An extremal problem related to binary singly even self-dual codes

Akihiro Munemasa
Graduate School of Information Sciences
Tohoku University
August 4, 2005

A packing problem

$\left|\Omega_{v}\right|=v, \mathcal{B} \subset\binom{\Omega_{v}}{k}$, at most λ-intersecting:

A packing problem

$$
\left|\Omega_{v}\right|=v, \mathcal{B} \subset\binom{\Omega_{v}}{k} \text {, at most } \lambda \text {-intersecting: }
$$

$$
B \in \mathcal{B}, B^{\prime} \in \mathcal{B}, B \neq B^{\prime} \Longrightarrow\left|B \cap B^{\prime}\right| \leq \lambda
$$

A packing problem

$$
\left|\Omega_{v}\right|=v, \mathcal{B} \subset\binom{\Omega_{v}}{k} \text {, at most } \lambda \text {-intersecting: }
$$

$$
B \in \mathcal{B}, B^{\prime} \in \mathcal{B}, B \neq B^{\prime} \Longrightarrow\left|B \cap B^{\prime}\right| \leq \lambda .
$$

Given v, k, λ, find the largest possible size of such a subset \mathcal{B}.

Binary codes

Let C be a binary linear code with minimum weight d.

Binary codes

Let C be a binary linear code with minimum weight d. If $\boldsymbol{u}, \boldsymbol{v}$ are distinct codewords of C of the same weight w, then

Binary codes

Let C be a binary linear code with minimum weight d. If $\boldsymbol{u}, \boldsymbol{v}$ are distinct codewords of C of the same weight w, then

$$
|\operatorname{supp}(\boldsymbol{u}) \cap \operatorname{supp}(\boldsymbol{v})| \leq w-\frac{d}{2}
$$

Binary codes

Let C be a binary linear code with minimum weight d. If $\boldsymbol{u}, \boldsymbol{v}$ are distinct codewords of C of the same weight w, then

$$
|\operatorname{supp}(\boldsymbol{u}) \cap \operatorname{supp}(\boldsymbol{v})| \leq w-\frac{d}{2}
$$

Binary codes

Let C be a binary linear code with minimum weight d.
If $\boldsymbol{u}, \boldsymbol{v}$ are distinct codewords of C of the same weight w, then

$$
|\operatorname{supp}(\boldsymbol{u}) \cap \operatorname{supp}(\boldsymbol{v})| \leq w-\frac{d}{2}
$$

Linear programming bound

$\mathcal{B} \subset\binom{\Omega_{v}}{k}, 2 k \leq v, \quad \lambda:$ a positive integer

$$
B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime} \Longrightarrow\left|B \cap B^{\prime}\right| \leq \lambda
$$

Linear programming bound

$$
\begin{aligned}
& \mathcal{B} \subset\binom{\Omega_{v}}{k}, 2 k \leq v, \quad \lambda: \text { a positive integer } \\
& B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime} \Longrightarrow\left|B \cap B^{\prime}\right| \leq \lambda
\end{aligned}
$$

Linear programming bound

$$
\begin{aligned}
& \mathcal{B} \subset\binom{\Omega_{v}}{k}, 2 k \leq v, \quad L \subset\{0,1, \ldots, k-1\} \\
& B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime} \Longrightarrow\left|B \cap B^{\prime}\right| \leq \lambda
\end{aligned}
$$

Linear programming bound

$$
\begin{aligned}
& \mathcal{B} \subset\binom{\Omega_{v}}{k}, 2 k \leq v, \quad L \subset\{0,1, \ldots, k-1\} \\
& B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime} \Longrightarrow\left|B \cap B^{\prime}\right| \in L
\end{aligned}
$$

Linear programming bound

$\mathcal{B} \subset\binom{\Omega_{v}}{k}, 2 k \leq v, \quad L \subset\{0,1, \ldots, k-1\}$

$$
B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime} \Longrightarrow\left|B \cap B^{\prime}\right| \in L
$$

$|\mathcal{B}|$ is bounded from the above by

Linear programming bound

$$
\mathcal{B} \subset\binom{\Omega_{v}}{k}, 2 k \leq v, \quad L \subset\{0,1, \ldots, k-1\}
$$

$$
B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime} \Longrightarrow\left|B \cap B^{\prime}\right| \in L
$$

$|\mathcal{B}|$ is bounded from the above by
$\max \sum_{i=0}^{k} a_{i}$ subject to $\left(a_{0}, a_{1}, \ldots, a_{k}\right) Q \geq 0$,

$$
a_{0}=1, a_{k-i}=0(i \notin L), a_{j} \geq 0(\forall j)
$$

Linear programming bound

$$
\begin{aligned}
& \mathcal{B} \subset\binom{\Omega_{v}}{k}, 2 k \leq v, \quad L \subset\{0,1, \ldots, k-1\} \\
& B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime} \Longrightarrow\left|B \cap B^{\prime}\right| \in L
\end{aligned}
$$

