Spherical designs and extremal lattices

Akihiro Munemasa

Tohoku University August 15, 2005

Spherical designs and extremal lattices – p.1/20

 $\boldsymbol{x} \in C^{\perp} \implies |\boldsymbol{S} \cap B|$: even for \forall block B, where $\boldsymbol{S} = \operatorname{supp}(\boldsymbol{x})$.

 $x \in C^{\perp} \implies |S \cap B|$: even for \forall block B, where S = supp(x).

 $x \in C^{\perp} \implies |S \cap B|$: even for \forall block B, where S = supp(x). $n_j = \#$ blocks B with $|S \cap B| = j$ (j = 2, 4, 6, 8).

Let $C \subset \mathbb{F}_2^{24}$ be the binary code generated by its incidence matrix.

 $x \in C^{\perp} \implies |S \cap B|$: even for \forall block B, where S = supp(x). $n_j = \#$ blocks B with $|S \cap B| = j$ (j = 2, 4, 6, 8).

S |B| = 8

Let $C \subset \mathbb{F}_2^{24}$ be the binary code generated by its incidence matrix.

 $x \in C^{\perp} \implies |S \cap B|$: even for \forall block B, where S = supp(x). $n_j = \#$ blocks B with $|S \cap B| = j$ (j = 2, 4, 6, 8).

$$\sum_{j=2,4,6,8} \binom{j}{i} n_j$$

Let $C \subset \mathbb{F}_2^{24}$ be the binary code generated by its incidence matrix.

 $x \in C^{\perp} \implies |S \cap B|$: even for \forall block B, where S = supp(x). $n_j = \#$ blocks B with $|S \cap B| = j$ (j = 2, 4, 6, 8).

$$\sum_{j=2,4,6,8} \binom{j}{i} n_j$$

$$\binom{|S|}{i}\lambda_i \quad (i=1,2,3,4,5).$$

Let $C \subset \mathbb{F}_2^{24}$ be the binary code generated by its incidence matrix.

 $x \in C^{\perp} \implies |S \cap B|$: even for \forall block B, where S = supp(x). $n_j = \#$ blocks B with $|S \cap B| = j$ (j = 2, 4, 6, 8).

$$S |B| = 8$$

$$\sum_{j=2,4,6,8} {\binom{j}{i}} n_j = {\binom{|S|}{i}} \lambda_i \quad (i = 1, 2, 3, 4, 5).$$

Let $C \subset \mathbb{F}_2^{24}$ be the binary code generated by its incidence matrix.

 $x \in C^{\perp} \implies |S \cap B|$: even for \forall block B, where S = supp(x). $n_j = \#$ blocks B with $|S \cap B| = j$ (j = 2, 4, 6, 8).

Counting #(I, B) with $I \in \binom{S \cap B}{i}$,

$$\sum_{j=2,4,6,8} {\binom{j}{i}} n_j = {\binom{|S|}{i}} \lambda_i \quad (i = 1, 2, 3, 4, 5).$$

4 unknowns n_2, n_4, n_6, n_8 .

Let $C \subset \mathbb{F}_2^{24}$ be the binary code generated by its incidence matrix.

 $x \in C^{\perp} \implies |S \cap B|$: even for \forall block B, where S = supp(x). $n_j = \#$ blocks B with $|S \cap B| = j$ (j = 2, 4, 6, 8).

Counting #(I, B) with $I \in \binom{S \cap B}{i}$,

$$\sum_{j=2,4,6,8} {j \choose i} n_j = {|S| \choose i} \lambda_i \quad (i = 1, 2, 3, 4, 5).$$

4 unknowns n_2, n_4, n_6, n_8 . 5 equations \implies

Let $C \subset \mathbb{F}_2^{24}$ be the binary code generated by its incidence matrix.

 $x \in C^{\perp} \implies |S \cap B|$: even for \forall block B, where S = supp(x). $n_j = \#$ blocks B with $|S \cap B| = j$ (j = 2, 4, 6, 8).

Counting #(I, B) with $I \in {\binom{S \cap B}{i}}$,

$$\sum_{j=2,4,6,8} {j \choose i} n_j = {|S| \choose i} \lambda_i \quad (i = 1, 2, 3, 4, 5).$$

4 unknowns n_2, n_4, n_6, n_8 . 5 equations \implies

|S|(|S| - 8)(|S| - 12)(|S| - 16)(|S| - 24) = 0.

Assume that every pair of blocks interset at even number of points.

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{48}$ be the binary self-orthogonal ($C \subset C^{\perp}$) code generated by its incidence matrix.

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{48}$ be the binary self-orthogonal ($C \subset C^{\perp}$) code generated by its incidence matrix.

 $x \in C^{\perp}$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{48}$ be the binary self-orthogonal ($C \subset C^{\perp}$) code generated by its incidence matrix.

 $x \in C^{\perp}$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$

 $|S \cap B|$: even and ≤ 6 .

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{48}$ be the binary self-orthogonal ($C \subset C^{\perp}$) code generated by its incidence matrix.

 $x \in C$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$ $|S \cap B|$: even and ≤ 6 .

S |B| = 12

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{48}$ be the binary self-orthogonal ($C \subset C^{\perp}$) code generated by its incidence matrix.

 $x \in C$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$ $|S \cap B|$: even and ≤ 6 .

 $n_j = \#$ blocks B with $|S \cap B| = j \quad (j = 2, 4, 6).$

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{48}$ be the binary self-orthogonal ($C \subset C^{\perp}$) code generated by its incidence matrix.

 $x \in C$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$ $|S \cap B|$: even and ≤ 6 .

 $n_j = \#$ blocks B with $|S \cap B| = j \quad (j = 2, 4, 6).$

$$\sum_{j=2,4,6} \binom{j}{i} n_j = \binom{|S|}{i} \lambda_i \quad (i=1,2,3,4,5).$$

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{48}$ be the binary self-orthogonal ($C \subset C^{\perp}$) code generated by its incidence matrix.

