Spherical designs and extremal lattices

Akihiro Munemasa

Tohoku University
August 15, 2005

$\mathbf{S}(5,8,24)$

Let $C \subset \mathbb{F}_{2}^{24}$ be the binary code generated by its incidence matrix.

$\mathbf{S}(5,8,24)$

Let $C \subset \mathbb{F}_{2}^{24}$ be the binary code generated by its incidence matrix. $\boldsymbol{x} \in C^{\perp} \Longrightarrow|S \cap B|:$ even for \forall block B, where $S=\operatorname{supp}(\boldsymbol{x})$.

$\mathbf{S}(5,8,24)$

Let $C \subset \mathbb{F}_{2}^{24}$ be the binary code generated by its incidence matrix.

$$
\boldsymbol{x} \in C^{\perp} \Longrightarrow|S \cap B|: \text { even for } \forall \text { block } B \text {, where } S=\operatorname{supp}(\boldsymbol{x}) .
$$

$\mathbf{S}(5,8,24)$

Let $C \subset \mathbb{F}_{2}^{24}$ be the binary code generated by its incidence matrix.
$\boldsymbol{x} \in C^{\perp} \Longrightarrow|S \cap B|:$ even for \forall block B, where $S=\operatorname{supp}(\boldsymbol{x})$.
$n_{j}=\#$ blocks B with $|S \cap B|=j(j=2,4,6,8)$.

$S(5,8,24)$

Let $C \subset \mathbb{F}_{2}^{24}$ be the binary code generated by its incidence matrix.

$$
\boldsymbol{x} \in C^{\perp} \Longrightarrow|S \cap B|: \text { even for } \forall \text { block } B \text {, where } S=\operatorname{supp}(\boldsymbol{x})
$$

$$
n_{j}=\# \text { blocks } B \text { with }|S \cap B|=j(j=2,4,6,8) .
$$

Counting $\#(I, B)$ with $I \in\binom{S \cap B}{i}$,

$S(5,8,24)$

Let $C \subset \mathbb{F}_{2}^{24}$ be the binary code generated by its incidence matrix.
$\boldsymbol{x} \in C^{\perp} \Longrightarrow|S \cap B|:$ even for \forall block B, where $S=\operatorname{supp}(\boldsymbol{x})$.
$n_{j}=\#$ blocks B with $|S \cap B|=j(j=2,4,6,8)$.

Counting $\#(I, B)$ with $I \in\binom{S \cap B}{i}$,

$$
\sum_{j=2,4,6,8}\binom{j}{i} n_{j}
$$

$S(5,8,24)$

Let $C \subset \mathbb{F}_{2}^{24}$ be the binary code generated by its incidence matrix.
$\boldsymbol{x} \in C^{\perp} \Longrightarrow|S \cap B|:$ even for \forall block B, where $S=\operatorname{supp}(\boldsymbol{x})$.
$n_{j}=\#$ blocks B with $|S \cap B|=j(j=2,4,6,8)$.

Counting $\#(I, B)$ with $I \in\binom{S \cap B}{i}$,

$$
\begin{gathered}
\sum_{j=2,4,6,8}\binom{j}{i} n_{j} \\
\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5) .
\end{gathered}
$$

$S(5,8,24)$

Let $C \subset \mathbb{F}_{2}^{24}$ be the binary code generated by its incidence matrix.
$\boldsymbol{x} \in C^{\perp} \Longrightarrow|S \cap B|:$ even for \forall block B, where $S=\operatorname{supp}(\boldsymbol{x})$.
$n_{j}=\#$ blocks B with $|S \cap B|=j(j=2,4,6,8)$.

Counting $\#(I, B)$ with $I \in\binom{S \cap B}{i}$,

$$
\sum_{j=2,4,6,8}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5) .
$$

$S(5,8,24)$

Let $C \subset \mathbb{F}_{2}^{24}$ be the binary code generated by its incidence matrix.
$\boldsymbol{x} \in C^{\perp} \Longrightarrow|S \cap B|:$ even for \forall block B, where $S=\operatorname{supp}(\boldsymbol{x})$.
$n_{j}=\#$ blocks B with $|S \cap B|=j(j=2,4,6,8)$.

Counting $\#(I, B)$ with $I \in\binom{S \cap B}{i}$,

$$
\sum_{j=2,4,6,8}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5) .
$$

4 unknowns $n_{2}, n_{4}, n_{6}, n_{8}$.

$S(5,8,24)$

Let $C \subset \mathbb{F}_{2}^{24}$ be the binary code generated by its incidence matrix.
$\boldsymbol{x} \in C^{\perp} \Longrightarrow|S \cap B|:$ even for \forall block B, where $S=\operatorname{supp}(\boldsymbol{x})$.
$n_{j}=\#$ blocks B with $|S \cap B|=j(j=2,4,6,8)$.

Counting $\#(I, B)$ with $I \in\binom{S \cap B}{i}$,

$$
\sum_{j=2,4,6,8}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5) .
$$

4 unknowns $n_{2}, n_{4}, n_{6}, n_{8} . \quad 5$ equations \Longrightarrow

$S(5,8,24)$

Let $C \subset \mathbb{F}_{2}^{24}$ be the binary code generated by its incidence matrix.
$\boldsymbol{x} \in C^{\perp} \Longrightarrow|S \cap B|:$ even for \forall block B, where $S=\operatorname{supp}(\boldsymbol{x})$.
$n_{j}=\#$ blocks B with $|S \cap B|=j(j=2,4,6,8)$.

Counting $\#(I, B)$ with $I \in\binom{S \cap B}{i}$,

$$
\sum_{j=2,4,6,8}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5) .
$$

4 unknowns $n_{2}, n_{4}, n_{6}, n_{8} . \quad 5$ equations \Longrightarrow

$$
|S|(|S|-8)(|S|-12)(|S|-16)(|S|-24)=0
$$

$5-(48,12, \lambda)$ design

$5-(48,12, \lambda)$ design

Assume that every pair of blocks interset at even number of points.

$5-(48,12, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal $\left(C \subset C^{\perp}\right)$ code generated by its incidence matrix.