$|\mathcal{B}|$ is bounded from the above by
$\max \sum_{i=0}^{k} a_{i}$ subject to $\left(a_{0}, a_{1}, \ldots, a_{k}\right) Q \geq 0$, (entrywise)

$$
a_{0}=1, a_{k-i}=0(i \notin L), a_{j} \geq 0(\forall j)
$$

Linear programming bound

$$
\begin{aligned}
\mathcal{B} \subset\binom{\Omega_{v}}{k}, 2 k \leq v, \quad L \subset\{0,1, \ldots, k-1\} \\
B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime} \Longrightarrow\left|B \cap B^{\prime}\right| \in L
\end{aligned}
$$

$|\mathcal{B}|$ is bounded from the above by

$$
\begin{array}{r}
\max \sum_{i=0}^{k} a_{i} \text { subject to }\left(a_{0}, a_{1}, \ldots, a_{k}\right) Q \geq 0, \text { (entrywise) } \\
a_{0}=1, a_{k-i}=0(i \notin L), a_{j} \geq 0(\forall j)
\end{array}
$$

$$
Q_{i j}=\left(\binom{v}{j}-\binom{v}{j-1}\right) \sum_{r=0}^{j}(-1)^{r} \frac{\binom{i}{r}\binom{j}{r}\binom{v+1-j}{r}}{\binom{k}{r}\binom{v-k}{r}} \quad(0 \leq i, j \leq k) .
$$

Example

$v=62, k=7, L=\{0,1\} .|\mathcal{B}|$ is bounded from the above by

$$
\begin{aligned}
& \max \sum_{i=0}^{7} a_{i} \text { subject to }\left(a_{0}, a_{1}, \ldots, a_{7}\right) Q \geq 0 \\
& \quad a_{0}=1, a_{7-i}=0(i \notin L), a_{j} \geq 0(\forall j)
\end{aligned}
$$

Example

$v=62, k=7, L=\{0,1\} .|\mathcal{B}|$ is bounded from the above by

$$
\begin{aligned}
& \max \sum_{i=0}^{7} a_{i} \text { subject to }\left(a_{0}, a_{1}, \ldots, a_{7}\right) Q \geq 0 \\
& \qquad a_{0}=1, a_{7-i}=0(i \notin L), a_{j} \geq 0(\forall j)
\end{aligned}
$$

$\max \sum_{i=0}^{7} a_{i}$ subject to $\left(1,0, \ldots, 0, a_{6}, a_{7}\right) Q \geq 0$,

$$
a_{6} \geq 0, a_{7} \geq 0
$$

Example

$v=62, k=7, L=\{0,1\} .|\mathcal{B}|$ is bounded from the above by

$$
\max \sum_{i=0}^{7} a_{i} \text { subject to }\left(1,0, \ldots, 0, a_{6}, a_{7}\right) Q \geq 0
$$

$$
\begin{gathered}
a_{6} \geq 0, a_{7} \geq 0 \\
\max 1+a+b \text { subject to }(1,0, \ldots, 0, a, b) Q \geq 0, \\
a \geq 0, b \geq 0
\end{gathered}
$$

Example

$v=62, k=7, L=\{0,1\} .|\mathcal{B}|$ is bounded from the above by

$$
\begin{gathered}
\max 1+a+b \text { subject to }(1,0, \ldots, 0, a, b) Q \geq 0, \\
a \geq 0, b \geq 0
\end{gathered}
$$

Example

$v=62, k=7, L=\{0,1\} .|\mathcal{B}|$ is bounded from the above by

$$
\begin{gathered}
\max 1+a+b \text { subject to }(1,0, \ldots, 0, a, b) Q \geq 0, \\
a \geq 0, b \geq 0
\end{gathered}
$$

$$
\begin{gathered}
13 a-49 b \geq-385 \\
-73 a+49 b \geq-3465
\end{gathered}
$$

Example

$v=62, k=7, L=\{0,1\} .|\mathcal{B}|$ is bounded from the above by

$$
\begin{gathered}
\max 1+a+b \text { subject to }(1,0, \ldots, 0, a, b) Q \geq 0, \\
a \geq 0, b \geq 0
\end{gathered}
$$

$13 a-49 b \geq-385, \quad$ maximized at $(a, b)=\left(\frac{385}{6}, \frac{1045}{42}\right)$
$-73 a+49 b \geq-3465$

Example

$v=62, k=7, L=\{0,1\} .|\mathcal{B}|$ is bounded from the above by

$$
\begin{gathered}
\max 1+a+b \text { subject to }(1,0, \ldots, 0, a, b) Q \geq 0, \\
a \geq 0, b \geq 0
\end{gathered}
$$

$13 a-49 b \geq-385, \quad$ maximized at $(a, b)=\left(\frac{385}{6}, \frac{1045}{42}\right)$
$-73 a+49 b \geq-3465$
$|\mathcal{B}| \leq 1+a+b=1891 / 21$

Example

$v=62, k=7, L=\{0,1\} .|\mathcal{B}|$ is bounded from the above by

$$
\begin{gathered}
\max 1+a+b \text { subject to }(1,0, \ldots, 0, a, b) Q \geq 0, \\
a \geq 0, b \geq 0
\end{gathered}
$$

$13 a-49 b \geq-385, \quad$ maximized at $(a, b)=\left(\frac{385}{6}, \frac{1045}{42}\right)$
$-73 a+49 b \geq-3465$
$|\mathcal{B}| \leq 1+a+b=1891 / 21$ that is, $|\mathcal{B}| \leq 90$.