 $x \in C$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$ $|S \cap B|$: even and ≤ 6 .

 $n_j = \#$ blocks B with $|S \cap B| = j \quad (j = 2, 4, 6).$

$$\sum_{j=2,4,6} {j \choose i} n_j = {|S| \choose i} \lambda_i \quad (i = 1, 2, 3, 4, 5).$$

3 unknowns n_2, n_4, n_6 ; 5 equations \implies a contradiction.

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{48}$ be the binary self-orthogonal ($C \subset C^{\perp}$) code generated by its incidence matrix.

 $x \in C$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$ $|S \cap B|$: even and ≤ 6 .

 $|n_j = \#$ blocks B with $|S \cap B| = j$ (j = 2, 4, 6).

$$S |B| = 12$$

$$\sum_{j=2,4,6} \binom{j}{i} n_j = \binom{|S|}{i} \lambda_i \quad (i = 1, 2, 3, 4, 5).$$

3 unknowns n_2 , n_4 , n_6 ; 5 equations \implies a contradiction. = $C = C^{\perp}$ and S is a block.

5-(48, 12, λ) design

5-(48, 12, λ) design

•
$$C = C^{\perp}$$
,

5-(48, 12, λ) design

- $C = C^{\perp}$,
- C has minimum weight 12,

- $C = C^{\perp}$,
- C has minimum weight 12,
- C has 17296 codewords of weight 12 by self-duality.

- $C = C^{\perp}$,
- C has minimum weight 12,
- C has 17296 codewords of weight 12 by self-duality.
- the codewords of weight 12 are the blocks of the design. In particular, $\lambda = 8$.

Let $C \subset \mathbb{F}_2^{48}$ be the binary self-orthogonal code generated by its incidence matrix. Then *C* satisfies

- $C = C^{\perp}$,
- C has minimum weight 12,
- C has 17296 codewords of weight 12 by self-duality.
- the codewords of weight 12 are the blocks of the design. In particular, $\lambda = 8$.

The uniqueness of this design follows from the uniqueness of such a code (Houghten–Lam–Thiel–Parker, 2003).

Let $C \subset \mathbb{F}_2^{48}$ be the binary self-orthogonal code generated by its incidence matrix. Then *C* satisfies

- $C = C^{\perp}$,
- C has minimum weight 12,
- C has 17296 codewords of weight 12 by self-duality.
- the codewords of weight 12 are the blocks of the design. In particular, $\lambda = 8$.

The uniqueness of this design follows from the uniqueness of such a code (Houghten–Lam–Thiel–Parker, 2003).

A quasi-symmetric 2-(45, 9, 8) design is also unique (Harada-M.-Tonchev, 2005).

Assume that every pair of blocks interset at even number of points.

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{72}$ be the binary code generated by its incidence matrix.

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{72}$ be the binary code generated by its incidence matrix. $x \in C^{\perp}$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{72}$ be the binary code generated by its incidence matrix. $\boldsymbol{x} \in C^{\perp}$ has minimal weight in $\boldsymbol{x} + C$, $\boldsymbol{S} = \operatorname{supp}(\boldsymbol{x}) \neq \operatorname{block} \Longrightarrow$

 $|S \cap B|$: even and ≤ 8 .

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{72}$ be the binary code generated by its incidence matrix. $x \in C$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$ $|S \cap B|$: even and ≤ 8 .

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{72}$ be the binary code generated by its incidence matrix. $x \in C$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$ $|S \cap B|$: even and ≤ 8 .

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{72}$ be the binary code generated by its incidence matrix. $x \in C$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$ $|S \cap B|$: even and ≤ 8 .

 $n_{j} = \# \text{blocks } B \text{ with } |S \cap B| = j \quad (j = 2, 4, 6, 8).$ $\sum_{j=2,4,6,8} \binom{j}{i} n_{j} = \binom{|S|}{i} \lambda_{i} \quad (i = 1, 2, 3, 4, 5).$

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{72}$ be the binary code generated by its incidence matrix. $x \in C$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$ $|S \cap B|$: even and ≤ 8 .

 $n_{j} = \# \text{blocks } B \text{ with } |S \cap B| = j \quad (j = 2, 4, 6, 8).$ $\sum_{j=2,4,6,8} \binom{j}{i} n_{j} = \binom{|S|}{i} \lambda_{i} \quad (i = 1, 2, 3, 4, 5).$

4 unknowns n_2, n_4, n_6, n_8 ; 5 equations \implies

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{72}$ be the binary code generated by its incidence matrix. $x \in C$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$ $|S \cap B|$: even and ≤ 8 .

 $n_{j} = \# \text{blocks } B \text{ with } |S \cap B| = j \quad (j = 2, 4, 6, 8).$ $\sum_{j=2,4,6,8} \binom{j}{i} n_{j} = \binom{|S|}{i} \lambda_{i} \quad (i = 1, 2, 3, 4, 5).$

4 unknowns n_2, n_4, n_6, n_8 ; 5 equations \implies a contradiction. \implies

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{72}$ be the binary code generated by its incidence matrix. $x \in C$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$ $|S \cap B|$: even and ≤ 8 . $n_{j} = \# \text{blocks } B \text{ with } |S \cap B| = j \quad (j = 2, 4, 6, 8).$ $\sum_{j=2,4,6,8} \binom{j}{i} n_{j} = \binom{|S|}{i} \lambda_{i} \quad (i = 1, 2, 3, 4, 5).$

4 unknowns n_2, n_4, n_6, n_8 ; 5 equations \implies a contradiction. \implies $C = C^{\perp}$ and S is a block. (Harada–Kitazume–M., 2004).