$5-(48,12, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal $\left(C \subset C^{\perp}\right)$ code generated by its incidence matrix.
$\boldsymbol{x} \in C^{-}$has minimal weight in $\boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq$ block \Longrightarrow

$5-(48,12, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal $\left(C \subset C^{\perp}\right)$ code generated by its incidence matrix.
$\boldsymbol{x} \in C^{-}$has minimal weight in $\boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq$ block \Longrightarrow

$$
|S \cap B|: \text { even and } \leq 6 .
$$

$5-(48,12, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal $\left(C \subset C^{\perp}\right)$ code generated by its incidence matrix.
$\boldsymbol{x} \in C$ - has minimal weight in $\boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq$ block \Longrightarrow

$5-(48,12, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal $\left(C \subset C^{\perp}\right)$ code generated by its incidence matrix.
$x \in C \geq \underbrace{\text { has minimal weight in } \boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq \text { block } \Longrightarrow}_{|S \cap B|: \text { even and } \leq 6 .}$
$n_{j}=$ \#blocks B with $|S \cap B|=j \quad(j=2,4,6) . \quad S^{S}|B|=12$

$5-(48,12, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal $\left(C \subset C^{\perp}\right)$ code generated by its incidence matrix.
$x \in C \underbrace{\text { has minimal weight in } x+C, S=\operatorname{supp}(x) \neq \text { block } \Longrightarrow}_{|S \cap B|: \text { even and } \leq 6 .}$
$n_{j}=\#$ blocks B with $|S \cap B|=j \quad(j=2,4,6) . \quad$ S $|B|=12$

$$
\sum_{j=2,4,6}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5)
$$

$$
5-(48,12, \lambda) \text { design }
$$

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal $\left(C \subset C^{\perp}\right)$ code generated by its incidence matrix.
$x \in C \geq \underbrace{\text { has minimal weight in } \boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq \text { block } \Longrightarrow}_{|S \cap B|: \text { even and } \leq 6 .}$
$n_{j}=\#$ blocks B with $|S \cap B|=j \quad(j=2,4,6) . \quad$ S $|B|=12$

$$
\sum_{j=2,4,6}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5)
$$

3 unknowns $n_{2}, n_{4}, n_{6} ; 5$ equations \Longrightarrow a contradiction.

$$
5-(48,12, \lambda) \text { design }
$$

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal $\left(C \subset C^{\perp}\right)$ code generated by its incidence matrix.
$\boldsymbol{x} \in C$ - has minimal weight in $\boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq$ block \Longrightarrow
$|S \cap B|:$ even and ≤ 6.
$n_{j}=\#$ blocks B with $|S \cap B|=j \quad(j=2,4,6) . \quad$ S $\quad|B|=12$

$$
\sum_{j=2,4,6}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5)
$$

3 unknowns $n_{2}, n_{4}, n_{6} ; 5$ equations \Longrightarrow a contradiction. \Longrightarrow
$C=C^{\perp}$ and S is a block.

$5-(48,12, \lambda)$ design

Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal code generated by its incidence matrix.

$5-(48,12, \lambda)$ design

Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal code generated by its incidence matrix. Then C satisfies

- $C=C^{\perp}$,

$5-(48,12, \lambda)$ design

Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal code generated by its incidence matrix. Then C satisfies

- $C=C^{\perp}$,
- C has minimum weight 12 ,

$5-(48,12, \lambda)$ design

Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal code generated by its incidence matrix. Then C satisfies

- $C=C^{\perp}$,
- C has minimum weight 12 ,
- C has 17296 codewords of weight 12 by self-duality.

$5-(48,12, \lambda)$ design

Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal code generated by its incidence matrix. Then C satisfies

- $C=C^{\perp}$,
- C has minimum weight 12 ,
- C has 17296 codewords of weight 12 by self-duality.
- the codewords of weight 12 are the blocks of the design. In particular, $\lambda=8$.

$$
5-(48,12, \lambda) \text { design }
$$

Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal code generated by its incidence matrix. Then C satisfies

- $C=C^{\perp}$,
- C has minimum weight 12 ,
- C has 17296 codewords of weight 12 by self-duality.
- the codewords of weight 12 are the blocks of the design. In particular, $\lambda=8$.
The uniqueness of this design follows from the uniqueness of such a code (Houghten-Lam-Thiel-Parker, 2003).

$$
5-(48,12, \lambda) \text { design }
$$

Let $C \subset \mathbb{F}_{2}^{48}$ be the binary self-orthogonal code generated by its incidence matrix. Then C satisfies

- $C=C^{\perp}$,
- C has minimum weight 12 ,
- C has 17296 codewords of weight 12 by self-duality.
- the codewords of weight 12 are the blocks of the design. In particular, $\lambda=8$.

The uniqueness of this design follows from the uniqueness of such a code (Houghten-Lam-Thiel-Parker, 2003).

A quasi-symmetric $2-(45,9,8)$ design is also unique (Harada-M.Tonchev, 2005).

$5-(72,16, \lambda)$ design

$5-(72,16, \lambda)$ design

Assume that every pair of blocks interset at even number of points.

$5-(72,16, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{72}$ be the binary code generated by its incidence matrix.

$5-(72,16, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{72}$ be the binary code generated by its incidence matrix. $\boldsymbol{x} \in C^{-}$has minimal weight in $\boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq$ block \Longrightarrow

$5-(72,16, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{72}$ be the binary code generated by its incidence matrix. $\boldsymbol{x} \in C^{-}$has minimal weight in $\boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq$ block \Longrightarrow

$$
|S \cap B|: \text { even and } \leq 8 .
$$

$5-(72,16, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{72}$ be the binary code generated by its incidence matrix. $\boldsymbol{x} \in C$ - has minimal weight in $\boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq$ block \Longrightarrow
$|S \cap B|:$ even and ≤ 8.

$5-(72,16, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{72}$ be the binary code generated by its incidence matrix. $\boldsymbol{x} \in C$ - has minimal weight in $\boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq$ block \Longrightarrow
$|S \cap B|:$ even and ≤ 8.

$$
n_{j}=\# \text { blocks } B \text { with }|S \cap B|=j \quad(j=2,4,6,8) .
$$

$5-(72,16, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{72}$ be the binary code generated by its incidence matrix. $x \in C$ - has minimal weight in $x+C, S=\operatorname{supp}(x) \neq$ block \Longrightarrow
$|S \cap B|:$ even and ≤ 8.

$$
\begin{aligned}
& n_{j}=\# \text { blocks } B \text { with }|S \cap B|=j \quad(j=2,4,6,8) . \\
& \sum_{j=2,4,6,8}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5) .
\end{aligned}
$$

$5-(72,16, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{72}$ be the binary code generated by its incidence matrix. $x \in C$ has minimal weight in $x+C, S=\operatorname{supp}(x) \neq$ block \Longrightarrow
$|S \cap B|:$ even and ≤ 8.

$$
n_{j}=\# \text { blocks } B \text { with }|S \cap B|=j \quad(j=2,4,6,8) .
$$

$$
\sum_{j=2,4,6,8}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5)
$$

4 unknowns $n_{2}, n_{4}, n_{6}, n_{8} ; 5$ equations \Longrightarrow

$5-(72,16, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{72}$ be the binary code generated by its incidence matrix. $\boldsymbol{x} \in C$ - has minimal weight in $\boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq$ block \Longrightarrow
$|S \cap B|:$ even and ≤ 8.

