An application of Terwilliger's algebra

Akihiro Munemasa

March 7, 1993

Let $\mathcal{X}=(X, \mathcal{R})$ be an association scheme, $\mathcal{R}=\left\{R_{i} \mid 0 \leq i \leq d\right\}$. Let $A_{0}=I, \ldots, A_{d}$ be the adjacency matrices of an association scheme. The Terwilliger algebra is by definition the subalgebra of End $M_{n}(\mathbf{C})$ generated by the left multiplication by A_{i} and the Hadamard multiplication by $A_{i}, 0 \leq i \leq d$. Let $e_{x y}(x, y \in X)$ be matrix unit and take the basis $\left\{E_{x y, z w}\right\}$ of End $M_{n}(\mathbf{C})$, where $E_{x y, z w} e_{z w}=e_{x y}$. Then the left multiplication by A_{i} is given by

$$
\sum_{x \in X} \sum_{(y, z) \in R_{i}} E_{y x, z x},
$$

while the Hadamard multiplication by A_{i} is given by

$$
\sum_{(y, x) \in R_{i}} E_{y x, y x}
$$

It follows that the Terwilliger algebra is contained in the subalgebra of End $M_{n}(\mathbf{C})$ spanned by $E_{y x, z x}, x, y, z \in X$. Since

$$
E_{y x, z x} E_{v u, w u}=\delta_{x u} \delta_{z v} E_{y x, w x},
$$

we can formally redefine the Terwilliger algebra as a subalgebra of $\mathbf{C}[X \times X \times X]$ with the multiplication

$$
(x ; y, z)(u ; v, w)=\delta_{x u} \delta_{z v}(x ; y, w) .
$$

Namely, by abuse of notation, we can write

$$
A_{i}=\sum_{x \in X} \sum_{(y, z) \in R_{i}}(x ; y, z)
$$

If we define

$$
E_{i}^{*}=\sum_{(x, y) \in R_{i}}(x ; y, y),
$$

then the Terwilliger algebra is the subalgebra T of $\mathbf{C}[X \times X \times X]$ generated by A_{i}, $E_{i}^{*}, 0 \leq i \leq d$. First we list some relations among the generators of T. Let $J=$ $\sum_{i=0}^{d} A_{i}, R_{i}(x)=\left\{y \in X \mid(x, y) \in R_{i}\right\}$. We denote by i^{\prime} the index determined by $R_{i^{\prime}}=\left\{(x, y) \mid(y, x) \in R_{i}\right\}$. As in the literature, $p_{i j}^{k}$ denote the size of the set $R_{i}(x) \cap R_{j^{\prime}}(y)$, where $(x, y) \in R_{k}$.

Lemma 1 (i) $A_{0}=\sum_{i=0}^{d} E_{i}^{*}$ is the identity of T.
(ii) $A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k}$.
(iii) $E_{i}^{*} E_{j}^{*}=\delta_{i j} E_{i}^{*}$.
(iv) $E_{i}^{*} A_{j} E_{k}^{*}=\sum_{\substack{(x, y) \in \in R_{i},(x, z) \in R_{k} \\(y, z) \in R_{j}}}(x ; y, z)$.
(v) $E_{0}^{*} A_{j}=E_{0}^{*} A_{j} E_{j}^{*}, A_{j} E_{0}^{*}=E_{j^{\prime}}^{*} A_{j} E_{0}^{*}$.
(vi) $A_{i} E_{j}^{*} A_{k}=\sum_{x, y, z \in X}\left|R_{i}(y) \cap R_{j}(x) \cap R_{k^{\prime}}(z)\right|(x ; y, z)$.
(vii) $A_{i} E_{0}^{*} A_{k}=E_{i^{\prime}}^{*} J E_{k}^{*}$.
(viii) $J E_{j}^{*} A_{k}=\sum_{i=0}^{d} p_{j k}^{i} J E_{i}^{*}$.
(ix) $A_{i} E_{j}^{*} J=\sum_{k=0}^{d} p_{j i^{\prime}}^{k} E_{k}^{*} J$.
(x) $E_{0}^{*} A_{i} E_{j}^{*} A_{k}=\delta_{i j} \sum_{l=0}^{d} p_{i k}^{l} E_{0}^{*} A_{l} E_{l}^{*}$.
(xi) $A_{i} E_{j}^{*} A_{k} E_{0}^{*}=\delta_{j k^{\prime}} \sum_{l=0}^{d} p_{i k}^{l} E_{l^{\prime}}^{*} A_{l} E_{0}^{*}$.