Assume that every pair of blocks interset at even number of points. Let $C \subset \mathbb{F}_2^{72}$ be the binary code generated by its incidence matrix. $x \in C$ has minimal weight in x + C, $S = \operatorname{supp}(x) \neq \operatorname{block} \Longrightarrow$ $|S \cap B|$: even and ≤ 8 . $n_{j} = \# \text{blocks } B \text{ with } |S \cap B| = j \quad (j = 2, 4, 6, 8).$ $\sum_{j=2,4,6,8} \binom{j}{i} n_{j} = \binom{|S|}{i} \lambda_{i} \quad (i = 1, 2, 3, 4, 5).$

4 unknowns n_2, n_4, n_6, n_8 ; 5 equations \implies a contradiction. \implies $C = C^{\perp}$ and S is a block. (Harada–Kitazume–M., 2004).

In particular, $\lambda = 78$.

t-design

spherical 2t-design

t-design binary self-orthogonal code binary self-dual code Assmus–Mattson theorem extended binary Golay code S(5, 8, 24)extended binary quadratic residue code of length 48 self-orthogonal 5-(48, 12, 8) design self-orthogonal 5-(72, 16, 78) design

spherical 2t-design integral lattice unimodular lattice Venkov's theorem Leech lattice 10-design in \mathbb{R}^{24} extremal lattice in \mathbb{R}^{48}

spherical 10-design in \mathbb{R}^{48} spherical 10-design in \mathbb{R}^{72}

A spherical *t*-design X is a finite subset of the sphere $S^{n-1}(\mu) \subset \mathbb{R}^n$ of radius $\sqrt{\mu}$ s.t.

$$\frac{1}{|X|} \sum_{x \in X} f(x) = \frac{\int_{S^{n-1}(\mu)} f dx}{\int_{S^{n-1}(\mu)} 1 dx}$$

holds for any polynomial f(x) of degree $\leq t$.

A spherical *t*-design X is a finite subset of the sphere $S^{n-1}(\mu) \subset \mathbb{R}^n$ of radius $\sqrt{\mu}$ s.t.

$$\frac{1}{|X|} \sum_{x \in X} f(x) = \frac{\int_{S^{n-1}(\mu)} f dx}{\int_{S^{n-1}(\mu)} 1 dx}$$

holds for any polynomial f(x) of degree $\leq t$. This is analogous to the definition of a t- (v, k, λ) design:

A spherical *t*-design X is a finite subset of the sphere $S^{n-1}(\mu) \subset \mathbb{R}^n$ of radius $\sqrt{\mu}$ s.t.

$$\frac{1}{|X|} \sum_{x \in X} f(x) = \frac{\int_{S^{n-1}(\mu)} f dx}{\int_{S^{n-1}(\mu)} 1 dx}$$

holds for any polynomial f(x) of degree $\leq t$. This is analogous to the definition of a t- (v, k, λ) design:

$$\frac{1}{b} \sum_{B: \text{ block}} f_T(B) = \frac{\sum_{|B|=k} f_T(B)}{\binom{v}{k}} = \frac{\binom{k}{t}}{\binom{v}{t}}$$

for $\forall t$ -element set T, where

$$f_T(B) = \begin{cases} 1 & \text{if } T \subset B, \\ 0 & \text{otherwise.} \end{cases}$$

To impose a condition analogous to self-orthogonality, we introduce lattices.

To impose a condition analogous to self-orthogonality, we introduce lattices.

A lattice is a ℤ-submodule of ℝⁿ of rank n containing a basis of ℝⁿ.

To impose a condition analogous to self-orthogonality, we introduce lattices.

- A lattice is a ℤ-submodule of ℝⁿ of rank n containing a basis of ℝⁿ.
- A lattice Λ is called integral if $\forall x, y \in \Lambda$, $(x, y) \in \mathbb{Z}$.

To impose a condition analogous to self-orthogonality, we introduce lattices.

- A lattice is a ℤ-submodule of ℝⁿ of rank n containing a basis of ℝⁿ.
- A lattice Λ is called integral if $\forall x, y \in \Lambda$, $(x, y) \in \mathbb{Z}$.
- The dual lattice Λ^* of an integral lattice Λ is

 $\Lambda^* = \{ x \in \mathbb{R}^n \mid (x, y) \in \mathbb{Z} \; \forall y \in \Lambda \} \supset \Lambda.$

To impose a condition analogous to self-orthogonality, we introduce lattices.

- A lattice is a ℤ-submodule of ℝⁿ of rank n containing a basis of ℝⁿ.
- A lattice Λ is called integral if $\forall x, y \in \Lambda$, $(x, y) \in \mathbb{Z}$.
- The dual lattice Λ^* of an integral lattice Λ is

 $\Lambda^* = \{ x \in \mathbb{R}^n \mid (x, y) \in \mathbb{Z} \; \forall y \in \Lambda \} \supset \Lambda.$

and $|\Lambda^* : \Lambda| < \infty$.

To impose a condition analogous to self-orthogonality, we introduce lattices.

- A lattice is a ℤ-submodule of ℝⁿ of rank n containing a basis of ℝⁿ.
- A lattice Λ is called integral if $\forall x, y \in \Lambda$, $(x, y) \in \mathbb{Z}$.
- The dual lattice Λ^* of an integral lattice Λ is

$$\Lambda^* = \{ x \in \mathbb{R}^n \mid (x, y) \in \mathbb{Z} \; \forall y \in \Lambda \} \supset \Lambda.$$

and $|\Lambda^* : \Lambda| < \infty$.

• An integral lattice Λ is called even if $(x, x) \in 2\mathbb{Z} \ \forall x \in \Lambda$.

To impose a condition analogous to self-orthogonality, we introduce lattices.

- A lattice is a ℤ-submodule of ℝⁿ of rank n containing a basis of ℝⁿ.
- A lattice Λ is called integral if $\forall x, y \in \Lambda$, $(x, y) \in \mathbb{Z}$.
- The dual lattice Λ^* of an integral lattice Λ is

$$\Lambda^* = \{ x \in \mathbb{R}^n \mid (x, y) \in \mathbb{Z} \; \forall y \in \Lambda \} \supset \Lambda.$$

and $|\Lambda^* : \Lambda| < \infty$.