Example

$v=62, k=7, L=\{0,1\} .|\mathcal{B}|$ is bounded from the above by

$$
\begin{gathered}
\max 1+a+b \text { subject to }(1,0, \ldots, 0, a, b) Q \geq 0, \\
a \geq 0, b \geq 0
\end{gathered}
$$

$13 a-49 b \geq-385, \quad$ maximized at $(a, b)=\left(\frac{385}{6}, \frac{1045}{42}\right)$
$-73 a+49 b \geq-3465$
$|\mathcal{B}| \leq 1+a+b=1891 / 21$ that is, $|\mathcal{B}| \leq 90$.

Binary codes

A binary code is a subset (often a subspace) of the vector space \mathbb{F}_{2}^{n}.

Binary codes

A binary code is a subset (often a subspace) of the vector space \mathbb{F}_{2}^{n}. n is called the length of the code.

Binary codes

A binary code is a subset (often a subspace) of the vector space \mathbb{F}_{2}^{n}. n is called the length of the code. The support of a vector $u \in \mathbb{F}_{2}^{n}$ is

$$
\operatorname{supp}(\boldsymbol{u})=\left\{j \mid 1 \leq j \leq n, u_{j} \neq 0\right\}
$$

Binary codes

A binary code is a subset (often a subspace) of the vector space \mathbb{F}_{2}^{n}. n is called the length of the code. The support of a vector $u \in \mathbb{F}_{2}^{n}$ is

$$
\operatorname{supp}(\boldsymbol{u})=\left\{j \mid 1 \leq j \leq n, u_{j} \neq 0\right\}
$$

and the size of the support is the weight $w t(\boldsymbol{u})$ of \boldsymbol{u}.

Binary codes

A binary code is a subset (often a subspace) of the vector space \mathbb{F}_{2}^{n}. n is called the length of the code. The support of a vector $u \in \mathbb{F}_{2}^{n}$ is

$$
\operatorname{supp}(\boldsymbol{u})=\left\{j \mid 1 \leq j \leq n, u_{j} \neq 0\right\},
$$

and the size of the support is the weight $w t(\boldsymbol{u})$ of \boldsymbol{u}.
An element of a code C is called a codeword.

Binary codes

A binary code is a subset (often a subspace) of the vector space \mathbb{F}_{2}^{n}. n is called the length of the code. The support of a vector $u \in \mathbb{F}_{2}^{n}$ is

$$
\operatorname{supp}(\boldsymbol{u})=\left\{j \mid 1 \leq j \leq n, u_{j} \neq 0\right\},
$$

and the size of the support is the weight $w t(\boldsymbol{u})$ of \boldsymbol{u}.
An element of a code C is called a codeword. The minimum weight of C is the minimum of weights of nonzero codewords.

Binary codes

A binary code is a subset (often a subspace) of the vector space \mathbb{F}_{2}^{n}. n is called the length of the code. The support of a vector $u \in \mathbb{F}_{2}^{n}$ is

$$
\operatorname{supp}(\boldsymbol{u})=\left\{j \mid 1 \leq j \leq n, u_{j} \neq 0\right\},
$$

and the size of the support is the weight wt (\boldsymbol{u}) of \boldsymbol{u}.
An element of a code C is called a codeword. The minimum weight of C is the minimum of weights of nonzero codewords.

An $[n, k, d]$ code C is a linear code of length n, dimension k, and minimum weight d.

Weight enumerator

Let y be an indeterminate. For a binary code C of length n, set

$$
A_{i}=|\{\boldsymbol{u} \in C \mid \operatorname{wt}(\boldsymbol{u})=i\}|
$$

Weight enumerator

Let y be an indeterminate. For a binary code C of length n, set

$$
\begin{gathered}
A_{i}=|\{\boldsymbol{u} \in C \mid \mathrm{wt}(\boldsymbol{u})=i\}| \\
W_{C}=\sum_{i=0}^{n} A_{i} y^{i}
\end{gathered}
$$

Weight enumerator

Let y be an indeterminate. For a binary code C of length n, set

$$
\begin{gathered}
A_{i}=|\{\boldsymbol{u} \in C \mid \mathrm{wt}(\boldsymbol{u})=i\}| \\
W_{C}=\sum_{i=0}^{n} A_{i} y^{i}
\end{gathered}
$$

The polynomial W_{C} is called the weight enumerator of C.

Dual codes

The dual code of a linear code C is

$$
C^{\perp}=\left\{\boldsymbol{u} \in \mathbb{F}_{2}^{n} \mid(\boldsymbol{u}, \boldsymbol{v})=0 \text { for all } \boldsymbol{v} \in C\right\}
$$

Dual codes

The dual code of a linear code C is

$$
C^{\perp}=\left\{\boldsymbol{u} \in \mathbb{F}_{2}^{n} \mid(\boldsymbol{u}, \boldsymbol{v})=0 \text { for all } \boldsymbol{v} \in C\right\}
$$

C : self-dual code $\Longleftrightarrow C=C^{\perp}$.

