．
Lemma 2．The column vectors of X form a spherical 2－design in \mathbb{R}^{d} if and only if

$$
\begin{gather*}
\sum_{i=1}^{d} w_{i k}^{2}=\frac{d}{n} \quad(1 \leq k \leq n), \tag{C0}\\
\sum_{k=1}^{n} w_{i k}=0 \quad(1 \leq i \leq d), \tag{C1}\\
\sum_{k=1}^{n} w_{i k} w_{j k}=0 \quad(1 \leq i<j \leq d), \tag{C2}\\
\sum_{k=1}^{n} w_{i k}^{2}=1 \quad(1 \leq i \leq d) . \tag{C3}
\end{gather*}
$$

Let

$$
\begin{equation*}
v_{0}=\sqrt{\frac{1}{n}}(1, \ldots, 1) \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

Lemma 3. Assume that the matrix W satisfies (C0). Then W satisfies (C1)-(C3) if and only if there exists an $(n-d-1) \times n$ matrix $W^{\prime}=\left(w_{i k}^{\prime}\right)$ such that

$$
U=\left(\begin{array}{c}
v_{0} \tag{3}\\
W \\
W^{\prime}
\end{array}\right)
$$

is an orthogonal matrix of size n. In particular, $n \geq d+1$.
Lemma 4. The existence of a spherical 2-design of n points in \mathbb{R}^{d} implies the existence of a spherical 2-design of n points in \mathbb{R}^{n-d-1}. In particular, if d is odd, then there is no spherical 2-design of $d+2$ points in \mathbb{R}^{d}.
Lemma 5. Suppose that $X=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$ is a $d \times n$ matrix with entries in \mathbb{R}, and $\left\|\boldsymbol{x}_{i}\right\|=1$ for $1 \leq i \leq n$. Then the vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ form a spherical 2-design in \mathbb{R}^{d} if and only if

$$
\begin{gather*}
\sum_{i, j=1}^{n}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=0 \tag{4}\\
\sum_{i, j=1}^{n}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)^{2}=\frac{n^{2}}{d} \tag{5}
\end{gather*}
$$

Lemma 5 implies that the property of being a spherical 2 -design is completely described in terms of its "angle set":

$$
A(X)=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) \mid 1 \leq i, j \leq n\right\}
$$

if we regard it as a multiset. This is true in general, for spherical t-designs.
Definition 6. The Gegenbauer polynomials $\left\{P_{k}\right\}_{k=0}^{\infty}$ are defined by

$$
\begin{aligned}
& P_{0}(x)=1, \quad P_{1}(x)=d x \\
& \frac{k+1}{d+2 k} P_{k+1}(x)=x P_{k}(x)-\frac{d+k-3}{d+2 k-4} P_{k-1}(x) \quad(k=1,2, \ldots) .
\end{aligned}
$$

For example,

$$
P_{2}(x)=\frac{d+2}{2}\left(d x^{2}-1\right) .
$$

Thus, (5) is equivalent to

$$
\sum_{i, j=1}^{n} P_{2}\left(\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)=0
$$

while obviously, (4) is equivalent to

$$
\sum_{i, j=1}^{n} P_{1}\left(\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)=0
$$

Theorem 7 (Delsarte-Goethals-Seidel). A finite set $X \subset \Omega_{d}$ is a spherical t-design if and only if

$$
\sum_{\boldsymbol{x}, \boldsymbol{y} \in X} P_{k}((\boldsymbol{x}, \boldsymbol{y}))=0 \quad \text { for } k=1,2, \ldots, t
$$

2 Construction

Lemma 8. Let n be a positive integer, and let $\zeta=\exp (2 \pi \sqrt{-1} / n)$. Define $u_{k} \in \mathbb{C}^{n}$ ($k \in \mathbb{Z}$) by

$$
u_{k}=\left(\zeta^{k}, \zeta^{2 k}, \ldots, \zeta^{n k}\right)
$$

and define $c_{k}, s_{k} \in \mathbb{R}^{n}(k \in \mathbb{Z}, 0 \leq k \leq n / 2)$ by

$$
\begin{equation*}
c_{k}+\sqrt{-1} s_{k}=r_{k} u_{k} \tag{6}
\end{equation*}
$$