- An integral lattice Λ is called even if $(x, x) \in 2\mathbb{Z} \ \forall x \in \Lambda$.
- An integral lattice Λ is called unimodular if $\Lambda = \Lambda^*$.

Assmus–Mattson theorem and Venkov's theorem

Theorem (Assmus–Mattson, 1969). Let C be a doubly even self-dual binary code of length 24m with minimum weight 4m + 4. Then the set of codewords of a fixed weight supports a 5-design.

Assmus–Mattson theorem and Venkov's theorem

Theorem (Assmus–Mattson, 1969). Let C be a doubly even self-dual binary code of length 24m with minimum weight 4m + 4. Then the set of codewords of a fixed weight supports a 5-design.

Theorem (Venkov, 1984). Let Λ be a even unimodular integral lattice of rank 24m with minimum norm 2m + 2. Then the set of vectors of a fixed norm forms a spherical 10-design.

Assmus–Mattson theorem and Venkov's theorem

Theorem (Assmus–Mattson, 1969). Let C be a doubly even self-dual binary code of length 24m with minimum weight 4m + 4. Then the set of codewords of a fixed weight supports a 5-design.

Theorem (Venkov, 1984). Let Λ be a even unimodular integral lattice of rank 24m with minimum norm 2m + 2. Then the set of vectors of a fixed norm forms a spherical 10-design.

The values 4m + 4, 2m + 2 are maximal possible ones.

Codes and lattices satisfying the condition of these theorems are called extremal.

Converse of Assmus–Mattson theorem

Theorem (Assmus–Mattson). Let C be a doubly even self-dual binary code of length 24m with minimum weight 4m + 4. Then the set of codewords of a fixed weight supports a 5-design.

Converse of Assmus–Mattson theorem

Theorem (Assmus–Mattson). Let C be a doubly even self-dual binary code of length 24m with minimum weight 4m + 4. Then the set of codewords of a fixed weight supports a 5-design.

For m = 1, 2, 3, we have seen that every self-orthogonal $5-(24m, 4m+4, \lambda)$ design coincides with the set of codewords of minimum weight in a doubly even self-dual binary code of length 24m.

Converse of Assmus–Mattson theorem

Theorem (Assmus–Mattson). Let C be a doubly even self-dual binary code of length 24m with minimum weight 4m + 4. Then the set of codewords of a fixed weight supports a 5-design.

For m = 1, 2, 3, we have seen that every self-orthogonal $5-(24m, 4m+4, \lambda)$ design coincides with the set of codewords of minimum weight in a doubly even self-dual binary code of length 24m.

M. Harada has shown a similar statement for m = 4 with an appropriate assumption on the value of λ .

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank 24m with minimum norm 2m + 2. Then the set of vectors of a fixed norm forms a spherical 10-design.

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank 24m with minimum norm 2m + 2. Then the set of vectors of a fixed norm forms a spherical 10-design.

For m = 1, 2, 3, we will see that every spherical 10-design X with X = -X, in \mathbb{R}^{24m} , of norm 2m + 2, such that the values of mutual inner products are integers, coincides with the set of vectors of norm 2m + 2 of an even unimodular lattice of rank 24m with minimum norm 2m + 2.

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank 24m with minimum norm 2m + 2. Then the set of vectors of a fixed norm forms a spherical 10-design.

For m = 1, 2, 3, we will see that every spherical 10-design X with X = -X, in \mathbb{R}^{24m} , of norm 2m + 2, such that the values of mutual inner products are integers, coincides with the set of vectors of norm 2m + 2 of an even unimodular lattice of rank 24m with minimum norm 2m + 2.

For m = 1, this result implies the characterization of the kissing configuration in \mathbb{R}^{24} by Bannai–Sloane (1981).

Let X be a spherical 2t-design in the sphere $S^{n-1}(\mu) \subset \mathbb{R}^n$, with X = -X, such that the values of mutual inner products are integers.

Let X be a spherical 2t-design in the sphere $S^{n-1}(\mu) \subset \mathbb{R}^n$, with X = -X, such that the values of mutual inner products are integers. Let $f_i(x) = (\alpha, x)^{2i} = (\sum_{i=1}^n \alpha_i x_i)^{2i} \in \mathbb{R}[x_1, \dots, x_n]$, where $\alpha \in \mathbb{R}^n$.

Let X be a spherical 2t-design in the sphere $S^{n-1}(\mu) \subset \mathbb{R}^n$, with X = -X, such that the values of mutual inner products are integers. Let $f_i(x) = (\alpha, x)^{2i} = (\sum_{i=1}^n \alpha_i x_i)^{2i} \in \mathbb{R}[x_1, \dots, x_n]$, where $\alpha \in \mathbb{R}^n$.

Then for $i = 1, \ldots, t$,

Let X be a spherical 2t-design in the sphere $S^{n-1}(\mu) \subset \mathbb{R}^n$, with X = -X, such that the values of mutual inner products are integers. Let $f_i(x) = (\alpha, x)^{2i} = (\sum_{i=1}^n \alpha_i x_i)^{2i} \in \mathbb{R}[x_1, \dots, x_n]$, where $\alpha \in \mathbb{R}^n$.

Then for $i = 1, \ldots, t$,

$$\frac{1}{|X|} \sum_{x \in X} f_i(x) = \frac{\int_{S^{n-1}(\mu)} f_i dx}{\int_{S^{n-1}(\mu)} 1 dx}$$

Let X be a spherical 2t-design in the sphere $S^{n-1}(\mu) \subset \mathbb{R}^n$, with X = -X, such that the values of mutual inner products are integers. Let $f_i(x) = (\alpha, x)^{2i} = (\sum_{i=1}^n \alpha_i x_i)^{2i} \in \mathbb{R}[x_1, \dots, x_n]$, where $\alpha \in \mathbb{R}^n$.