Dual codes

The dual code of a linear code C is

$$
C^{\perp}=\left\{\boldsymbol{u} \in \mathbb{F}_{2}^{n} \mid(\boldsymbol{u}, \boldsymbol{v})=0 \text { for all } \boldsymbol{v} \in C\right\}
$$

C : self-dual code $\Longleftrightarrow C=C^{\perp}$.
For a self-dual code C,

Dual codes

The dual code of a linear code C is

$$
C^{\perp}=\left\{\boldsymbol{u} \in \mathbb{F}_{2}^{n} \mid(\boldsymbol{u}, \boldsymbol{v})=0 \text { for all } \boldsymbol{v} \in C\right\}
$$

C : self-dual code $\Longleftrightarrow C=C^{\perp}$.
For a self-dual code C,

$$
C: \text { doubly even } \Longleftrightarrow \mathrm{wt}(\boldsymbol{u}) \equiv 0 \quad(\bmod 4) \text { for } \forall \boldsymbol{u} \in C .
$$

Dual codes

The dual code of a linear code C is

$$
C^{\perp}=\left\{\boldsymbol{u} \in \mathbb{F}_{2}^{n} \mid(\boldsymbol{u}, \boldsymbol{v})=0 \text { for all } \boldsymbol{v} \in C\right\}
$$

C : self-dual code $\Longleftrightarrow C=C^{\perp}$.
For a self-dual code C,

$$
C \text { : doubly even } \Longleftrightarrow \operatorname{wt}(\boldsymbol{u}) \equiv 0(\bmod 4) \text { for } \forall \boldsymbol{u} \in C .
$$

Otherwise C is called singly even.

Shadows

Conway and Sloane (1990) introduced shadows of singly even self-dual codes.

Shadows

Conway and Sloane (1990) introduced shadows of singly even self-dual codes. Let C be a singly even self-dual code. Then

$$
C_{0}=\{\boldsymbol{u} \in C \mid \mathrm{wt}(\boldsymbol{u}) \equiv 0 \quad(\bmod 4)\}
$$

is a linear subspace of C of codimension 1 .

Shadows

Conway and Sloane (1990) introduced shadows of singly even self-dual codes. Let C be a singly even self-dual code. Then

$$
C_{0}=\{\boldsymbol{u} \in C \mid \mathrm{wt}(\boldsymbol{u}) \equiv 0 \quad(\bmod 4)\}
$$

is a linear subspace of C of codimension 1.
There are cosets C_{1}, C_{2}, C_{3} of C_{0} such that $C=C_{0} \cup C_{2}$, $S=C_{0}^{\perp} \backslash C=C_{1} \cup C_{3} \quad$ (shadow)

Shadows

Conway and Sloane (1990) introduced shadows of singly even self-dual codes. Let C be a singly even self-dual code. Then

$$
C_{0}=\{\boldsymbol{u} \in C \mid \mathrm{wt}(\boldsymbol{u}) \equiv 0 \quad(\bmod 4)\}
$$

is a linear subspace of C of codimension 1.
There are cosets C_{1}, C_{2}, C_{3} of C_{0} such that $C=C_{0} \cup C_{2}$, $S=C_{0}^{\perp} \backslash C=C_{1} \cup C_{3} \quad$ (shadow)

n extremal problem related tobinary singly even self-dual codes - p.9/2

Weight enumerator

If C is a self-dual code of length n, then

$$
W_{C}=\sum_{j=0}^{[n / 8]} a_{j}\left(1+y^{2}\right)^{n / 2-4 j}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{j}
$$

Weight enumerator

If C is a self-dual code of length n, then

$$
\begin{aligned}
W_{C} & =\sum_{j=0}^{[n / 8]} a_{j}\left(1+y^{2}\right)^{n / 2-4 j}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{j} \\
W_{S} & =\sum_{j=0}^{[n / 8]} a_{j}(-1)^{j} 2^{n / 2-6 j} y^{n / 2-4 j}\left(1-y^{4}\right)^{2 j}
\end{aligned}
$$

Weight enumerator

If C is a self-dual code of length n, then

$$
\begin{aligned}
W_{C} & =\sum_{j=0}^{[n / 8]} a_{j}\left(1+y^{2}\right)^{n / 2-4 j}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{j} \\
W_{S} & =\sum_{j=0}^{[n / 8]} a_{j}(-1)^{j} 2^{n / 2-6 j} y^{n / 2-4 j}\left(1-y^{4}\right)^{2 j}
\end{aligned}
$$

In particular, $\forall \boldsymbol{u} \in S$,

$$
\mathrm{wt}(\boldsymbol{u}) \equiv \frac{n}{2} \quad(\bmod 4)
$$

Extremality

The minimum weight d of a self-dual code of length n is bounded from the above by

$$
d \leq\left\{\begin{array}{ll}
4[n / 24]+4 & n \not \equiv 22
\end{array} \quad(\bmod 24),\right.
$$

Extremality

The minimum weight d of a self-dual code of length n is bounded from the above by

$$
d \leq\left\{\begin{array}{ll}
4[n / 24]+4 & n \neq 22
\end{array} \quad(\bmod 24),\right.
$$

A code achieving this bound is called extremal.

Extremality

The minimum weight d of a self-dual code of length n is bounded from the above by

$$
d \leq\left\{\begin{array}{ll}
4[n / 24]+4 & n \neq 22
\end{array} \quad(\bmod 24),\right.
$$

A code achieving this bound is called extremal. Equality imposes strong restrictions on the weight enumerator.