$$
\begin{aligned}
& n_{j}=\text { \#blocks } B \text { with }|S \cap B|=j \quad(j=2,4,6,8) . \\
& \sum_{j=2,4,6,8}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5) .
\end{aligned}
$$

4 unknowns $n_{2}, n_{4}, n_{6}, n_{8} ; 5$ equations $\Longrightarrow \quad$ a contradiction. \Longrightarrow

$5-(72,16, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{72}$ be the binary code generated by its incidence matrix. $x \in C-$ has minimal weight in $\boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq$ block \Longrightarrow
$|S \cap B|:$ even and ≤ 8.

$$
\begin{gathered}
n_{j}=\# \text { blocks } B \text { with }|S \cap B|=\dot{j} \quad(j=2,4,6,8) . \quad S \quad|B|=16 \\
\sum_{j=2,4,6,8}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5) .
\end{gathered}
$$

4 unknowns $n_{2}, n_{4}, n_{6}, n_{8} ; 5$ equations \Longrightarrow a contradiction. \Longrightarrow $C=C^{\perp}$ and S is a block. (Harada-Kitazume-M., 2004).

$5-(72,16, \lambda)$ design

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_{2}^{72}$ be the binary code generated by its incidence matrix. $\boldsymbol{x} \in C$ - has minimal weight in $\boldsymbol{x}+C, S=\operatorname{supp}(\boldsymbol{x}) \neq$ block \Longrightarrow
$|S \cap B|:$ even and ≤ 8.

$$
\begin{gathered}
n_{j}=\# \text { blocks } B \text { with }|S \cap B|=j \quad(j=2,4,6,8) . \quad S \quad|B|=16 \\
\sum_{j=2,4,6,8}\left(\frac{j}{i}\right) n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1,2,3,4,5) .
\end{gathered}
$$

4 unknowns $n_{2}, n_{4}, n_{6}, n_{8} ; 5$ equations \Longrightarrow a contradiction. \Longrightarrow $C=C^{\perp}$ and S is a block. (Harada-Kitazume-M., 2004).

In particular, $\lambda=78$.

Spherical analogue

t-design
spherical $2 t$-design

Spherical analogue

t-design
binary self-orthogonal code binary self-dual code
Assmus-Mattson theorem
extended binary Golay code

$$
S(5,8,24)
$$

extended binary quadratic residue code of length 48
self-orthogonal 5 - $(48,12,8)$ design spherical 10-design in \mathbb{R}^{48}
self-orthogonal 5 - $(72,16,78)$ design spherical 10 -design in \mathbb{R}^{72}

Spherical analogue

A spherical t-design X is a finite subset of the sphere $S^{n-1}(\mu) \subset \mathbb{R}^{n}$ of radius $\sqrt{\mu}$ s.t.

$$
\frac{1}{|X|} \sum_{x \in X} f(x)=\frac{\int_{S^{n-1}(\mu)} f d x}{\int_{S^{n-1}(\mu)} 1 d x}
$$

holds for any polynomial $f(x)$ of degree $\leq t$.

Spherical analogue

A spherical t-design X is a finite subset of the sphere $S^{n-1}(\mu) \subset \mathbb{R}^{n}$ of radius $\sqrt{\mu}$ s.t.

$$
\frac{1}{|X|} \sum_{x \in X} f(x)=\frac{\int_{S^{n-1}(\mu)} f d x}{\int_{S^{n-1}(\mu)} 1 d x}
$$

holds for any polynomial $f(x)$ of degree $\leq t$. This is analogous to the definition of a $t-(v, k, \lambda)$ design:

Spherical analogue

A spherical t-design X is a finite subset of the sphere $S^{n-1}(\mu) \subset \mathbb{R}^{n}$ of radius $\sqrt{\mu}$ s.t.

$$
\frac{1}{|X|} \sum_{x \in X} f(x)=\frac{\int_{S^{n-1}(\mu)} f d x}{\int_{S^{n-1}(\mu)} 1 d x}
$$

holds for any polynomial $f(x)$ of degree $\leq t$. This is analogous to the definition of a $t-(v, k, \lambda)$ design:

$$
\frac{1}{b} \sum_{B: \text { block }} f_{T}(B)=\frac{\sum_{|B|=k} f_{T}(B)}{\binom{v}{k}}=\frac{\binom{k}{t}}{\binom{v}{t}}
$$

for $\forall t$-element set T, where

$$
f_{T}(B)=\left\{\begin{array}{lc}
1 & \text { if } T \subset B \\
0 & \text { otherwise }
\end{array}\right.
$$

Lattice

To impose a condition analogous to self-orthogonality, we introduce lattices.

Lattice

To impose a condition analogous to self-orthogonality, we introduce lattices.

- A lattice is a \mathbb{Z}-submodule of \mathbb{R}^{n} of rank n containing a basis of \mathbb{R}^{n}.

Lattice

To impose a condition analogous to self-orthogonality, we introduce lattices.

- A lattice is a \mathbb{Z}-submodule of \mathbb{R}^{n} of rank n containing a basis of \mathbb{R}^{n}.
- A lattice Λ is called integral if $\forall x, y \in \Lambda,(x, y) \in \mathbb{Z}$.

Lattice

To impose a condition analogous to self-orthogonality, we introduce lattices.

- A lattice is a \mathbb{Z}-submodule of \mathbb{R}^{n} of rank n containing a basis of \mathbb{R}^{n}.
- A lattice Λ is called integral if $\forall x, y \in \Lambda,(x, y) \in \mathbb{Z}$.
- The dual lattice Λ^{*} of an integral lattice Λ is

$$
\Lambda^{*}=\left\{x \in \mathbb{R}^{n} \mid(x, y) \in \mathbb{Z} \forall y \in \Lambda\right\} \supset \Lambda
$$

Lattice

To impose a condition analogous to self-orthogonality, we introduce lattices.

- A lattice is a \mathbb{Z}-submodule of \mathbb{R}^{n} of rank n containing a basis of \mathbb{R}^{n}.
- A lattice Λ is called integral if $\forall x, y \in \Lambda,(x, y) \in \mathbb{Z}$.
- The dual lattice Λ^{*} of an integral lattice Λ is

$$
\begin{aligned}
& \qquad \Lambda^{*}=\left\{x \in \mathbb{R}^{n} \mid(x, y) \in \mathbb{Z} \forall y \in \Lambda\right\} \supset \Lambda \\
& \text { and }\left|\Lambda^{*}: \Lambda\right|<\infty
\end{aligned}
$$

Lattice

To impose a condition analogous to self-orthogonality, we introduce lattices.

- A lattice is a \mathbb{Z}-submodule of \mathbb{R}^{n} of rank n containing a basis of \mathbb{R}^{n}.
- A lattice Λ is called integral if $\forall x, y \in \Lambda,(x, y) \in \mathbb{Z}$.
- The dual lattice Λ^{*} of an integral lattice Λ is

$$
\Lambda^{*}=\left\{x \in \mathbb{R}^{n} \mid(x, y) \in \mathbb{Z} \forall y \in \Lambda\right\} \supset \Lambda
$$

and $\left|\Lambda^{*}: \Lambda\right|<\infty$.