Then for $i = 1, \ldots, t$,

$$\frac{1}{|X|} \sum_{x \in X} (\alpha, x)^{2i} = \frac{1}{|X|} \sum_{x \in X} f_i(x) = \frac{\int_{S^{n-1}(\mu)} f_i dx}{\int_{S^{n-1}(\mu)} 1 dx}$$
$$= \frac{(2i-1)!!(||\alpha||^2 \mu)^i}{n(n+2)\cdots(n+2i-2)}.$$

If $X = -X \subset S^{n-1}(\mu)$ is a spherical 2t-design generating an integral lattice Λ , then

If $X = -X \subset S^{n-1}(\mu)$ is a spherical 2t-design generating an integral lattice Λ , then

$$\frac{1}{|X|} \sum_{x \in X} (\alpha, x)^{2i} = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, t.$$

If $X = -X \subset S^{n-1}(\mu)$ is a spherical 2t-design generating an integral lattice Λ , then

$$\frac{1}{|X|} \sum_{x \in X} (\alpha, x)^{2i} = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, t.$$

If one takes $\alpha \in \Lambda^*$, then $(\alpha, x) \in \mathbb{Z}$ for all $x \in X$.

If $X = -X \subset S^{n-1}(\mu)$ is a spherical 2*t*-design generating an integral lattice Λ , then

$$\frac{1}{|X|} \sum_{x \in X} (\alpha, x)^{2i} = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, t.$$

If one takes $\alpha \in \Lambda^*$, then $(\alpha, x) \in \mathbb{Z}$ for all $x \in X$. Putting

$$n_j = \#$$
vectors $x \in X$ with $(\alpha, x) = \pm j$,

we have

If $X = -X \subset S^{n-1}(\mu)$ is a spherical 2*t*-design generating an integral lattice Λ , then

$$\frac{1}{|X|} \sum_{x \in X} (\alpha, x)^{2i} = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, t.$$

If one takes $\alpha \in \Lambda^*$, then $(\alpha, x) \in \mathbb{Z}$ for all $x \in X$. Putting $n_j = \#$ vectors $x \in X$ with $(\alpha, x) = \pm j$,

we have
If $X = -X \subset S^{n-1}(\mu)$ is a spherical 2*t*-design generating an integral lattice Λ , then

$$\frac{1}{|X|} \sum_{x \in X} (\alpha, x)^{2i} = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, t.$$

If one takes $\alpha \in \Lambda^*$, then $(\alpha, x) \in \mathbb{Z}$ for all $x \in X$. Putting $n_j = \#$ vectors $x \in X$ with $(\alpha, x) = \pm j$,

we have

$$\sum_{j=1}^{\infty} j^{2i} n_j = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad i = 1,\dots,t.$$

If $X = -X \subset S^{n-1}(\mu)$ is a spherical 2*t*-design generating an integral lattice Λ , then

$$\frac{1}{|X|} \sum_{x \in X} (\alpha, x)^{2i} = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, t.$$

If one takes $\alpha \in \Lambda^*$, then $(\alpha, x) \in \mathbb{Z}$ for all $x \in X$. Putting $n_j = \#$ vectors $x \in X$ with $(\alpha, x) = \pm j$,

we have

$$\sum_{j=1}^{\infty} j^{2i} n_j = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, t.$$

There are infinitely many unknowns, while there are t equations.

Assume $\alpha \in \Lambda^*$ has minimal norm in $\alpha + \Lambda$ and $\alpha \notin X$,

Assume $\alpha \in \Lambda^*$ has minimal norm in $\alpha + \Lambda$ and $\alpha \notin X$, then for $\beta \in X$,

 $\mathbf{2}(\alpha,\beta) = (\alpha+\beta,\alpha+\beta) - (\alpha,\alpha) - (\beta,\beta)$

$$2(\alpha,\beta) \neq (\alpha+\beta,\alpha+\beta) - (\alpha,\alpha) - (\beta,\beta)$$

$$\geq -(\beta,\beta) = -\mu,$$

$$2(\alpha,\beta) = (\alpha + \beta, \alpha + \beta) - (\alpha, \alpha) - (\beta, \beta)$$

$$\geq -(\beta,\beta) = -\mu,$$

$$2(\alpha,\beta) = -(\alpha - \beta, \alpha - \beta) + (\alpha, \alpha) + (\beta, \beta)$$

$$2(\alpha, \beta) = (\alpha + \beta, \alpha + \beta) - (\alpha, \alpha) - (\beta, \beta)$$

$$\geq -(\beta, \beta) = -\mu,$$

$$2(\alpha, \beta) = -(\alpha - \beta, \alpha - \beta) + (\alpha, \alpha) + (\beta, \beta)$$

$$\leq (\beta, \beta) = \mu.$$

$$2(\alpha,\beta) = (\alpha + \beta, \alpha + \beta) / - (\alpha, \alpha) - (\beta, \beta)$$

$$\geq -(\beta,\beta) = -\mu,$$

$$2(\alpha,\beta) = -(\alpha - \beta, \alpha - \beta) + (\alpha, \alpha) + (\beta, \beta)$$

$$\leq (\beta,\beta) = \mu.$$

Assume $\alpha \in \Lambda^*$ has minimal norm in $\alpha + \Lambda$ and $\alpha \notin X$, then for $\beta \in X$,

$$2(\alpha,\beta) = (\alpha + \beta, \alpha + \beta) - (\alpha, \alpha) - (\beta,\beta)$$

$$\geq -(\beta,\beta) = -\mu,$$

$$2(\alpha,\beta) = -(\alpha - \beta, \alpha - \beta) + (\alpha, \alpha) + (\beta,\beta)$$

$$\leq (\beta,\beta) = \mu.$$

 $\sum_{j=1}^{[\mu/2]} j^{2i} n_j = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, [t/2].$