Self-dual $[62,31,12]$ code

$$
\begin{aligned}
& W_{C}=1+(1860+32 \beta) y^{12}+(28055-160 \beta) y^{14}+\cdots, \\
& W_{S}=\beta y^{7}+12(93-\beta) y^{11}+\cdots
\end{aligned}
$$

Self-dual $[62,31,12]$ code

$$
\begin{aligned}
& W_{C}=1+(1860+32 \beta) y^{12}+(28055-160 \beta) y^{14}+\cdots \\
& W_{S}=\beta y^{7}+12(93-\beta) y^{11}+\cdots
\end{aligned}
$$

So $0 \leq \beta \leq 93$.

Self-dual $[62,31,12]$ code

$$
\begin{aligned}
& W_{C}=1+(1860+32 \beta) y^{12}+(28055-160 \beta) y^{14}+\cdots \\
& W_{S}=\beta y^{7}+12(93-\beta) y^{11}+\cdots
\end{aligned}
$$

So $0 \leq \beta \leq 93$. On the other hand, there is a combinatorial bound. If C has minimum distance d, then

Self-dual $[62,31,12]$ code

$$
\begin{aligned}
& W_{C}=1+(1860+32 \beta) y^{12}+(28055-160 \beta) y^{14}+\cdots \\
& W_{S}=\beta y^{7}+12(93-\beta) y^{11}+\cdots
\end{aligned}
$$

So $0 \leq \beta \leq 93$. On the other hand, there is a combinatorial bound. If C has minimum distance d, then

$$
W_{S}=\sum_{r=0}^{n} B_{r} y^{r} \Longrightarrow B_{r} \leq A(n, d, r),
$$

Self-dual $[62,31,12]$ code

$$
\begin{aligned}
& W_{C}=1+(1860+32 \beta) y^{12}+(28055-160 \beta) y^{14}+\cdots \\
& W_{S}=\beta y^{7}+12(93-\beta) y^{11}+\cdots
\end{aligned}
$$

So $0 \leq \beta \leq 93$. On the other hand, there is a combinatorial bound. If C has minimum distance d, then

$$
W_{S}=\sum_{r=0}^{n} B_{r} y^{r} \Longrightarrow B_{r} \leq A(n, d, r)
$$

where $A(n, d, r)$ is the maximal possible number of binary vectors of length n, weight r and Hamming distance at least d apart. This is because S (which is isometric to C) has minimum distance d.

Self-dual $[62,31,12]$ code

$$
\begin{aligned}
& W_{C}=1+(1860+32 \beta) y^{12}+(28055-160 \beta) y^{14}+\cdots, \\
& W_{S}=\beta y^{7}+12(93-\beta) y^{11}+\cdots \quad(0 \leq \beta \leq 93)
\end{aligned}
$$

Self-dual $[62,31,12]$ code

$$
\begin{gathered}
W_{C}=1+(1860+32 \beta) y^{12}+(28055-160 \beta) y^{14}+\cdots, \\
W_{S}=\beta y^{7}+12(93-\beta) y^{11}+\cdots \quad(0 \leq \beta \leq 93) \\
\beta=B_{7} \leq A(62,12,7)
\end{gathered}
$$

Self-dual $[62,31,12]$ code

$$
\begin{gathered}
W_{C}=1+(1860+32 \beta) y^{12}+(28055-160 \beta) y^{14}+\cdots, \\
W_{S}=\beta y^{7}+12(93-\beta) y^{11}+\cdots \quad(0 \leq \beta \leq 93) \\
\beta=B_{7} \leq A(62,12,7)
\end{gathered}
$$

Hamming distance at least $12 \Longleftrightarrow$ at most 1 -intersecting

Self-dual $[62,31,12]$ code

$$
\begin{gathered}
W_{C}=1+(1860+32 \beta) y^{12}+(28055-160 \beta) y^{14}+\cdots, \\
W_{S}=\beta y^{7}+12(93-\beta) y^{11}+\cdots \quad(0 \leq \beta \leq 93) \\
\beta=B_{7} \leq A(62,12,7)
\end{gathered}
$$

Hamming distance at least $12 \Longleftrightarrow$ at most 1-intersecting

Self-dual $[62,31,12]$ code

$$
\begin{gathered}
W_{C}=1+(1860+32 \beta) y^{12}+(28055-160 \beta) y^{14}+\cdots \\
W_{S}=\beta y^{7}+12(93-\beta) y^{11}+\cdots \quad(0 \leq \beta \leq 93) \\
\beta=B_{7} \leq A(62,12,7)
\end{gathered}
$$

Hamming distance at least $12 \Longleftrightarrow$ at most 1-intersecting We have seen by the linear programming bound that

$$
A(62,12,7) \leq 90
$$

SO

$$
0 \leq \beta \leq 90
$$

Two parts of the shadow

Two parts of the shadow

\Longrightarrow at most 1-intersecting

Two parts of the shadow

Recall that the shadow S consists of two cosets C_{1}, C_{3} of C_{0}.
min. wt.
12
\Longrightarrow at most 1-intersecting