- An integral lattice Λ is called even if $(x, x) \in 2 \mathbb{Z} \forall x \in \Lambda$.

Lattice

To impose a condition analogous to self-orthogonality, we introduce lattices.

- A lattice is a \mathbb{Z}-submodule of \mathbb{R}^{n} of rank n containing a basis of \mathbb{R}^{n}.
- A lattice Λ is called integral if $\forall x, y \in \Lambda,(x, y) \in \mathbb{Z}$.
- The dual lattice Λ^{*} of an integral lattice Λ is

$$
\Lambda^{*}=\left\{x \in \mathbb{R}^{n} \mid(x, y) \in \mathbb{Z} \forall y \in \Lambda\right\} \supset \Lambda
$$

and $\left|\Lambda^{*}: \Lambda\right|<\infty$.

- An integral lattice Λ is called even if $(x, x) \in 2 \mathbb{Z} \forall x \in \Lambda$.
- An integral lattice Λ is called unimodular if $\Lambda=\Lambda^{*}$.

Assmus-Mattson theorem and Venkov's theorem

Theorem (Assmus-Mattson, 1969). Let C be a doubly even self-dual binary code of length $24 m$ with minimum weight $4 m+4$. Then the set of codewords of a fixed weight supports a 5-design.

Assmus-Mattson theorem and Venkov's theorem

Theorem (Assmus-Mattson, 1969). Let C be a doubly even self-dual binary code of length $24 m$ with minimum weight $4 m+4$. Then the set of codewords of a fixed weight supports a 5-design.

Theorem (Venkov, 1984). Let Λ be a even unimodular integral lattice of rank $24 m$ with minimum norm $2 m+2$. Then the set of vectors of a fixed norm forms a spherical 10-design.

Assmus-Mattson theorem and Venkov's theorem

Theorem (Assmus-Mattson, 1969). Let C be a doubly even self-dual binary code of length $24 m$ with minimum weight $4 m+4$. Then the set of codewords of a fixed weight supports a 5-design.

Theorem (Venkov, 1984). Let Λ be a even unimodular integral lattice of rank $24 m$ with minimum norm $2 m+2$. Then the set of vectors of a fixed norm forms a spherical 10-design.

The values $4 m+4,2 m+2$ are maximal possible ones.
Codes and lattices satisfying the condition of these theorems are called extremal.

Converse
 of Assmus-Mattson theorem

Theorem (Assmus-Mattson). Let C be a doubly even self-dual binary code of length $24 m$ with minimum weight $4 m+4$. Then the set of codewords of a fixed weight supports a 5-design.

Converse
 of Assmus-Mattson theorem

Theorem (Assmus-Mattson). Let C be a doubly even self-dual binary code of length $24 m$ with minimum weight $4 m+4$. Then the set of codewords of a fixed weight supports a 5-design.

For $m=1,2,3$, we have seen that every self-orthogonal $5-(24 m, 4 m+4, \lambda)$ design coincides with the set of codewords of minimum weight in a doubly even self-dual binary code of length $24 m$.

Converse
 of Assmus-Mattson theorem

Theorem (Assmus-Mattson). Let C be a doubly even self-dual binary code of length $24 m$ with minimum weight $4 m+4$. Then the set of codewords of a fixed weight supports a 5-design.

For $m=1,2,3$, we have seen that every self-orthogonal $5-(24 m, 4 m+4, \lambda)$ design coincides with the set of codewords of minimum weight in a doubly even self-dual binary code of length $24 m$.
M. Harada has shown a similar statement for $m=4$ with an appropriate assumption on the value of λ.

Converse of Venkov's theorem

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank $24 m$ with minimum norm $2 m+2$. Then the set of vectors of a fixed norm forms a spherical 10-design.

Converse of Venkov's theorem

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank $24 m$ with minimum norm $2 m+2$. Then the set of vectors of a fixed norm forms a spherical 10-design.

For $m=1,2,3$, we will see that every spherical 10-design X with $X=-X$, in $\mathbb{R}^{24 m}$, of norm $2 m+2$, such that the values of mutual inner products are integers, coincides with the set of vectors of norm $2 m+2$ of an even unimodular lattice of rank $24 m$ with minimum norm $2 m+2$.

Converse of Venkov's theorem

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank $24 m$ with minimum norm $2 m+2$. Then the set of vectors of a fixed norm forms a spherical 10-design.

For $m=1,2,3$, we will see that every spherical 10-design X with $X=-X$, in $\mathbb{R}^{24 m}$, of norm $2 m+2$, such that the values of mutual inner products are integers, coincides with the set of vectors of norm $2 m+2$ of an even unimodular lattice of rank $24 m$ with minimum norm $2 m+2$.

For $m=1$, this result implies the characterization of the kissing configuration in \mathbb{R}^{24} by Bannai-Sloane (1981).

Converse of Venkov's theorem

Let X be a spherical $2 t$-design in the sphere $S^{n-1}(\mu) \subset \mathbb{R}^{n}$, with $X=-X$, such that the values of mutual inner products are integers.

Converse of Venkov's theorem

Let X be a spherical $2 t$-design in the sphere $S^{n-1}(\mu) \subset \mathbb{R}^{n}$, with $X=-X$, such that the values of mutual inner products are integers.
Let $f_{i}(x)=(\alpha, x)^{2 i}=\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)^{2 i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, where $\alpha \in \mathbb{R}^{n}$.

Converse of Venkov's theorem

Let X be a spherical $2 t$-design in the sphere $S^{n-1}(\mu) \subset \mathbb{R}^{n}$, with $X=-X$, such that the values of mutual inner products are integers.
Let $f_{i}(x)=(\alpha, x)^{2 i}=\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)^{2 i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, where $\alpha \in \mathbb{R}^{n}$.
Then for $i=1, \ldots, t$,

Converse of Venkov's theorem

Let X be a spherical $2 t$-design in the sphere $S^{n-1}(\mu) \subset \mathbb{R}^{n}$, with $X=-X$, such that the values of mutual inner products are integers.
Let $f_{i}(x)=(\alpha, x)^{2 i}=\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)^{2 i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, where $\alpha \in \mathbb{R}^{n}$.
Then for $i=1, \ldots, t$,

$$
\frac{1}{|X|} \sum_{x \in X} f_{i}(x)=\frac{\int_{S^{n-1}(\mu)} f_{i} d x}{\int_{S^{n-1}(\mu)} 1 d x}
$$