where $r_{0}=\sqrt{1 / n}, r_{n / 2}=\sqrt{1 / n}$ if n is even, $r_{k}=\sqrt{2 / n}$ for $1 \leq k<n / 2$. Then the set

$$
\begin{equation*}
\left\{c_{k} \mid 0 \leq k \leq n / 2\right\} \cup\left\{s_{k} \mid 1 \leq k<n / 2\right\} \tag{7}
\end{equation*}
$$

forms an orthonormal basis of \mathbb{R}^{n}.
Lemma 9. Let m, n be positive integers such that $1 \leq m<n / 2$. Let W be the $2 m \times n$ matrix defined by

$$
W=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{m} \\
s_{1} \\
\vdots \\
s_{m}
\end{array}\right) .
$$

When n is even, let W^{\prime} be the $(2 m+1) \times n$ matrix defined by

$$
W^{\prime}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{m} \\
s_{1} \\
\vdots \\
s_{m} \\
c_{n / 2}
\end{array}\right) .
$$

Then each of W and W^{\prime} satisfies the conditions (C0)-(C3).
In particular, if $n d$ is even and $n \geq d+1$, then there exists a spherical 2-design of n points in \mathbb{R}^{d}.
Lemma 10. Let n, d be odd positive integers satisfying

$$
\begin{equation*}
n \geq 2 d+1 \geq 7 \tag{8}
\end{equation*}
$$

Then there exists a spherical 2-design of n points in \mathbb{R}^{d}.

Theorem 11 (Mimura). Let n, d be positive integers with $d \geq 2$. The following are equivalent.
(i) there exists a spherical 2-design of n points in \mathbb{R}^{d},
(ii) $n \geq d+1$, and $n \neq d+2$ if d is odd.

3 Designs in complex projective spaces

Let $\Omega_{d}(\mathbb{C})$ denote the set of vectors of \mathbb{C}^{d} of unit length. The complex projective space P^{d-1} is the quotient set of $\Omega_{d}(\mathbb{C})$, by the equivalence relation

$$
\boldsymbol{x} \sim \boldsymbol{y} \Longleftrightarrow \boldsymbol{x}=e^{\sqrt{-1} \theta} \boldsymbol{y} \quad \text { for some } \theta \in \mathbb{R}
$$

We denote the equivalence class containing $\boldsymbol{x} \in \Omega_{d}(\mathbb{C})$ by $[\boldsymbol{x}]$. Alternatively, one can regard $[\boldsymbol{x}]$ as a Hermitian matrix

$$
|\boldsymbol{x}\rangle\langle\boldsymbol{x}|=\left(x_{i} \overline{x_{j}}\right) \in M_{d}(\mathbb{C}) .
$$

For every $d \times d$ Hermitian idempotent matrix A of rank 1 , there exists $\boldsymbol{x} \in \Omega_{d}(\mathbb{C})$ such that $A=|\boldsymbol{x}\rangle\langle\boldsymbol{x}|$. Therefore there is a bijection

$$
\begin{aligned}
P^{d-1} & \rightarrow\left\{A \in M_{d}(\mathbb{C}) \mid A=\bar{A}^{T}=A^{2}, \operatorname{rank} A=1\right\} \\
{[\boldsymbol{x}] } & \mapsto|\boldsymbol{x}\rangle\langle\boldsymbol{x}| .
\end{aligned}
$$

Under the above identification, however, one can consider polynomial functions in terms of coordinates of the matrix $|\boldsymbol{x}\rangle\langle\boldsymbol{x}|$. These are polynomials homogeneous of degree k in the variables x_{1}, \ldots, x_{d}, and homogeneous of degree k in the variables $\overline{x_{1}}, \ldots, \overline{x_{d}}$. So we define $\operatorname{Hom}(k)$ to be the linear space of such functions.

Definition 12. A t-design in P^{d-1} is a finite nonempty subset X of P^{d-1} satisfying

$$
\begin{equation*}
\int_{P^{d-1}} f(\xi) d \xi=\frac{1}{|X|} \sum_{x \in X} f(x) \tag{9}
\end{equation*}
$$

for all $f \in \bigoplus_{k=0}^{t} \operatorname{Hom}(k)$, where $d \xi$ denotes the unique normalized Haar measure invariant under the unitary group $U(d, \mathbb{C})$.