Two parts of the shadow

\Longrightarrow at most 1-intersecting

Two parts of the shadow

\Longrightarrow at most 1-intersecting

wt. 7
C_{1}
C_{1}
\Longrightarrow Each of C_{1} and C_{3} is
at 1-intersecting

Two parts of the shadow

\Longrightarrow at most 1-intersecting

\Longrightarrow Each of C_{1} and C_{3} is
at 1-intersecting

$$
\boldsymbol{u} \in C_{1}, \boldsymbol{v} \in C_{3} \Longrightarrow \boldsymbol{u}+\boldsymbol{v} \in C_{2}
$$

Two parts of the shadow

\Longrightarrow at most 1-intersecting

\Longrightarrow Each of C_{1} and C_{3} is
at 1-intersecting
$\boldsymbol{u} \in C_{1}, \boldsymbol{v} \in C_{3} \Longrightarrow \boldsymbol{u}+\boldsymbol{v} \in C_{2}$

Two parts of the shadow

\Longrightarrow at most 1-intersecting

$$
\begin{gathered}
\Longrightarrow \begin{array}{c}
\text { Each of } C_{1} \text { and } C_{3} \text { is } \\
\text { at 1-intersecting } \\
\boldsymbol{u} \in C_{1}, \boldsymbol{v} \in C_{3} \Longrightarrow \boldsymbol{u}+\boldsymbol{v} \in C_{2} \\
\operatorname{supp}(u) \cap \operatorname{supp}(v)=\emptyset
\end{array}
\end{gathered}
$$

Two parts of the shadow

$$
\begin{gathered}
\mathcal{B}^{(i)}=\left\{\operatorname{supp}(\boldsymbol{u}) \mid \boldsymbol{u} \in C_{i}, \operatorname{wt}(\boldsymbol{u})=7\right\} \quad(i=1,3) . \\
\mathcal{B}=\mathcal{B}^{(1)} \cup \mathcal{B}^{(3)} \subset\binom{\Omega_{62}}{7}
\end{gathered}
$$

Two parts of the shadow

$$
\begin{gathered}
\mathcal{B}^{(i)}=\left\{\operatorname{supp}(\boldsymbol{u}) \mid \boldsymbol{u} \in C_{i}, \operatorname{wt}(\boldsymbol{u})=7\right\} \quad(i=1,3) . \\
\mathcal{B}=\mathcal{B}^{(1)} \cup \mathcal{B}^{(3)} \subset\binom{\Omega_{62}}{7}
\end{gathered}
$$

Each of $\mathcal{B}^{(1)}, \mathcal{B}^{(3)}$ is (exactly) 1-intersecting, and

$$
B \in \mathcal{B}^{(1)}, B^{\prime} \in \mathcal{B}^{(3)} \Longrightarrow B \cap B^{\prime}=\emptyset .
$$

Two parts of the shadow

$$
\begin{gathered}
\mathcal{B}^{(i)}=\left\{\operatorname{supp}(\boldsymbol{u}) \mid \boldsymbol{u} \in C_{i}, \operatorname{wt}(\boldsymbol{u})=7\right\} \quad(i=1,3) . \\
\mathcal{B}=\mathcal{B}^{(1)} \cup \mathcal{B}^{(3)} \subset\binom{\Omega_{62}}{7}
\end{gathered}
$$

Each of $\mathcal{B}^{(1)}, \mathcal{B}^{(3)}$ is (exactly) 1-intersecting, and

$$
\begin{aligned}
& B \in \mathcal{B}^{(1)}, B^{\prime} \in \mathcal{B}^{(3)} \Longrightarrow B \cap B^{\prime}=\emptyset . \\
& \Omega^{(1)}=\bigcup_{B \in \mathcal{B}^{(1)}} B, \quad \Omega^{(3)}=\bigcup_{B^{\prime} \in \mathcal{B}^{(3)}} B^{\prime} .
\end{aligned}
$$

Two parts of the shadow

$$
\begin{gathered}
\mathcal{B}^{(i)}=\left\{\operatorname{supp}(\boldsymbol{u}) \mid \boldsymbol{u} \in C_{i}, \operatorname{wt}(\boldsymbol{u})=7\right\} \quad(i=1,3) . \\
\mathcal{B}=\mathcal{B}^{(1)} \cup \mathcal{B}^{(3)} \subset\binom{\Omega_{62}}{7}
\end{gathered}
$$

Each of $\mathcal{B}^{(1)}, \mathcal{B}^{(3)}$ is (exactly) 1-intersecting, and

$$
\begin{aligned}
& B \in \mathcal{B}^{(1)}, B^{\prime} \in \mathcal{B}^{(3)} \Longrightarrow B \cap B^{\prime}=\emptyset . \\
& \Omega^{(1)}=\bigcup_{B \in \mathcal{B}^{(1)}} B, \quad \Omega^{(3)}=\bigcup_{B^{\prime} \in \mathcal{B}^{(3)}} B^{\prime} .
\end{aligned}
$$

Then $\Omega^{(1)} \cap \Omega^{(3)}=\emptyset, \Omega^{(1)} \cup \Omega^{(3)} \subset \Omega_{62}$.