Converse of Venkov's theorem

Let X be a spherical $2 t$-design in the sphere $S^{n-1}(\mu) \subset \mathbb{R}^{n}$, with $X=-X$, such that the values of mutual inner products are integers.
Let $f_{i}(x)=(\alpha, x)^{2 i}=\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)^{2 i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, where $\alpha \in \mathbb{R}^{n}$.
Then for $i=1, \ldots, t$,

$$
\begin{aligned}
\frac{1}{|X|} \sum_{x \in X}(\alpha, x)^{2 i} & =\frac{1}{|X|} \sum_{x \in X} f_{i}(x)=\frac{\int_{S^{n-1}(\mu)} f_{i} d x}{\int_{S^{n-1}(\mu)} 1 d x} \\
& =\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}}{n(n+2) \cdots(n+2 i-2)}
\end{aligned}
$$

Converse of Venkov's theorem

If $X=-X \subset S^{n-1}(\mu)$ is a spherical $2 t$-design generating an integral lattice Λ, then

Converse of Venkov's theorem

If $X=-X \subset S^{n-1}(\mu)$ is a spherical $2 t$-design generating an integral lattice Λ, then

$$
\frac{1}{|X|} \sum_{x \in X}(\alpha, x)^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots, t
$$

Converse of Venkov's theorem

If $X=-X \subset S^{n-1}(\mu)$ is a spherical $2 t$-design generating an integral lattice Λ, then

$$
\frac{1}{|X|} \sum_{x \in X}(\alpha, x)^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots, t
$$

If one takes $\alpha \in \Lambda^{*}$, then $(\alpha, x) \in \mathbb{Z}$ for all $x \in X$.

Converse of Venkov's theorem

If $X=-X \subset S^{n-1}(\mu)$ is a spherical $2 t$-design generating an integral lattice Λ, then

$$
\frac{1}{|X|} \sum_{x \in X}(\alpha, x)^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots, t
$$

If one takes $\alpha \in \Lambda^{*}$, then $(\alpha, x) \in \mathbb{Z}$ for all $x \in X$. Putting

$$
n_{j}=\# \text { vectors } x \in X \text { with }(\alpha, x)= \pm j
$$

we have

Converse of Venkov's theorem

If $X=-X \subset S^{n-1}(\mu)$ is a spherical $2 t$-design generating an integral lattice Λ, then

$$
\frac{1}{|X|} \sum_{x \in X}(\alpha, x)^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots, t
$$

If one takes $\alpha \in \Lambda^{*}$, then $(\alpha, x) \in \mathbb{Z}$ for all $x \in X$. Putting

$$
n_{j}=\# \text { vectors } x \in X \text { with }(\alpha, x)= \pm j
$$

we have

Converse of Venkov's theorem

If $X=-X \subset S^{n-1}(\mu)$ is a spherical $2 t$-design generating an integral lattice Λ, then

$$
\frac{1}{|X|} \sum_{x \in X}(\alpha, x)^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots, t
$$

If one takes $\alpha \in \Lambda^{*}$, then $(\alpha, x) \in \mathbb{Z}$ for all $x \in X$. Putting

$$
n_{j}=\# \text { vectors } x \in X \text { with }(\alpha, x)= \pm j
$$

we have

$$
\sum_{j=1}^{\infty} j^{2 i} n_{j}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots, t
$$

Converse of Venkov's theorem

If $X=-X \subset S^{n-1}(\mu)$ is a spherical $2 t$-design generating an integral lattice Λ, then

$$
\frac{1}{|X|} \sum_{x \in X}(\alpha, x)^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots, t
$$

If one takes $\alpha \in \Lambda^{*}$, then $(\alpha, x) \in \mathbb{Z}$ for all $x \in X$. Putting

$$
n_{j}=\# \text { vectors } x \in X \text { with }(\alpha, x)= \pm j
$$

we have

$$
\sum_{j=1}^{\infty} j^{2 i} n_{j}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots, t
$$

There are infinitely many unknowns, while there are t equations.

Converse of Venkov's theorem

Assume $\alpha \in \Lambda^{*}$ has minimal norm in $\alpha+\Lambda$ and $\alpha \notin X$,

Converse of Venkov's theorem

Assume $\alpha \in \Lambda^{*}$ has minimal norm in $\alpha+\Lambda$ and $\alpha \notin X$, then for $\beta \in X$,

$$
2(\alpha, \beta)=(\alpha+\beta, \alpha+\beta)-(\alpha, \alpha)-(\beta, \beta)
$$

Converse of Venkov's theorem

Assume $\alpha \in \Lambda^{*}$ has minimal norm in $\alpha+\Lambda$ and $\alpha \notin X$, then for $\beta \in X$,

$$
\begin{aligned}
2(\alpha, \beta) & =(\alpha+\beta, \alpha+\beta)-(\alpha, \alpha)-(\beta, \beta) \\
& \geq-(\beta, \beta)=-\mu,
\end{aligned}
$$

Converse of Venkov's theorem

Assume $\alpha \in \Lambda^{*}$ has minimal norm in $\alpha+\Lambda$ and $\alpha \notin X$, then for $\beta \in X$,

$$
\begin{aligned}
2(\alpha, \beta) & =(\alpha+\beta, \alpha+\beta)-(\alpha, \alpha)-(\beta, \beta) \\
& \geq-(\beta, \beta)=-\mu \\
2(\alpha, \beta) & =-(\alpha-\beta, \alpha-\beta)+(\alpha, \alpha)+(\beta, \beta)
\end{aligned}
$$

Converse of Venkov's theorem

Assume $\alpha \in \Lambda^{*}$ has minimal norm in $\alpha+\Lambda$ and $\alpha \notin X$, then for $\beta \in X$,

$$
\begin{aligned}
2(\alpha, \beta) & =(\alpha+\beta, \alpha+\beta)-(\alpha, \alpha)-(\beta, \beta) \\
& \geq-(\beta, \beta)=-\mu \\
2(\alpha, \beta) & =-(\alpha-\beta, \alpha-\beta)+(\alpha, \alpha)+(\beta, \beta) \\
& \leq(\beta, \beta)=\mu .
\end{aligned}
$$

Converse of Venkov's theorem

Assume $\alpha \in \Lambda^{*}$ has minimal norm in $\alpha+\Lambda$ and $\alpha \notin X$, then for $\beta \in X$,

$$
\begin{aligned}
2(\alpha, \beta) & =(\alpha+\beta, \alpha+\beta)-(\alpha, \alpha)-(\beta, \beta) \\
& \geq-(\beta, \beta)=-\mu, \\
2(\alpha, \beta) & =-(\alpha-\beta, \alpha-\beta)+(\alpha, \alpha)+(\beta, \beta) \\
& \leq(\beta, \beta)=\mu .
\end{aligned}
$$