Proof. Direct calculation.
Let T_{0} be the linear subspace of T spanned by $E_{i}^{*} A_{j} E_{k}^{*},(0 \leq i, j, k \leq d)$. Clearly, T is generated by T_{0} as an algebra since T_{0} contains A_{i} and E_{i}^{*} for all i, but in general, T_{0} may be a proper subspace of T.

Define the Hadamard product by

$$
(x ; y, z) \circ(u ; v, w)=\delta_{x y} \delta_{y u} \delta_{z w}(x ; y, z) .
$$

Lemma 2 (i) J is the identity with respect to the Hadamard product.
(ii) $A_{l} \circ\left(E_{i}^{*}(x ; y, z) E_{k}^{*}\right)=E_{i}^{*}\left(A_{l} \circ(x ; y, z)\right) E_{k}^{*}=(x ; y, z)$ if $(x, y) \in R_{i},(x, z) \in R_{k}$, $(y, z) \in R_{l}$, and 0 otherwise.
(iii) $A_{0} \circ\left(A_{i} E_{j}^{*} A_{k}\right)=\delta_{i k^{\prime}} \sum_{l=0}^{d} p_{j k}^{l} E_{l}^{*} A_{0} E_{l}^{*}$.
(iv) T_{0} is closed under the Hadamard product.

Proof. Direct calculation.
Lemma 3 The following are equivalent.
(i) $A_{n} \circ\left(E_{l}^{*} A_{i} E_{j}^{*} A_{k} E_{m}^{*}\right) \in T_{0}$,
(ii) $A_{n^{\prime}} \circ\left(E_{m}^{*} A_{k^{\prime}} E_{j}^{*} A_{i^{\prime}} E_{l}^{*}\right) \in T_{0}$,
(iii) $A_{m^{\prime}} \circ\left(E_{n}^{*} A_{k^{\prime}} E_{i}^{*} A_{j^{\prime}} E_{l^{\prime}}^{*}\right) \in T_{0}$.

Proof. Any one of the above is equivalent to the condition: $\left|R_{i}(y) \cap R_{j}(x) \cap R_{k^{\prime}}(z)\right|$ is constant independent of x, y, z with $(x, y) \in R_{l},(x, z) \in R_{m},(y, z) \in R_{n}$.
Definition. An association scheme (X, \mathcal{R}) is called triply regular if the size of the set $R_{i}(x) \cap R_{j}(y) \cap R_{k}(z)$ depends only on (i, j, k, l, m, n), where $(x, y) \in R_{l},(x, z) \in R_{m}$, $(y, z) \in R_{n}$.

Lemma 4 An association scheme (X, \mathcal{R}) is triply regular if and only if $T=T_{0}$.
Proof. By definition and Lemma 1 (vi), (X, \mathcal{R}) is triply regular if and only if $A_{i} E_{j}^{*} A_{k} \in T_{0}$ for any i, j, k. Thus, $T=T_{0}$ implies triple regularity. Conversely, suppose $A_{i} E_{j}^{*} A_{k} \in T_{0}$ for any i, j, k. By Lemma 1 (ii), (iii), any word in $A_{i}, E_{j}^{*}(0 \leq i, j \leq d)$ is a linear combination of words, in which A_{i} 's and E_{j}^{*} 's appear alternately. Such a word with more than one A_{i} 's can be rewritten with less number of A_{i} 's since $A_{i} E_{j}^{*} A_{k} \in T_{0}$. By induction, we can show that any word in $A_{i}, E_{j}^{*}(0 \leq i, j \leq d)$ is a linear combination of $E_{i}^{*} A_{j} E_{k}^{*}$, $E_{i}^{*} A_{j}, A_{j} E_{k}^{*}, A_{j},(0 \leq i, j, k \leq d)$. Since $\sum_{i=0}^{d} E_{i}^{*}$ is the identity, all of these belong to T_{0}, thus $T=T_{0}$.

