April 18, 2016

Lemma 2 shows that S itself is also an orthogonal matrix. It is well known that this is equivalent to s being an orthogonal transformation, that is,

$$
\begin{equation*}
(s(\lambda), s(\mu))=(\lambda, \mu) \quad\left(\lambda, \mu \in \mathbf{R}^{n}\right) \tag{12}
\end{equation*}
$$

This can be directly verified as follows. First, let $s=s_{\alpha}$ with $\alpha \neq 0$ and set

$$
\pi(\lambda)=\lambda-\frac{(\lambda, \alpha)}{(\alpha, \alpha)} \alpha
$$

Then $(\pi(\lambda), \alpha)=0$, so

$$
\lambda=\frac{(\lambda, \alpha)}{(\alpha, \alpha)} \alpha+\pi(\lambda)
$$

is the representation of λ as an element of $\mathbf{R} \alpha \oplus(\mathbf{R} \alpha)^{\perp}$. By the definition of a reflection, we obtain

$$
\begin{aligned}
s_{\alpha}(\lambda) & =-\frac{(\lambda, \alpha)}{(\alpha, \alpha)} \alpha+\pi(\lambda) \\
& =\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha .
\end{aligned}
$$

Note that this is a direct generalization of our formula (2) originally established in \mathbf{R}^{2} only. Now

$$
\begin{aligned}
\left(s_{\alpha}(\lambda), s_{\alpha}(\mu)\right) & =\left(\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha, \mu-\frac{2(\mu, \alpha)}{(\alpha, \alpha)} \alpha\right) \\
& =(\lambda, \mu)-\left(\lambda, \frac{2(\mu, \alpha)}{(\alpha, \alpha)} \alpha\right)-\left(\mu, \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha\right)+\left(\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha, \frac{2(\mu, \alpha)}{(\alpha, \alpha)} \alpha\right) \\
& =(\lambda, \mu)-\frac{2(\mu, \alpha)}{(\alpha, \alpha)}(\lambda, \alpha)-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)}(\mu, \alpha)+\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \frac{2(\mu, \alpha)}{(\alpha, \alpha)}(\alpha, \alpha) \\
& =(\lambda, \mu)-\frac{2(\lambda, \alpha)(\mu, \alpha)}{(\alpha, \alpha)}-\frac{2(\lambda, \alpha)(\mu, \alpha)}{(\alpha, \alpha)}+\frac{4(\lambda, \alpha)(\mu, \alpha)}{(\alpha, \alpha)} \\
& =(\lambda, \mu) .
\end{aligned}
$$

Therefore, s_{α} is an orthogonal transformation.
For a real vector space V with an inner product, the set of orthogonal transformation is denoted by $O(V)$. Thus, every reflection in V is an element of $O(V)$. It is necessary to consider a more general vector space V than just \mathbf{R}^{n}, since we sometimes need to consider linear transformation defined on a subspace of \mathbf{R}^{n}.

Let us recall how the transformation rule (10) was used to derive every word in $\langle s, t\rangle$ is one of the $2 m$ possible forms. We now formalize this by ignoring the fact that s, t are reflections. Instead we only assume $s^{2}=t^{2}=1$. In order to facilitate this, we consider
a set of formal symbols X and consider the set of all words of length n. This is the set of sequence of length n, so it can be regarded as the cartesian product

$$
X^{n}=\underbrace{X \times X \times \cdots \times X}_{n} .
$$

Then we can form a disjoint union

$$
X^{*}=\bigcup_{n=0}^{\infty} X^{n}
$$

where X^{0} consists of a single element called the empty word, denoted by 1 .
A word $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$ is said to be reduced if $x_{i} \neq x_{i+1}$ for $1 \leq i<n$. By definition, the word 1 of length 0 is reduced, and every word of length 1 is reduced. For brevity, we write $x=x_{1} x_{2} \cdots x_{n} \in X^{n}$ instead of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$. We denote the set of all reduced words by $F(X)$.

We can define a binary operation $\mu: F(X) \times F(X) \rightarrow F(X)$ as follows.

$$
\begin{equation*}
\mu(1, x)=\mu(x, 1)=1 \quad(x \in F(X)), \tag{13}
\end{equation*}
$$

and for $x=x_{1} \cdots x_{m} \in X^{m} \cap F(X)$ and $y=y_{1} \cdots y_{n} \in X^{n} \cap F(X)$ with $m, n \geq 1$, we define

$$
\mu(x, y)= \begin{cases}x_{1} \cdots x_{m} y_{1} \cdots y_{n} \in X^{m+n} & \text { if } x_{m} \neq y_{1} \tag{14}\\ \mu\left(x_{1} \cdots x_{m-1}, y_{2} \cdots y_{n}\right) & \text { otherwise }\end{cases}
$$

This is a recursive definition. Note that if $x_{m} \neq y_{1}$, then $x_{1} \cdots x_{m} y_{1} \cdots y_{n}$ is a reduced word. Note also that there is no guarantee that $x_{1} \cdots x_{m-1} y_{2} \cdots y_{n}$ is a reduced word. If it is not, then $x_{m-1}=y_{2}$, so we define this to be $\mu\left(x_{1} \cdots x_{m-2}, y_{3} \cdots y_{n}\right)$. Since the length is finite, we eventually reach the case where the last symbol of x is different from the first symbol of y, or one of x, y is 1 .