Two parts of the shadow

$$
\begin{gathered}
\mathcal{B}^{(i)}=\left\{\operatorname{supp}(\boldsymbol{u}) \mid \boldsymbol{u} \in C_{i}, \operatorname{wt}(\boldsymbol{u})=7\right\} \quad(i=1,3) . \\
\mathcal{B}=\mathcal{B}^{(1)} \cup \mathcal{B}^{(3)} \subset\binom{\Omega_{62}}{7}
\end{gathered}
$$

Each of $\mathcal{B}^{(1)}, \mathcal{B}^{(3)}$ is (exactly) 1-intersecting, and

$$
\begin{aligned}
& B \in \mathcal{B}^{(1)}, B^{\prime} \in \mathcal{B}^{(3)} \Longrightarrow B \cap B^{\prime}=\emptyset . \\
& \Omega^{(1)}=\bigcup_{B \in \mathcal{B}^{(1)}} B, \quad \Omega^{(3)}=\bigcup_{B^{\prime} \in \mathcal{B}^{(3)}} B^{\prime} .
\end{aligned}
$$

Then $\Omega^{(1)} \cap \Omega^{(3)}=\emptyset, \Omega^{(1)} \cup \Omega^{(3)} \subset \Omega_{62}$.

$$
\mathcal{B}^{(1)} \subset\binom{\Omega^{(1)}}{7}, \quad \mathcal{B}^{(3)} \subset\binom{\Omega^{(3)}}{7}
$$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta \leq 90 .
$$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta \leq 90 .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1 -intersecting family in a $v^{(i)}=\left|\Omega^{(i)}\right|$-element set

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta \leq 90 .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1-intersecting family

$$
\text { in a } v^{(i)}=\left|\Omega^{(i)}\right| \text {-element set }
$$

$$
\leq \max 1+a \text { subject to }(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0
$$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta \leq 90 .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1-intersecting family

$$
\text { in a } v^{(i)}=\left|\Omega^{(i)}\right| \text {-element set }
$$

$$
\leq \max 1+a \text { subject to }(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0
$$

$$
=: M\left(v^{(i)}\right) .
$$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta \leq 90 .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1-intersecting family in a $v^{(i)}=\left|\Omega^{(i)}\right|$-element set
$\leq \max 1+a$ subject to $(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0$
$=: M\left(v^{(i)}\right)$.
$\beta \leq M\left(v^{(1)}\right)+M\left(v^{(3)}\right)$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta \leq 90 .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1 -intersecting family in a $v^{(i)}=\left|\Omega^{(i)}\right|$-element set $\leq \max 1+a$ subject to $(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0$ $=: M\left(v^{(i)}\right)$.

$$
\begin{aligned}
\beta & \leq M\left(v^{(1)}\right)+M\left(v^{(3)}\right) \\
& \leq \max \{M(v)+M(62-v) \mid 0 \leq v \leq 62\}
\end{aligned}
$$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta \leq 90 .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1 -intersecting family

$$
\text { in a } v^{(i)}=\left|\Omega^{(i)}\right| \text {-element set }
$$

$\leq \max 1+a$ subject to $(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0$
$=: M\left(v^{(i)}\right)$.

$$
\begin{aligned}
\beta & \leq M\left(v^{(1)}\right)+M\left(v^{(3)}\right) \\
& \leq \max \{M(v)+M(62-v) \mid 0 \leq v \leq 62\} \\
& =48
\end{aligned}
$$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta \leq 90 .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1 -intersecting family

$$
\text { in a } v^{(i)}=\left|\Omega^{(i)}\right| \text {-element set }
$$

$\leq \max 1+a$ subject to $(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0$
$=: M\left(v^{(i)}\right)$.

$$
\begin{aligned}
\beta & \leq M\left(v^{(1)}\right)+M\left(v^{(3)}\right) \\
& \leq \max \{M(v)+M(62-v) \mid 0 \leq v \leq 62\} \\
& =48
\end{aligned}
$$

Known realizable values of β :

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta \leq 90 .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1-intersecting family

$$
\text { in a } v^{(i)}=\left|\Omega^{(i)}\right| \text {-element set }
$$

$\leq \max 1+a$ subject to $(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0$
$=: M\left(v^{(i)}\right)$.

$$
\begin{aligned}
\beta & \leq M\left(v^{(1)}\right)+M\left(v^{(3)}\right) \\
& \leq \max \{M(v)+M(62-v) \mid 0 \leq v \leq 62\} \\
& =48
\end{aligned}
$$

Known realizable values of β : $0,10,15$.
(Dontcheva-Harada, 2002)

Another example

Every self-dual $[42,21,8]$ code C whose shadow S does not contain a vector of weight 1 has weight enumerator

Another example

Every self-dual $[42,21,8]$ code C whose shadow S does not contain a vector of weight 1 has weight enumerator

$$
\begin{aligned}
& W_{C}=1+(84+8 \beta) y^{8}+(1449-24 \beta) y^{10}+\cdots \\
& W_{S}=\beta y^{5}+(896-8 \beta) y^{9}+\cdots
\end{aligned}
$$

Two parts of the shadow

Two parts of the shadow

\Longrightarrow Each of C_{1} and C_{3} is at 1-intersecting

Two parts of the shadow

\Longrightarrow Each of C_{1} and C_{3} is at 1-intersecting

$$
\boldsymbol{u} \in C_{1}, \boldsymbol{v} \in C_{3} \Longrightarrow \boldsymbol{u}+\boldsymbol{v} \in C_{2}
$$