Lemma 5 Let \mathcal{X} be an association scheme of class 2. If $A_{1} E_{1}^{*} A_{1} \in T_{0}$, then \mathcal{X} is triply regular.

Proof. Since $A_{0} E_{1}^{*} A_{1} \in T_{0}$ and $J E_{1}^{*} A_{1} \in T_{0}$ by Lemma 1 (viii), we have $A_{2} E_{1}^{*} A_{1} \in T_{0}$, and similarly $A_{1} E_{1}^{*} A_{2} \in T_{0}$, hence $A_{2} E_{1}^{*} A_{2} \in T_{0}$ also holds. Since $A_{0}=E_{0}^{*}+E_{1}^{*}+E_{2}^{*}$, Lemma 1 (vii) implies $A_{i} E_{2}^{*} A_{k} \in T_{0}$ for any i, k. Thus \mathcal{X} is triply regular.

Proposition 6 Let \mathcal{X} be a symmetric association scheme of class 2 . Then \mathcal{X} is triply regular if and only if \mathcal{R} induces an association scheme on subconstituents of \mathcal{X}.

Proof. If \mathcal{X} is triply regular, then clearly \mathcal{R} induces an association scheme on subconstituents of \mathcal{X}. Suppose that \mathcal{R} induces an association scheme on subconstituents of \mathcal{X}. This is equivalent to

$$
E_{1}^{*} A_{1} E_{1}^{*} A_{1} E_{1}^{*} \in T_{0} \quad \text { and } \quad E_{2}^{*} A_{1} E_{1}^{*} A_{1} E_{2}^{*} \in T_{0} .
$$

By Lemma 2 (iv) we have

$$
A_{2} \circ\left(E_{1}^{*} A_{1} E_{1}^{*} A_{1} E_{1}^{*}\right) \in T_{0} \quad \text { and } \quad A_{1} \circ\left(E_{2}^{*} A_{1} E_{1}^{*} A_{1} E_{2}^{*}\right) \in T_{0} .
$$

By Lemma 3 we have

$$
A_{1} \circ\left(E_{2}^{*} A_{1} E_{1}^{*} A_{1} E_{1}^{*}\right) \in T_{0}, \quad A_{2} \circ\left(E_{2}^{*} A_{1} E_{1}^{*} A_{1} E_{1}^{*}\right) \in T_{0}
$$

It follows from Lemma 2 (iii) that $E_{2}^{*} A_{1} E_{1}^{*} A_{1} E_{1}^{*} \in T_{0}$, and similarly $E_{1}^{*} A_{1} E_{1}^{*} A_{1} E_{2}^{*} \in T_{0}$. Now

$$
A_{1} E_{1}^{*} A_{1}=\left(E_{0}^{*}+E_{1}^{*}+E_{2}^{*}\right) A_{1} E_{1}^{*} A_{1}\left(E_{0}^{*}+E_{1}^{*}+E_{2}^{*}\right),
$$

so we see that $A_{1} E_{1}^{*} A_{1} \in T_{0}$ using Lemma 1 (x), (xi). The result follows from Lemma 5 .

Suppose that there exists a spin model defined on the symmetric association scheme \mathcal{X}. This means that there exist complex numbers $t_{0}, t_{1}, \ldots, t_{d}$ such that the function $w: X \times X \rightarrow \mathbf{C}^{\times}$defined by $w(x, y)=t_{i}$ when $(x, y) \in R_{i}$, satisfies the following.
(1) $\sum_{y \in X} w(x, y) w(z, y)^{-1}=\delta_{x, z}|X|$, for $x, z \in X$,
(2) $\sum_{x \in X} w(a, x) w(x, b) w(c, x)^{-1}=\sqrt{|X|} w(a, b) w(c, b)^{-1} w(c, a)^{-1}$ for $a, b, c \in X$.