Converse of Venkov's theorem

Assume $\alpha \in \Lambda^{*}$ has minimal norm in $\alpha+\Lambda$ and $\alpha \notin X$, then for $\beta \in X$,

$$
\begin{aligned}
2(\alpha, \beta) & =(\alpha+\beta, \alpha+\beta)-(\alpha, \alpha)-(\beta, \beta) \\
& \geq-(\beta, \beta)=-\mu \\
2(\alpha, \beta) & =-(\alpha-\beta, \alpha-\beta)+(\alpha, \alpha)+(\beta, \beta) \\
& \leq(\beta, \beta)=\mu . \\
\sum_{j=1}^{[\mu / 2]} j^{2 i} n_{j}= & \frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots,[t / 2] .
\end{aligned}
$$

Converse of Venkov's theorem

Assume $\alpha \in \Lambda^{*}$ has minimal norm in $\alpha+\Lambda$ and $\alpha \notin X$, then for $\beta \in X$,

$$
\begin{aligned}
2(\alpha, \beta) & =(\alpha+\beta, \alpha+\beta)-(\alpha, \alpha)-(\beta, \beta) \\
& \geq-(\beta, \beta)=-\mu \\
2(\alpha, \beta) & =-(\alpha-\beta, \alpha-\beta)+(\alpha, \alpha)+(\beta, \beta) \\
& \leq(\beta, \beta)=\mu \\
\sum_{j=1}^{[\mu / 2]} j^{2 i} n_{j}= & \frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots,[t / 2] .
\end{aligned}
$$

There are $[\mu / 2]$ unknowns $n_{1}, \ldots, n_{[\mu / 2]} ;[t / 2]$ equations.

Converse of Venkov's theorem

Assume $\alpha \in \Lambda^{*}$ has minimal norm in $\alpha+\Lambda$ and $\alpha \notin X$, then for $\beta \in X$,

$$
\begin{aligned}
2(\alpha, \beta) & =(\alpha+\beta, \alpha+\beta)-(\alpha, \alpha)-(\beta, \beta) \\
& \geq-(\beta, \beta)=-\mu \\
2(\alpha, \beta) & =-(\alpha-\beta, \alpha-\beta)+(\alpha, \alpha)+(\beta, \beta) \\
& \leq(\beta, \beta)=\mu \\
\sum_{j=1}^{[\mu / 2]} j^{2 i} n_{j}= & \frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots,[t / 2] .
\end{aligned}
$$

There are $[\mu / 2]$ unknowns $n_{1}, \ldots, n_{[\mu / 2]} ;[t / 2]$ equations.
Consistency condition is derived when $t=10, \mu=4,6,8$ (rank $24,48,72$, respectively).

Converse of Venkov's theorem

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank $24 m$ with minimum norm $2 m+2$. Then the set of vectors of a fixed norm forms a spherical 10-design.

Converse of Venkov's theorem

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank $24 m$ with minimum norm $2 m+2$. Then the set of vectors of a fixed norm forms a spherical 10-design.

For $m=1,2,3$, every spherical 10-design X with $X=-X$, in $\mathbb{R}^{24 m}$, of norm $2 m+2$, such that the values of mutual inner products are integers, coincides with the set of vectors of norm $2 m+2$ of an even unimodular lattice of rank $24 m$ with minimum norm $2 m+2$.

Converse of Venkov's theorem

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank $24 m$ with minimum norm $2 m+2$. Then the set of vectors of a fixed norm forms a spherical 10-design.

For $m=1,2,3$, every spherical 10-design X with $X=-X$, in $\mathbb{R}^{24 m}$, of norm $2 m+2$, such that the values of mutual inner products are integers, coincides with the set of vectors of norm $2 m+2$ of an even unimodular lattice of rank $24 m$ with minimum norm $2 m+2$.

For $m=1$, this result gives a simple proof the following.

Converse of Venkov's theorem

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank $24 m$ with minimum norm $2 m+2$. Then the set of vectors of a fixed norm forms a spherical 10-design.

For $m=1,2,3$, every spherical 10 -design X with $X=-X$, in $\mathbb{R}^{24 m}$, of norm $2 m+2$, such that the values of mutual inner products are integers, coincides with the set of vectors of norm $2 m+2$ of an even unimodular lattice of rank $24 m$ with minimum norm $2 m+2$.

For $m=1$, this result gives a simple proof the following.
Theorem (Bannai-Sloane, 1981). The set of 196,560 shortest vectors of the Leech lattice is the unique kissing configuration in \mathbb{R}^{24}.

Spherical designs and lattices

In what follows, let $X=-X \subset S^{n-1}(\mu)$ be a spherical t-design generating an integral lattice Λ.

Spherical designs and lattices

In what follows, let $X=-X \subset S^{n-1}(\mu)$ be a spherical t-design generating an integral lattice Λ. Suppose $[t / 2] \geq[\mu / 2]+1$.

Spherical designs and lattices

In what follows, let $X=-X \subset S^{n-1}(\mu)$ be a spherical t-design generating an integral lattice Λ.
Suppose $[t / 2] \geq[\mu / 2]+1$.
If $\alpha \in \Lambda^{*}$ is minimal in $\alpha+\Lambda$ and $\alpha \notin X$, then we obtain a consistency condition.

Spherical designs and lattices

In what follows, let $X=-X \subset S^{n-1}(\mu)$ be a spherical t-design generating an integral lattice Λ.
Suppose $[t / 2] \geq[\mu / 2]+1$.
If $\alpha \in \Lambda^{*}$ is minimal in $\alpha+\Lambda$ and $\alpha \notin X$, then we obtain a consistency condition.
If there is no such α, i.e., if X coincides with the set of the shortest vectors of a unimodular lattice Λ, then we get a different system of linear equations by taking $\alpha \in X$:

Spherical designs and lattices

In what follows, let $X=-X \subset S^{n-1}(\mu)$ be a spherical t-design generating an integral lattice Λ.
Suppose $[t / 2] \geq[\mu / 2]+1$.
If $\alpha \in \Lambda^{*}$ is minimal in $\alpha+\Lambda$ and $\alpha \notin X$, then we obtain a consistency condition.
If there is no such α, i.e., if X coincides with the set of the shortest vectors of a unimodular lattice Λ, then we get a different system of linear equations by taking $\alpha \in X$:

$$
\sum_{j=1}^{[\mu / 2]} j^{2 i} n_{j}+2 \mu^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad(i=1, \ldots,[t / 2]) .
$$

Spherical designs and lattices

In what follows, let $X=-X \subset S^{n-1}(\mu)$ be a spherical t-design generating an integral lattice Λ.
Suppose $[t / 2] \geq[\mu / 2]+1$.
If $\alpha \in \Lambda^{*}$ is minimal in $\alpha+\Lambda$ and $\alpha \notin X$, then we obtain a consistency condition.
If there is no such α, i.e., if X coincides with the set of the shortest vectors of a unimodular lattice Λ, then we get a different system of linear equations by taking $\alpha \in X$:

$$
\sum_{j=1}^{[\mu / 2]} j^{2 i} n_{j}+2 \mu^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad(i=1, \ldots,[t / 2])
$$