For $[\boldsymbol{x}],[\boldsymbol{y}] \in P^{d-1}$, we define their "inner product" to be

$$
([\boldsymbol{x}],[\boldsymbol{y}])=|(\boldsymbol{x}, \boldsymbol{y})|^{2}=\operatorname{tr}(|\boldsymbol{x}\rangle\langle\boldsymbol{x} \| \boldsymbol{y}\rangle\langle\boldsymbol{y}|) .
$$

The angle set of a finite nonempty subset X of P^{d-1} is

$$
A(X)=\{([\boldsymbol{x}, \boldsymbol{y}]) \mid[\boldsymbol{x}] \in X,[\boldsymbol{y}] \in X,[\boldsymbol{x}] \neq[\boldsymbol{y}]\} .
$$

Theorem 13 ([4]). For a finite set $X \subset P^{d-1}$, the following are equivalent.
（i）X is a t－design in P^{d-1} ；
（ii）

$$
\begin{equation*}
\frac{1}{|X|^{2}} \sum_{[\boldsymbol{x}],[\boldsymbol{y}] \in X}([\boldsymbol{x}],[\boldsymbol{y}])^{k}=\frac{1}{\binom{d+k-1}{k}} \quad \text { for } 0 \leq k \leq t \tag{10}
\end{equation*}
$$

Example 14．Let A, B be two orthonormal bases of \mathbb{C}^{d} ．The pair (A, B) is said to be mutually unbiased if $|(\boldsymbol{x}, \boldsymbol{y})|^{2}=1 / d$ for all $\boldsymbol{x} \in A$ and $\boldsymbol{y} \in B$ ．Suppose that A_{1}, \ldots, A_{d+1} are orthonormal bases of \mathbb{C}^{d} which are pairwise mutually unbiased．Let

$$
X=\left\{[\boldsymbol{x}] \in P^{d-1} \mid \boldsymbol{x} \in \bigcup_{i=1}^{d+1} A_{i}\right\}
$$

Then X is a 2 －design in P^{d-1} ．
It is shown in［4，Theorem 4］that，conversely，every 2－design consisting of $d(d+1)$ elements with angle set $\{0,1 / d\}$ in P^{d-1} arises from $d+1$ mutually unbiased bases．Such a 2 －design exists whenever d is a prime power［9］．In a different context，Popa［7，Theorem 3．2］already established the existence of such a 2－design whenever d is a prime．Zauner ［10］conjectures that such a 2 －design does not exist if d is not a prime power．

The following theorem gives an analogue of Fisher＇s inequality．
Theorem 15．If X is a 2 －design in P^{d-1} ，then $|X| \geq d^{2}$ ．If equality holds，then the angle set of X is $\{1 /(d+1)\}$ ．

A 2－design in P^{d-1} consisting of d^{2} points is called a tight 2－design．A tight 2－design is also called a symmetric informationally complete positive operator－valued measure（SIC－ POVM），cf［4，8］．Zauner［10］conjectures that SIC－POVMs exist for all $d \geq 2$ ．Examples for $d=3,8$ are found in［3］and those for $d=2,3,4$ are found in［8］．

References

［1］坂内英一，坂内悦子「球面上の代数的組合せ理論」Springer， 1999.
［2］P．Delsarte，J．M．Goethals and J．J．Seidel，Spherical codes and designs，Geom．Ded． 6，（1977），363－388．
［3］S．G．Hoggar，t－Designs in projective spaces，Europ．J．Combin． 3 （1982），233－254．
［4］A．Klappenecker，and M．Rötteler，Mutually unbiased bases are complex projective 2－designs，arXiv：quant－ph／0502031，2005，
［5］Y．Mimura，A construction of spherical 2－design，Graphs Combin． 6 （1990），369－372．
［6］A．Munemasa，Spherical Designs，Chapter 54 in CRC Handbook of Combinatorial Designs，2nd ed．， 2006.
[7] S. Popa, Orthogonal pairs of *-subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983), 253-268.
[8] J.M. Renes, R. Blume-Kohout, A.J. Scott and C.M. Caves, Symmetric informationally complete quantum measurements, J. Math. Phys. 45 (6) (2004), 2171-2180.
[9] W. Wooters and B. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Physics 191 (2) (1989), 363-381.
[10] G. Zauner, Quantendesigns - Grundzüge einer nichtkommutativen Designtheorie, Ph.D thesis, Universität Wien, 1999.