We want to express the equation (2) in the Terwilliger algebra. Put

$$
\begin{gathered}
W=\sum_{i=0}^{d} t_{i} A_{i}, \\
W^{*}=\sqrt{|X|} \sum_{i=0}^{d} t_{i}^{-1} E_{i}^{*} .
\end{gathered}
$$

Lemma 7 The equation (2) is equivalent to $W W^{*} W=W^{*} W W^{*}$.
Proof. We have

$$
\begin{aligned}
\frac{1}{\sqrt{|X|}} W W^{*} W & =\sum_{i, j, k} t_{i} t_{j}^{-1} t_{k} A_{i} E_{j}^{*} A_{k} \\
& =\sum_{i, j, j, k} \sum_{a, b, c \in X} t_{i} t_{j}^{-1} t_{k}\left|R_{j}(c) \cap R_{i}(a) \cap R_{k^{\prime}}(b)\right|(c ; a, b) \\
& =\sum_{a, b, c \in X} \sum_{i, j, k, k} \sum_{x \in R_{j}(c) \cap R_{i}(a) \cap R_{k^{\prime}}(b)} t_{i} t_{j}^{-1} t_{k}(c ; a, b) \\
& =\sum_{a, b, c \in X} \sum_{x \in X} w(a, x) w(x, b) w(c, x)^{-1}(c ; a, b), \\
\frac{1}{\sqrt{|X|}} W^{*} W W^{*} & =\sqrt{|X|} \sum_{i, j, k} t_{i}^{-1} t_{j} t_{k}^{-1} E_{i}^{*} A_{j} E_{k}^{*} \\
& =\sqrt{|X|} \sum_{i, j, k} t_{i}^{-1} t_{j} t_{k}^{-1} \sum_{(c, a) \in R_{i},(c, b) \in R_{k}}^{(a, b) \in R_{j}} \\
& =\sqrt{|X|} \sum_{a, b, c \in X} w(a, b) w(c, b)^{-1} w(c, a)^{-1}(c ; a, b) .
\end{aligned}
$$

Thus the result follows.
We give a simple proof of a result due to Jaeger.
Theorem 8 Let \mathcal{X} be symmetric association scheme of class 2 , $w: X \times X \rightarrow \mathbf{C}^{\times}$a spin model, $w(x, y)=t_{i}$ if $(x, y) \in R_{i}$, and $t_{1} \neq t_{2}$. Then \mathcal{X} is triply regular.

Proof. Since $W^{*} W W^{*} \in T_{0}$, Lemma 7 implies $W W^{*} W \in T_{0}$. By definition, $W=$ $t_{0} A_{0}+t_{1} A_{1}+t_{2} A_{2}$ is a linear combination of A_{0}, A_{1} and J. By Lemma 1 (i), (viii), we have $A_{0} W^{*} W \in T_{0}, J W^{*} W \in T_{0}$. Since $t_{1} \neq t_{2}$, we obtain $A_{1} W^{*} W \in T_{0}$. Similarly we have $A_{1} W^{*} A_{1} \in T_{0}$. Moreover, Lemma 1 (vii) implies $A_{1} E_{0}^{*} A_{1} \in T_{0}$, so that we get

$$
t_{1}^{-1} A_{1} E_{1}^{*} A_{1}+t_{2}^{-1} A_{1} E_{2}^{*} A_{1} \in T_{0}
$$

On the other hand,

$$
A_{1} E_{1}^{*} A_{1}+A_{1} E_{2}^{*} A_{1}=A_{1}^{2}-A_{1} E_{0}^{*} A_{1} \in T_{0}
$$

Since $t_{1} \neq t_{2}$, we obtain $A_{1} E_{1}^{*} A_{1} \in T_{0}$. The assertion follows from Lemma 5 .

Akihiro Munemasa
Department of Mathematics, Kyushu University,
6-10-1 Hakozaki, Higashi-ku
Fukuoka 812, Japan.
e-mail: munemasa@math.sci.kyushu-u.ac.jp