Spherical designs and lattices

In what follows, let $X=-X \subset S^{n-1}(\mu)$ be a spherical t-design generating an integral lattice Λ.
Suppose $[t / 2] \geq[\mu / 2]+1$.
If $\alpha \in \Lambda^{*}$ is minimal in $\alpha+\Lambda$ and $\alpha \notin X$, then we obtain a consistency condition.
If there is no such α, i.e., if X coincides with the set of the shortest vectors of a unimodular lattice Λ, then we get a different system of linear equations by taking $\alpha \in X$:

$$
\begin{aligned}
& \sum_{j=1}^{[\mu / 2]} j^{2 i} n_{j}+2 \mu^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad(i=1, \ldots,[t / 2]) . \\
& (\alpha, \alpha)^{2 i}+(\alpha,-\alpha)^{2 i}=2 \mu^{2 i}=\mu^{2 i} n_{\mu}
\end{aligned}
$$

Spherical designs and lattices

In what follows, let $X=-X \subset S^{n-1}(\mu)$ be a spherical t-design generating an integral lattice Λ.
Suppose $[t / 2] \geq[\mu / 2]+1$.
If $\alpha \in \Lambda^{*}$ is minimal in $\alpha+\Lambda$ and $\alpha \notin X$, then we obtain a consistency condition.
If there is no such α, i.e., if X coincides with the set of the shortest vectors of a unimodular lattice Λ, then we get a different system of linear equations by taking $\alpha \in X$:

$$
\sum_{j=1}^{[\mu / 2]} j^{2 i} n_{j}+2 \mu^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad(i=1, \ldots,[t / 2]) .
$$

which also gives a consistency condition.

The unimodular case

If X coincides with the set of the shortest vectors of a unimodular lattice Λ, then

The unimodular case

If X coincides with the set of the shortest vectors of a unimodular lattice Λ, then

$$
\sum_{j=1}^{[\mu / 2]} j^{2 i} n_{j}+2 \mu^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots,[t / 2]
$$

The unimodular case

If X coincides with the set of the shortest vectors of a unimodular lattice Λ, then

$$
\begin{aligned}
& \sum_{j=1}^{[\mu / 2]} j^{2 i} n_{j}+2 \mu^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots,[t / 2] . \\
& \cdot(t, \mu)=(4,2) \Longrightarrow X=E_{8}
\end{aligned}
$$

The unimodular case

If X coincides with the set of the shortest vectors of a unimodular lattice Λ, then

$$
\begin{aligned}
& \sum_{j=1}^{[\mu / 2]} j^{2 i} n_{j}+2 \mu^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots,[t / 2] . \\
& \text { - }(t, \mu)=(4,2) \Longrightarrow X=E_{8}, \\
& \text { - }(t, \mu)=(4,3) \Longrightarrow|X|=\frac{16 n(n+2)}{25-n}, \text { in particular, } n \leq 24,
\end{aligned}
$$

The unimodular case

If X coincides with the set of the shortest vectors of a unimodular lattice Λ, then

$$
\sum_{j=1}^{[\mu / 2]} j^{2 i} n_{j}+2 \mu^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots,[t / 2] .
$$

- $(t, \mu)=(4,2) \Longrightarrow X=E_{8}$,
- $(t, \mu)=(4,3) \Longrightarrow|X|=\frac{16 n(n+2)}{25-n}$, in particular, $n \leq 24$,
- $(t, \mu)=(6,4) \Longrightarrow|X|=\frac{90 n(n+2)(n+4)}{(n-26)(n-28)}, n$ is bounded.

The unimodular case

If X coincides with the set of the shortest vectors of a unimodular lattice Λ, then

$$
\begin{aligned}
& \sum_{j=1}^{[\mu / 2]} j^{2 i} n_{j}+2 \mu^{2 i}=\frac{(2 i-1)!!\left(\|\alpha\|^{2} \mu\right)^{i}|X|}{n(n+2) \cdots(n+2 i-2)} \quad i=1, \ldots,[t / 2] . \\
& \text { - }(t, \mu)=(4,2) \Longrightarrow X=E_{8}, \\
& \text { - }(t, \mu)=(4,3) \Longrightarrow|X|=\frac{16 n(n+2)}{25-n}, \text { in particular, } n \leq 24, \\
& \text { - }(t, \mu)=(6,4) \Longrightarrow|X|=\frac{90 n(n+2)(n+4)}{(n-26)(n-28)}, n \text { is bounded. }
\end{aligned}
$$

Moreover, $[\mu / 2]+1 \leq[t / 2] \leq 10$ and $t \leq 10 \Longrightarrow n$ is bounded.

Binary analogue

Let $C \subset \mathbb{F}_{2}^{v}$ be the binary code generated by the incidence matrix of a self-orthogonal $t-(v, k, \lambda)$ design.

Binary analogue

Let $C \subset \mathbb{F}_{2}^{v}$ be the binary code generated by the incidence matrix of a self-orthogonal $t-(v, k, \lambda)$ design.
Pick $\boldsymbol{x} \in C^{\perp}$ minimal in $\boldsymbol{x}+C$, and assume $S=\operatorname{supp}(\boldsymbol{x})$ is not a block. Then

Binary analogue

Let $C \subset \mathbb{F}_{2}^{v}$ be the binary code generated by the incidence matrix of a self-orthogonal $t-(v, k, \lambda)$ design.
Pick $\boldsymbol{x} \in C^{\perp}$ minimal in $\boldsymbol{x}+C$, and assume $S=\operatorname{supp}(\boldsymbol{x})$ is not a block. Then

$$
\sum_{j=2,4, \ldots, 2[k / 4]}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1, \ldots, t) .
$$

Binary analogue

Let $C \subset \mathbb{F}_{2}^{v}$ be the binary code generated by the incidence matrix of a self-orthogonal $t-(v, k, \lambda)$ design.
Pick $\boldsymbol{x} \in C^{\perp}$ minimal in $\boldsymbol{x}+C$, and assume $S=\operatorname{supp}(\boldsymbol{x})$ is not a block. Then

$$
\sum_{j=2,4, \ldots, 2[k / 4]}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1, \ldots, t) .
$$

There are $[k / 4]$ unknowns, t equations.