Assume $\alpha \in \Lambda^*$ has minimal norm in $\alpha + \Lambda$ and $\alpha \notin X$, then for $\beta \in X$,

$$2(\alpha,\beta) = (\alpha + \beta, \alpha + \beta) - (\alpha, \alpha) - (\beta, \beta)$$

$$\geq -(\beta,\beta) = -\mu,$$

$$2(\alpha,\beta) = -(\alpha - \beta, \alpha - \beta) + (\alpha, \alpha) + (\beta, \beta)$$

$$\leq (\beta,\beta) = \mu.$$

$$\sum_{j=1}^{[\mu/2]} j^{2i} n_j = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, [t/2].$$

There are $[\mu/2]$ unknowns $n_1, \ldots, n_{[\mu/2]}$; [t/2] equations.

Assume $\alpha \in \Lambda^*$ has minimal norm in $\alpha + \Lambda$ and $\alpha \notin X$, then for $\beta \in X$,

$$2(\alpha,\beta) = (\alpha + \beta, \alpha + \beta) - (\alpha, \alpha) - (\beta,\beta)$$

$$\geq -(\beta,\beta) = -\mu,$$

$$2(\alpha,\beta) = -(\alpha - \beta, \alpha - \beta) + (\alpha, \alpha) + (\beta,\beta)$$

$$\leq (\beta,\beta) = \mu.$$

$$\sum_{j=1}^{[\mu/2]} j^{2i} n_j = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, [t/2].$$

There are $[\mu/2]$ unknowns $n_1, \ldots, n_{[\mu/2]}$; [t/2] equations. Consistency condition is derived when t = 10, $\mu = 4, 6, 8$ (rank 24, 48, 72, respectively).

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank 24m with minimum norm 2m + 2. Then the set of vectors of a fixed norm forms a spherical 10-design.

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank 24m with minimum norm 2m + 2. Then the set of vectors of a fixed norm forms a spherical 10-design.

For m = 1, 2, 3, every spherical 10-design X with X = -X, in \mathbb{R}^{24m} , of norm 2m + 2, such that the values of mutual inner products are integers, coincides with the set of vectors of norm 2m + 2 of an even unimodular lattice of rank 24m with minimum norm 2m + 2.

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank 24m with minimum norm 2m + 2. Then the set of vectors of a fixed norm forms a spherical 10-design.

For m = 1, 2, 3, every spherical 10-design X with X = -X, in \mathbb{R}^{24m} , of norm 2m + 2, such that the values of mutual inner products are integers, coincides with the set of vectors of norm 2m + 2 of an even unimodular lattice of rank 24m with minimum norm 2m + 2.

For m = 1, this result gives a simple proof the following.

Theorem (Venkov). Let Λ be a even unimodular integral lattice of rank 24m with minimum norm 2m + 2. Then the set of vectors of a fixed norm forms a spherical 10-design.

For m = 1, 2, 3, every spherical 10-design X with X = -X, in \mathbb{R}^{24m} , of norm 2m + 2, such that the values of mutual inner products are integers, coincides with the set of vectors of norm 2m + 2 of an even unimodular lattice of rank 24m with minimum norm 2m + 2.

For m = 1, this result gives a simple proof the following.

Theorem (Bannai–Sloane, 1981). The set of 196, 560 shortest vectors of the Leech lattice is the unique kissing configuration in \mathbb{R}^{24} .

In what follows, let $X = -X \subset S^{n-1}(\mu)$ be a spherical *t*-design generating an integral lattice Λ .

In what follows, let $X = -X \subset S^{n-1}(\mu)$ be a spherical *t*-design generating an integral lattice Λ . Suppose $[t/2] \ge [\mu/2] + 1$.

In what follows, let $X = -X \subset S^{n-1}(\mu)$ be a spherical *t*-design generating an integral lattice Λ . Suppose $[t/2] \ge [\mu/2] + 1$. If $\alpha \in \Lambda^*$ is minimal in $\alpha + \Lambda$ and $\alpha \notin X$, then we obtain a consistency condition.

In what follows, let $X = -X \subset S^{n-1}(\mu)$ be a spherical *t*-design generating an integral lattice Λ .

Suppose $[t/2] \ge [\mu/2] + 1$.

If $\alpha \in \Lambda^*$ is minimal in $\alpha + \Lambda$ and $\alpha \notin X$, then we obtain a consistency condition.

If there is no such α , i.e., if *X* coincides with the set of the shortest vectors of a unimodular lattice Λ , then we get a different system of linear equations by taking $\alpha \in X$:

In what follows, let $X = -X \subset S^{n-1}(\mu)$ be a spherical *t*-design generating an integral lattice Λ . Suppose $[t/2] \ge [\mu/2] + 1$. If $\alpha \in \Lambda^*$ is minimal in $\alpha + \Lambda$ and $\alpha \notin X$, then we obtain a consistency condition. If there is no such α , i.e., if X coincides with the set of the shortest

vectors of a unimodular lattice Λ , then we get a different system of linear equations by taking $\alpha \in X$:

$$\sum_{j=1}^{\lfloor \mu/2 \rfloor} j^{2i} n_j + 2\mu^{2i} = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad (i=1,\ldots,[t/2]).$$

In what follows, let $X = -X \subset S^{n-1}(\mu)$ be a spherical *t*-design generating an integral lattice Λ .

Suppose $[t/2] \ge [\mu/2] + 1$.

If $\alpha \in \Lambda^*$ is minimal in $\alpha + \Lambda$ and $\alpha \notin X$, then we obtain a consistency condition.

