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Let X = (X,R) be an association scheme, R = {Ri|0 ≤ i ≤ d}. Let A0 = I, . . . , Ad

be the adjacency matrices of an association scheme. The Terwilliger algebra is by defi-
nition the subalgebra of EndMn(C) generated by the left multiplication by Ai and the
Hadamard multiplication by Ai, 0 ≤ i ≤ d. Let exy (x, y ∈ X) be matrix unit and take
the basis {Exy,zw} of EndMn(C), where Exy,zwezw = exy. Then the left multiplication by
Ai is given by ∑

x∈X

∑
(y,z)∈Ri

Eyx,zx,

while the Hadamard multiplication by Ai is given by∑
(y,x)∈Ri

Eyx,yx.

It follows that the Terwilliger algebra is contained in the subalgebra of EndMn(C)
spanned by Eyx,zx, x, y, z ∈ X. Since

Eyx,zxEvu,wu = δxuδzvEyx,wx,

we can formally redefine the Terwilliger algebra as a subalgebra of C[X × X × X] with
the multiplication

(x; y, z)(u; v, w) = δxuδzv(x; y, w).

Namely, by abuse of notation, we can write

Ai =
∑
x∈X

∑
(y,z)∈Ri

(x; y, z).

If we define
E∗

i =
∑

(x,y)∈Ri

(x; y, y),

then the Terwilliger algebra is the subalgebra T of C[X × X × X] generated by Ai,
E∗

i , 0 ≤ i ≤ d. First we list some relations among the generators of T . Let J =∑d
i=0 Ai, Ri(x) = {y ∈ X|(x, y) ∈ Ri}. We denote by i′ the index determined by

Ri′ = {(x, y)|(y, x) ∈ Ri}. As in the literature, pk
ij denote the size of the set Ri(x)∩Rj′(y),

where (x, y) ∈ Rk.
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Lemma 1 (i) A0 =
d∑

i=0

E∗
i is the identity of T .

(ii) AiAj =
d∑

k=0

pk
ijAk.

(iii) E∗
i E

∗
j = δijE

∗
i .

(iv) E∗
i AjE

∗
k =

∑
(x,y)∈Ri, (x,z)∈Rk

(y,z)∈Rj

(x; y, z).

(v) E∗
0Aj = E∗

0AjE
∗
j , AjE

∗
0 = E∗

j′AjE
∗
0 .

(vi) AiE
∗
j Ak =

∑
x,y,z∈X

|Ri(y) ∩ Rj(x) ∩ Rk′(z)|(x; y, z).

(vii) AiE
∗
0Ak = E∗

i′JE∗
k.

(viii) JE∗
j Ak =

d∑
i=0

pi
jkJE∗

i .

(ix) AiE
∗
j J =

d∑
k=0

pk
ji′E

∗
kJ .

(x) E∗
0AiE

∗
j Ak = δij

d∑
l=0

pl
ikE

∗
0AlE

∗
l .

(xi) AiE
∗
j AkE

∗
0 = δjk′

d∑
l=0

pl
ikE

∗
l′AlE

∗
0 .

Proof. Direct calculation. 2

Let T0 be the linear subspace of T spanned by E∗
i AjE

∗
k , (0 ≤ i, j, k ≤ d). Clearly, T

is generated by T0 as an algebra since T0 contains Ai and E∗
i for all i, but in general, T0

may be a proper subspace of T .
Define the Hadamard product by

(x; y, z) ◦ (u; v, w) = δxyδyuδzw(x; y, z).

Lemma 2 (i) J is the identity with respect to the Hadamard product.
(ii) Al ◦ (E∗

i (x; y, z)E∗
k) = E∗

i (Al ◦ (x; y, z))E∗
k = (x; y, z) if (x, y) ∈ Ri, (x, z) ∈ Rk,

(y, z) ∈ Rl, and 0 otherwise.

(iii) A0 ◦ (AiE
∗
j Ak) = δik′

d∑
l=0

pl
jkE

∗
l A0E

∗
l .

(iv) T0 is closed under the Hadamard product.

Proof. Direct calculation. 2

Lemma 3 The following are equivalent.
(i) An ◦ (E∗

l AiE
∗
j AkE

∗
m) ∈ T0,

(ii) An′ ◦ (E∗
mAk′E∗

j Ai′E
∗
l ) ∈ T0,

(iii) Am′ ◦ (E∗
nAk′E∗

i Aj′E
∗
l′) ∈ T0.
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Proof. Any one of the above is equivalent to the condition: |Ri(y) ∩ Rj(x) ∩ Rk′(z)| is
constant independent of x, y, z with (x, y) ∈ Rl, (x, z) ∈ Rm, (y, z) ∈ Rn. 2

Definition. An association scheme (X,R) is called triply regular if the size of the set
Ri(x) ∩ Rj(y) ∩ Rk(z) depends only on (i, j, k, l,m, n), where (x, y) ∈ Rl, (x, z) ∈ Rm,
(y, z) ∈ Rn.

Lemma 4 An association scheme (X,R) is triply regular if and only if T = T0.