Binary analogue

Let $C \subset \mathbb{F}_{2}^{v}$ be the binary code generated by the incidence matrix of a self-orthogonal $t-(v, k, \lambda)$ design.
Pick $\boldsymbol{x} \in C^{\perp}$ minimal in $\boldsymbol{x}+C$, and assume $S=\operatorname{supp}(\boldsymbol{x})$ is not a block. Then

$$
\sum_{j=2,4, \ldots, 2[k / 4]}\binom{j}{i} n_{j}=\binom{|S|}{i} \lambda_{i} \quad(i=1, \ldots, t) .
$$

There are $[k / 4]$ unknowns, t equations.
A consistency condition is derived when

$$
t \geq[k / 4]+1
$$

Binary analogue

In what follows, let $C \subset \mathbb{F}_{2}^{v}$ be the binary code generated by the incidence matrix of a self-orthogonal $t-(v, k, \lambda)$ design, where $t \geq[k / 4]+1$.

Binary analogue

In what follows, let $C \subset \mathbb{F}_{2}^{v}$ be the binary code generated by the incidence matrix of a self-orthogonal $t-(v, k, \lambda)$ design, where $t \geq[k / 4]+1$.
If $\boldsymbol{x} \in C^{\perp}$ has minimal weight in $\boldsymbol{x}+C$ and $S=\operatorname{supp}(\boldsymbol{x})$ is not a block, then we obtain a consistency condition.

Binary analogue

In what follows, let $C \subset \mathbb{F}_{2}^{v}$ be the binary code generated by the incidence matrix of a self-orthogonal $t-(v, k, \lambda)$ design, where $t \geq[k / 4]+1$.
If $\boldsymbol{x} \in C^{\perp}$ has minimal weight in $\boldsymbol{x}+C$ and $S=\operatorname{supp}(\boldsymbol{x})$ is not a block, then we obtain a consistency condition.
If there is no such x, i.e., if the blocks are just the minimum weight codewords of a self-dual code C, then we get a different system of linear equations by taking S to be a block:

Binary analogue

In what follows, let $C \subset \mathbb{F}_{2}^{v}$ be the binary code generated by the incidence matrix of a self-orthogonal $t-(v, k, \lambda)$ design, where $t \geq[k / 4]+1$.
If $\boldsymbol{x} \in C^{\perp}$ has minimal weight in $\boldsymbol{x}+C$ and $S=\operatorname{supp}(\boldsymbol{x})$ is not a block, then we obtain a consistency condition.
If there is no such x, i.e., if the blocks are just the minimum weight codewords of a self-dual code C, then we get a different system of linear equations by taking S to be a block:

$$
\sum_{j=2,4, \ldots, 2[k / 4]}\binom{j}{i} n_{j}+\binom{k}{i}=\binom{|S|}{i} \lambda_{i} \quad i=1, \ldots, t .
$$

Binary analogue

In what follows, let $C \subset \mathbb{F}_{2}^{v}$ be the binary code generated by the incidence matrix of a self-orthogonal $t-(v, k, \lambda)$ design, where $t \geq[k / 4]+1$.
If $x \in C^{\perp}$ has minimal weight in $x+C$ and $S=\operatorname{supp}(x)$ is not a block, then we obtain a consistency condition.
If there is no such x, i.e., if the blocks are just the minimum weight codewords of a self-dual code C, then we get a different system of linear equations by taking S to be a block:

Binary analogue

In what follows, let $C \subset \mathbb{F}_{2}^{v}$ be the binary code generated by the incidence matrix of a self-orthogonal $t-(v, k, \lambda)$ design, where $t \geq[k / 4]+1$.
If $\boldsymbol{x} \in C^{\perp}$ has minimal weight in $\boldsymbol{x}+C$ and $S=\operatorname{supp}(\boldsymbol{x})$ is not a block, then we obtain a consistency condition.
If there is no such x, i.e., if the blocks are just the minimum weight codewords of a self-dual code C, then we get a different system of linear equations by taking S to be a block:

$$
\sum_{j=2,4, \ldots, 2[k / 4]}\binom{j}{i} n_{j}+\binom{k}{i}=\binom{|S|}{i} \lambda_{i} \quad(i=1, \ldots, t) .
$$

which also gives a consistency condition.

Binary analogue

If the set of blocks coincides with the set of minimal weight vectors of a self-dual code, then

Binary analogue

If the set of blocks coincides with the set of minimal weight vectors of a self-dual code, then

$$
\sum_{j=2,4, \ldots, 2[k / 4]}\binom{j}{i} n_{j}+\binom{k}{i}=\binom{|S|}{i} \lambda_{i} \quad(i=1, \ldots, t) .
$$

Binary analogue

If the set of blocks coincides with the set of minimal weight vectors of a self-dual code, then

$$
\begin{aligned}
& \sum_{j=2,4, \ldots, 2[k / 4]}\binom{j}{i} n_{j}+\binom{k}{i}=\binom{|S|}{i} \lambda_{i} \quad(i=1, \ldots, t) . \\
& \text { - }(t, k)=(2,4) \Longrightarrow \lambda=\frac{6}{10-v},
\end{aligned}
$$

Binary analogue

If the set of blocks coincides with the set of minimal weight vectors of a self-dual code, then

$$
\sum_{j=2,4, \ldots, 2[k / 4]}\binom{j}{i} n_{j}+\binom{k}{i}=\binom{|S|}{i} \lambda_{i} \quad(i=1, \ldots, t) .
$$

- $(t, k)=(2,4) \Longrightarrow \lambda=\frac{6}{10-v}$,
- $(t, k)=(2,6) \Longrightarrow \lambda=\frac{20}{26-v}$,

Binary analogue

If the set of blocks coincides with the set of minimal weight vectors of a self-dual code, then

$$
\sum_{j=2,4, \ldots, 2[k / 4]}\binom{j}{i} n_{j}+\binom{k}{i}=\binom{|S|}{i} \lambda_{i} \quad(i=1, \ldots, t) .
$$

- $(t, k)=(2,4) \Longrightarrow \lambda=\frac{6}{10-v}$,
- $(t, k)=(2,6) \Longrightarrow \lambda=\frac{20}{26-v}$,
- $(t, k)=(3,8) \Longrightarrow \lambda=\frac{336}{v^{2}-52 v+688} \Longrightarrow v$ is bounded.

Binary analogue

If the set of blocks coincides with the set of minimal weight vectors of a self-dual code, then

$$
\sum_{j=2,4, \ldots, 2[k / 4]}\binom{j}{i} n_{j}+\binom{k}{i}=\binom{|S|}{i} \lambda_{i} \quad(i=1, \ldots, t) .
$$

- $(t, k)=(2,4) \Longrightarrow \lambda=\frac{6}{10-v}$,
- $(t, k)=(2,6) \Longrightarrow \lambda=\frac{20}{26-v}$,
- $(t, k)=(3,8) \Longrightarrow \lambda=\frac{336}{v^{2}-52 v+688} \Longrightarrow v$ is bounded.
- for each t, k with $t=[k / 4]+1, v$ is bounded. Only finitely many (t, k, v) ?