If there is no such α , i.e., if X coincides with the set of the shortest vectors of a unimodular lattice Λ , then we get a different system of linear equations by taking $\alpha \in X$:

$$\sum_{j=1}^{\lfloor \mu/2 \rfloor} j^{2i} n_j + \left(2\mu^{2i}\right) = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad (i=1,\ldots,[t/2]).$$

In what follows, let $X = -X \subset S^{n-1}(\mu)$ be a spherical *t*-design generating an integral lattice Λ .

Suppose $[t/2] \ge [\mu/2] + 1$.

If $\alpha \in \Lambda^*$ is minimal in $\alpha + \Lambda$ and $\alpha \notin X$, then we obtain a consistency condition.

If there is no such α , i.e., if X coincides with the set of the shortest vectors of a unimodular lattice Λ , then we get a different system of linear equations by taking $\alpha \in X$:

$$\sum_{j=1}^{[\mu/2]} j^{2i} n_j + (2\mu^{2i}) = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad (i=1,\ldots,[t/2]).$$
$$(\alpha, \alpha)^{2i} + (\alpha, -\alpha)^{2i} = 2\mu^{2i} = \mu^{2i} n_\mu$$

In what follows, let $X = -X \subset S^{n-1}(\mu)$ be a spherical *t*-design generating an integral lattice Λ . Suppose $[t/2] \ge [\mu/2] + 1$.

If $\alpha \in \Lambda^*$ is minimal in $\alpha + \Lambda$ and $\alpha \notin X$, then we obtain a consistency condition.

If there is no such α , i.e., if X coincides with the set of the shortest vectors of a unimodular lattice Λ , then we get a different system of linear equations by taking $\alpha \in X$:

$$\sum_{j=1}^{\lfloor \mu/2 \rfloor} j^{2i} n_j + \left(2\mu^{2i}\right) = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad (i=1,\ldots,[t/2]).$$

which also gives a consistency condition.

$$\sum_{j=1}^{[\mu/2]} j^{2i} n_j + 2\mu^{2i} = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, [t/2].$$

$$\sum_{j=1}^{[\mu/2]} j^{2i} n_j + 2\mu^{2i} = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, [t/2].$$

•
$$(t,\mu) = (4,2) \implies X = E_8$$
,

If X coincides with the set of the shortest vectors of a unimodular lattice Λ , then

$$\sum_{j=1}^{[\mu/2]} j^{2i} n_j + 2\mu^{2i} = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, [t/2].$$

•
$$(t,\mu) = (4,2) \implies X = E_8,$$

• $(t,\mu) = (4,3) \implies |X| = \frac{16n(n+2)}{25-n}$, in particular, $n \le 24$,

$$\sum_{j=1}^{[\mu/2]} j^{2i} n_j + 2\mu^{2i} = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, [t/2].$$

•
$$(t,\mu) = (4,2) \implies X = E_8,$$

•
$$(t,\mu) = (4,3) \implies |X| = \frac{16n(n+2)}{25-n}$$
, in particular, $n \le 24$,

•
$$(t,\mu) = (6,4) \implies |X| = \frac{90n(n+2)(n+4)}{(n-26)(n-28)}$$
, *n* is bounded.

If X coincides with the set of the shortest vectors of a unimodular lattice Λ , then

$$\sum_{j=1}^{[\mu/2]} j^{2i} n_j + 2\mu^{2i} = \frac{(2i-1)!!(\|\alpha\|^2 \mu)^i |X|}{n(n+2)\cdots(n+2i-2)} \quad i = 1, \dots, [t/2].$$
• $(t,\mu) = (4,2) \implies X = E_8,$
• $(t,\mu) = (4,3) \implies |X| = \frac{16n(n+2)}{25-n}, \text{ in particular, } n \le 24,$
• $(t,\mu) = (6,4) \implies |X| = \frac{90n(n+2)(n+4)}{(n-26)(n-28)}, n \text{ is bounded.}$

Moreover, $[\mu/2] + 1 \le [t/2] \le 10$ and $t \le 10 \implies n$ is bounded.

Let $C \subset \mathbb{F}_2^v$ be the binary code generated by the incidence matrix of a self-orthogonal t- (v, k, λ) design.

Let $C \subset \mathbb{F}_2^v$ be the binary code generated by the incidence matrix of a self-orthogonal t- (v, k, λ) design. Pick $x \in C^{\perp}$ minimal in x + C, and assume $S = \operatorname{supp}(x)$ is not a

block. Then

Let $C \subset \mathbb{F}_2^v$ be the binary code generated by the incidence matrix of a self-orthogonal t- (v, k, λ) design. Pick $x \in C^{\perp}$ minimal in x + C, and assume $S = \operatorname{supp}(x)$ is not a block. Then

$$\sum_{j=2,4,\ldots,2[k/4]} \binom{j}{i} n_j = \binom{|S|}{i} \lambda_i \quad (i=1,\ldots,t).$$

Let $C \subset \mathbb{F}_2^v$ be the binary code generated by the incidence matrix of a self-orthogonal t- (v, k, λ) design. Pick $x \in C^{\perp}$ minimal in x + C, and assume $S = \operatorname{supp}(x)$ is not a block. Then

$$\sum_{j=2,4,\ldots,2[k/4]} \binom{j}{i} n_j = \binom{|S|}{i} \lambda_i \quad (i=1,\ldots,t).$$

There are $\lfloor k/4 \rfloor$ unknowns, t equations.

Let $C \subset \mathbb{F}_2^v$ be the binary code generated by the incidence matrix of a self-orthogonal t- (v, k, λ) design. Pick $x \in C^{\perp}$ minimal in x + C, and assume $S = \operatorname{supp}(x)$ is not a block. Then

$$\sum_{j=2,4,\ldots,2[k/4]} \binom{j}{i} n_j = \binom{|S|}{i} \lambda_i \quad (i=1,\ldots,t).$$

There are $\lfloor k/4 \rfloor$ unknowns, t equations.