Proof. By definition and Lemma 1 (vi), (X,R) is triply regular if and only if AiE
∗
j Ak ∈ T0

for any i, j, k. Thus, T = T0 implies triple regularity. Conversely, suppose AiE
∗
j Ak ∈ T0

for any i, j, k. By Lemma 1 (ii), (iii), any word in Ai, E∗
j (0 ≤ i, j ≤ d) is a linear

combination of words, in which Ai’s and E∗
j ’s appear alternately. Such a word with more

than one Ai’s can be rewritten with less number of Ai’s since AiE
∗
j Ak ∈ T0. By induction,

we can show that any word in Ai, E∗
j (0 ≤ i, j ≤ d) is a linear combination of E∗

i AjE
∗
k ,

E∗
i Aj, AjE

∗
k , Aj, (0 ≤ i, j, k ≤ d). Since

∑d
i=0 E∗

i is the identity, all of these belong to T0,
thus T = T0. 2

Lemma 5 Let X be an association scheme of class 2. If A1E
∗
1A1 ∈ T0, then X is triply

regular.

Proof. Since A0E
∗
1A1 ∈ T0 and JE∗

1A1 ∈ T0 by Lemma 1 (viii), we have A2E
∗
1A1 ∈ T0,

and similarly A1E
∗
1A2 ∈ T0, hence A2E

∗
1A2 ∈ T0 also holds. Since A0 = E∗

0 + E∗
1 + E∗

2 ,
Lemma 1 (vii) implies AiE

∗
2Ak ∈ T0 for any i, k. Thus X is triply regular. 2

Proposition 6 Let X be a symmetric association scheme of class 2. Then X is triply
regular if and only if R induces an association scheme on subconstituents of X .

Proof. If X is triply regular, then clearly R induces an association scheme on subcon-
stituents of X . Suppose that R induces an association scheme on subconstituents of X .
This is equivalent to

E∗
1A1E

∗
1A1E

∗
1 ∈ T0 and E∗

2A1E
∗
1A1E

∗
2 ∈ T0.

By Lemma 2 (iv) we have

A2 ◦ (E∗
1A1E

∗
1A1E

∗
1) ∈ T0 and A1 ◦ (E∗

2A1E
∗
1A1E

∗
2) ∈ T0.

By Lemma 3 we have

A1 ◦ (E∗
2A1E

∗
1A1E

∗
1) ∈ T0, A2 ◦ (E∗

2A1E
∗
1A1E

∗
1) ∈ T0.

It follows from Lemma 2 (iii) that E∗
2A1E

∗
1A1E

∗
1 ∈ T0, and similarly E∗

1A1E
∗
1A1E

∗
2 ∈ T0.

Now
A1E

∗
1A1 = (E∗

0 + E∗
1 + E∗

2)A1E
∗
1A1(E

∗
0 + E∗

1 + E∗
2),

so we see that A1E
∗
1A1 ∈ T0 using Lemma 1 (x), (xi). The result follows from Lemma 5.

2
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Suppose that there exists a spin model defined on the symmetric association scheme
X . This means that there exist complex numbers t0, t1, . . . , td such that the function
w : X × X → C× defined by w(x, y) = ti when (x, y) ∈ Ri, satisfies the following.

(1)
∑
y∈X

w(x, y)w(z, y)−1 = δx,z|X|, for x, z ∈ X,

(2)
∑
x∈X

w(a, x)w(x, b)w(c, x)−1 =
√
|X|w(a, b)w(c, b)−1w(c, a)−1 for a, b, c ∈ X.

We want to express the equation (2) in the Terwilliger algebra. Put

W =
d∑

i=0

tiAi,

W ∗ =
√
|X|

d∑
i=0

t−1
i E∗

i .

Lemma 7 The equation (2) is equivalent to WW ∗W = W ∗WW ∗.

Proof. We have

1√
|X|

WW ∗W =
∑
i,j,k

tit
−1
j tkAiE

∗
j Ak

=
∑
i,j,k

∑
a,b,c∈X

tit
−1
j tk|Rj(c) ∩ Ri(a) ∩ Rk′(b)|(c; a, b)

=
∑

a,b,c∈X

∑
i,j,k

∑
x∈Rj(c)∩Ri(a)∩Rk′ (b)

tit
−1
j tk(c; a, b)

=
∑

a,b,c∈X

∑
x∈X

w(a, x)w(x, b)w(c, x)−1(c; a, b),

1√
|X|

W ∗WW ∗ =
√
|X|

∑
i,j,k

t−1
i tjt

−1
k E∗

i AjE
∗
k

=
√
|X|

∑
i,j,k

t−1
i tjt

−1
k

∑
(c,a)∈Ri, (c,b)∈Rk

(a,b)∈Rj

(c; a, b)

=
√
|X|

∑
a,b,c∈X

w(a, b)w(c, b)−1w(c, a)−1(c; a, b).

Thus the result follows. 2

We give a simple proof of a result due to Jaeger.

Theorem 8 Let X be symmetric association scheme of class 2, w : X ×X → C× a spin
model, w(x, y) = ti if (x, y) ∈ Ri, and t1 ̸= t2. Then X is triply regular.
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Proof. Since W ∗WW ∗ ∈ T0, Lemma 7 implies WW ∗W ∈ T0. By definition, W =
t0A0 + t1A1 + t2A2 is a linear combination of A0, A1 and J . By Lemma 1 (i), (viii), we
have A0W

∗W ∈ T0, JW ∗W ∈ T0. Since t1 ̸= t2, we obtain A1W
∗W ∈ T0. Similarly we

have A1W
∗A1 ∈ T0. Moreover, Lemma 1 (vii) implies A1E

∗
0A1 ∈ T0, so that we get

t−1
1 A1E

∗
1A1 + t−1

2 A1E
∗
2A1 ∈ T0.

On the other hand,

A1E
∗
1A1 + A1E

∗
2A1 = A2

1 − A1E
∗
0A1 ∈ T0.

Since t1 ̸= t2, we obtain A1E
∗
1A1 ∈ T0. The assertion follows from Lemma 5. 2
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