Two parts of the shadow

\Longrightarrow Each of C_{1} and C_{3} is at 1-intersecting

$$
\boldsymbol{u} \in C_{1}, \boldsymbol{v} \in C_{3} \Longrightarrow \boldsymbol{u}+\boldsymbol{v} \in C_{2}
$$

Two parts of the shadow

\Longrightarrow Each of C_{1} and C_{3} is at 1-intersecting

$$
\boldsymbol{u} \in C_{1}, \boldsymbol{v} \in C_{3} \Longrightarrow \boldsymbol{u}+\boldsymbol{v} \in C_{2}
$$

$$
\operatorname{supp}(\boldsymbol{u}) \cap \operatorname{supp}(\boldsymbol{v})=\emptyset
$$

Two parts of the shadow

Two parts of the shadow

Two parts of the shadow

Two parts of the shadow

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta .
$$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1 -intersecting family in a $v^{(i)}=\left|\Omega^{(i)}\right|$-element set

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1 -intersecting family

$$
\text { in a } v^{(i)}=\left|\Omega^{(i)}\right| \text {-element set }
$$

$$
\leq \max 1+a \text { subject to }(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0
$$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1 -intersecting family

$$
\text { in a } v^{(i)}=\left|\Omega^{(i)}\right| \text {-element set }
$$

$$
\leq \max 1+a \text { subject to }(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0
$$

$$
=: M_{5}\left(v^{(i)}\right) .
$$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1 -intersecting family in a $v^{(i)}=\left|\Omega^{(i)}\right|$-element set
$\leq \max 1+a$ subject to $(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0$
$=: M_{5}\left(v^{(i)}\right)$.
$\beta \leq M_{5}\left(v^{(1)}\right)+M_{5}\left(v^{(3)}\right)$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1 -intersecting family in a $v^{(i)}=\left|\Omega^{(i)}\right|$-element set
$\leq \max 1+a$ subject to $(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0$
$=: M_{5}\left(v^{(i)}\right)$.

$$
\begin{aligned}
\beta & \leq M_{5}\left(v^{(1)}\right)+M_{5}\left(v^{(3)}\right) \\
& \leq \max \left\{M_{5}(v)+M_{5}(42-v) \mid 0 \leq v \leq 42\right\}
\end{aligned}
$$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1 -intersecting family in a $v^{(i)}=\left|\Omega^{(i)}\right|$-element set
$\leq \max 1+a$ subject to $(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0$
$=: M_{5}\left(v^{(i)}\right)$.

$$
\begin{aligned}
\beta & \leq M_{5}\left(v^{(1)}\right)+M_{5}\left(v^{(3)}\right) \\
& \leq \max \left\{M_{5}(v)+M_{5}(42-v) \mid 0 \leq v \leq 42\right\} \\
& =42
\end{aligned}
$$

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1-intersecting family in a $v^{(i)}=\left|\Omega^{(i)}\right|$-element set
$\leq \max 1+a$ subject to $(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0$
$=: M_{5}\left(v^{(i)}\right)$.

$$
\begin{aligned}
\beta & \leq M_{5}\left(v^{(1)}\right)+M_{5}\left(v^{(3)}\right) \\
& \leq \max \left\{M_{5}(v)+M_{5}(42-v) \mid 0 \leq v \leq 42\right\} \\
& =42
\end{aligned}
$$

Equality holds only if $v^{(1)}=v^{(3)}=21$ and in this case

Improved upper bound

$$
\left|\mathcal{B}^{(1)}\right|+\left|\mathcal{B}^{(3)}\right|=|\mathcal{B}|=\beta .
$$

$\left|\mathcal{B}^{(i)}\right| \leq$ maximal possible size of 1-intersecting family

$$
\text { in a } v^{(i)}=\left|\Omega^{(i)}\right| \text {-element set }
$$

$$
\leq \max 1+a \text { subject to }(1,0,0,0,0,0, a, 0) Q \geq 0, a \geq 0
$$

$$
=: M_{5}\left(v^{(i)}\right) .
$$

$$
\begin{aligned}
\beta & \leq M_{5}\left(v^{(1)}\right)+M_{5}\left(v^{(3)}\right) \\
& \leq \max \left\{M_{5}(v)+M_{5}(42-v) \mid 0 \leq v \leq 42\right\} \\
& =42 .
\end{aligned}
$$

Equality holds only if $v^{(1)}=v^{(3)}=21$ and in this case

$$
\mathcal{B}^{(1)} \cong \mathcal{B}^{(2)} \cong P G(2,4) .
$$

Characterization

Theorem 2. There exists a unique binary self-dual $[42,21,8]$ code with weight enumerator

$$
\begin{aligned}
& W_{C}=1+(84+8 \beta) y^{8}+(1449-24 \beta) y^{1} 0+\cdots \\
& W_{S}=\beta y^{5}+(896-8 \beta) y^{9}+\cdots
\end{aligned}
$$

with $\beta=42$.

Characterization

Theorem 1. There exists a unique binary self-dual $[42,21,8]$ code with weight enumerator

$$
\begin{aligned}
& W_{C}=1+(84+8 \beta) y^{8}+(1449-24 \beta) y^{1} 0+\cdots \\
& W_{S}=\beta y^{5}+(896-8 \beta) y^{9}+\cdots
\end{aligned}
$$

with $\beta=42$.
This theorem was obtained recently, and independently, by Stefka Buyuklieva.