A consistency condition is derived when

 $t \ge [k/4] + 1.$

In what follows, let $C \subset \mathbb{F}_2^v$ be the binary code generated by the incidence matrix of a self-orthogonal t- (v, k, λ) design, where $t \geq \lfloor k/4 \rfloor + 1$.

In what follows, let $C \subset \mathbb{F}_2^v$ be the binary code generated by the incidence matrix of a self-orthogonal t- (v, k, λ) design, where $t \geq \lfloor k/4 \rfloor + 1$.

If $\mathbf{x} \in C^{\perp}$ has minimal weight in $\mathbf{x} + C$ and $S = \operatorname{supp}(\mathbf{x})$ is not a block, then we obtain a consistency condition.
In what follows, let $C \subset \mathbb{F}_2^v$ be the binary code generated by the incidence matrix of a self-orthogonal t- (v, k, λ) design, where $t \ge \lfloor k/4 \rfloor + 1$.

If $\mathbf{x} \in C^{\perp}$ has minimal weight in $\mathbf{x} + C$ and $S = \operatorname{supp}(\mathbf{x})$ is not a block, then we obtain a consistency condition.

If there is no such \boldsymbol{x} , i.e., if the blocks are just the minimum weight codewords of a self-dual code C, then we get a different system of linear equations by taking S to be a block:

In what follows, let $C \subset \mathbb{F}_2^v$ be the binary code generated by the incidence matrix of a self-orthogonal t- (v, k, λ) design, where $t \ge \lfloor k/4 \rfloor + 1$.

If $\mathbf{x} \in C^{\perp}$ has minimal weight in $\mathbf{x} + C$ and $S = \operatorname{supp}(\mathbf{x})$ is not a block, then we obtain a consistency condition.

If there is no such \boldsymbol{x} , i.e., if the blocks are just the minimum weight codewords of a self-dual code C, then we get a different system of linear equations by taking S to be a block:

$$\sum_{j=2,4,\ldots,2[k/4]} \binom{j}{i} n_j + \binom{k}{i} = \binom{|S|}{i} \lambda_i \quad i = 1,\ldots,t.$$

In what follows, let $C \subset \mathbb{F}_2^v$ be the binary code generated by the incidence matrix of a self-orthogonal t- (v, k, λ) design, where $t \geq \lfloor k/4 \rfloor + 1$.

If $\mathbf{x} \in C^{\perp}$ has minimal weight in $\mathbf{x} + C$ and $S = \operatorname{supp}(\mathbf{x})$ is not a block, then we obtain a consistency condition.

If there is no such \boldsymbol{x} , i.e., if the blocks are just the minimum weight codewords of a self-dual code C, then we get a different system of linear equations by taking S to be a block:

$$\sum_{\substack{j=2,4,\ldots,2[k/4]\\ j=2,4,\ldots,2[k/4]}} \binom{j}{i} n_j + \binom{k}{i} = \binom{|S|}{i} \lambda_i \quad i = 1,\ldots,t.$$

In what follows, let $C \subset \mathbb{F}_2^v$ be the binary code generated by the incidence matrix of a self-orthogonal t- (v, k, λ) design, where $t \ge \lfloor k/4 \rfloor + 1$.

If $\mathbf{x} \in C^{\perp}$ has minimal weight in $\mathbf{x} + C$ and $S = \operatorname{supp}(\mathbf{x})$ is not a block, then we obtain a consistency condition.

If there is no such \boldsymbol{x} , i.e., if the blocks are just the minimum weight codewords of a self-dual code C, then we get a different system of linear equations by taking S to be a block:

$$\sum_{j=2,4,\ldots,2[k/4]} \binom{j}{i} n_j + \binom{k}{i} = \binom{|S|}{i} \lambda_i \quad (i=1,\ldots,t).$$

which also gives a consistency condition.

$$\sum_{j=2,4,\ldots,2[k/4]} \binom{j}{i} n_j + \binom{k}{i} = \binom{|S|}{i} \lambda_i \quad (i=1,\ldots,t).$$

$$\sum_{j=2,4,\dots,2[k/4]} \binom{j}{i} n_j + \binom{k}{i} = \binom{|S|}{i} \lambda_i \quad (i=1,\dots,t).$$
$$(t,k) = (2,4) \implies \lambda = \frac{6}{10-v},$$

$$\sum_{j=2,4,\ldots,2[k/4]} \binom{j}{i} n_j + \binom{k}{i} = \binom{|S|}{i} \lambda_i \quad (i=1,\ldots,t).$$

•
$$(t,k) = (2,4) \implies \lambda = \frac{6}{10-v}$$
,

•
$$(t,k) = (2,6) \implies \lambda = \frac{20}{26-v}$$
,

$$\sum_{j=2,4,\ldots,2[k/4]} \binom{j}{i} n_j + \binom{k}{i} = \binom{|S|}{i} \lambda_i \quad (i=1,\ldots,t).$$

•
$$(t,k) = (2,4) \implies \lambda = \frac{6}{10-v}$$
,

•
$$(t,k) = (2,6) \implies \lambda = \frac{20}{26-v},$$

•
$$(t,k) = (3,8) \implies \lambda = \frac{336}{v^2 - 52v + 688} \implies v \text{ is bounded.}$$

If the set of blocks coincides with the set of minimal weight vectors of a self-dual code, then

$$\sum_{j=2,4,\ldots,2[k/4]} \binom{j}{i} n_j + \binom{k}{i} = \binom{|S|}{i} \lambda_i \quad (i=1,\ldots,t).$$

•
$$(t,k) = (2,4) \implies \lambda = \frac{6}{10-v}$$

•
$$(t,k) = (2,6) \implies \lambda = \frac{20}{26-v},$$

•
$$(t,k) = (3,8) \implies \lambda = \frac{336}{v^2 - 52v + 688} \implies v \text{ is bounded.}$$

• for each t, k with $t = \lfloor k/4 \rfloor + 1$, v is bounded. Only finitely many (t, k, v)?