Definition 3. A set G with binary operation $\mu: G \times G \rightarrow G$ is said to be a group if
(i) μ is associative, that is, $\mu(\mu(a, b), c)=\mu(a, \mu(b, c))$ for all $a, b, c \in G$,
(ii) there exists an element $1 \in G$ such that $\mu(1, a)=\mu(a, 1)=a$ for all $a \in G$,
(iii) for each $a \in G$, there exists an element $a^{\prime} \in G$ such that $\mu\left(a, a^{\prime}\right)=\mu\left(a^{\prime}, a\right)=1$.

The element 1 is called the identity of G, and a^{\prime} is called the inverse of a.
Theorem 4. The set of reduced words $F(X)$ forms a group under the binary operation μ defined by (13)-(14).

Proof. Clearly, the empty word 1 is the identity in $F(X)$, i.e.,

$$
\begin{equation*}
\mu(1, a)=\mu(a, 1)=a \quad(a \in F(X)) \tag{15}
\end{equation*}
$$

Next we prove associativity (i), by a series of steps.
Step 1.

$$
\begin{equation*}
\mu(\mu(a, x), \mu(x, b))=\mu(a, b) \quad(a, b \in F(X), x \in X) . \tag{16}
\end{equation*}
$$

Indeed, denote by a_{-1} the last entry of a, and by b_{1} the first entry of b. Write

$$
\begin{aligned}
a=a^{\prime} x & \text { if } a_{-1}=x, \\
b=x b^{\prime} & \text { if } b_{1}=x .
\end{aligned}
$$

Since

$$
\begin{array}{rr}
a x \in F(X) & \text { if } a_{-1} \neq x, \\
x b \in F(X) & \text { if } b_{1} \neq x,
\end{array}
$$

we have

$$
\begin{aligned}
& \mu(\mu(a, x), \mu(x, b))= \begin{cases}\mu\left(a^{\prime}, b^{\prime}\right) & \text { if } a_{-1}=x, b_{1}=x \\
\mu\left(a^{\prime}, x b\right) & \text { if } a_{-1}=x, b_{1} \neq x \\
\mu\left(a x, b^{\prime}\right) & \text { if } a_{-1} \neq x, b_{1}=x \\
\mu(a x, x b) & \text { if } a_{-1} \neq x, b_{1} \neq x\end{cases} \\
&=\mu(a, b) .
\end{aligned}
$$

Step 2.

$$
\begin{equation*}
\mu(x, \mu(x, c))=c \quad(c \in F(X), x \in X) \tag{17}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
\mu(x, \mu(x, c)) & =\mu(\mu(1, x), \mu(x, c)) \tag{13}\\
& =\mu(1, c) \tag{16}\\
& =c
\end{align*}
$$

(by (13)).

Step 3.

$$
\begin{equation*}
\mu(x, \mu(b, c))=\mu(\mu(x, b), c) \quad(b, c \in F(X), x \in X) \tag{18}
\end{equation*}
$$

Assume $b \in X^{m}$. We prove (18) by induction on m. If $m=0$, then $b=1$, so

$$
\begin{align*}
\mu(x, \mu(b, c)) & =\mu(x, \mu(1, c)) \\
& =\mu(x, c) \tag{15}\\
& =\mu(\mu(x, 1), c) \\
& =\mu(\mu(x, b), c) .
\end{align*}
$$

$$
=\mu(x, c)
$$

$$
=\mu(\mu(x, 1), c)
$$

Next assume $m>0$. If $b=x b^{\prime}$, then

$$
\mu(x, \mu(b, c))=\mu\left(x, \mu\left(\mu\left(x, b^{\prime}\right), c\right)\right)
$$

$$
=\mu\left(x, \mu\left(x, \mu\left(b^{\prime}, c\right)\right)\right) \quad \text { (by induction) }
$$

$$
\begin{align*}
& =\mu\left(b^{\prime}, c\right) \tag{17}\\
& =\mu(\mu(x, b), c) .
\end{align*}
$$

If $b=b^{\prime} y$ and $c=y c^{\prime}$ for some $b^{\prime}, c^{\prime} \in F(X)$ and $y \in X$, then

$$
\begin{aligned}
\mu(x, \mu(b, c)) & =\mu\left(x, \mu\left(b^{\prime}, c^{\prime}\right)\right) & & \text { (by (14)) } \\
& =\mu\left(\mu\left(x, b^{\prime}\right), c^{\prime}\right) & & \text { (by induction) } \\
& =\mu\left(\mu\left(\mu\left(x, b^{\prime}\right), y\right), \mu\left(y, c^{\prime}\right)\right) & & \text { (by (16)) } \\
& =\mu\left(\mu\left(\mu\left(x, b^{\prime}\right), y\right), c\right) & & \\
& =\mu\left(\mu\left(x, \mu\left(b^{\prime}, y\right)\right), c\right) & & \text { (by induction) } \\
& =\mu(\mu(x, b), c) . & &
\end{aligned}
$$

Finally, if $b_{1} \neq x$ and $b_{-1} \neq c_{1}$, then $\mu(x, b)=x b$ and $\mu(b, c)=b c$, and $x b c \in F(X)$. Thus

$$
\begin{aligned}
\mu(x, \mu(b, c)) & =\mu(x, b c) \\
& =x b c \\
& =\mu(x b, c) \\
& =\mu(\mu(x, b), c) .
\end{aligned}
$$

This completes the proof of (18).
Now we prove

$$
\begin{equation*}
\mu(a, \mu(b, c))=\mu(\mu(a, b), c) \quad(a, b, c \in F(X)) . \tag{19}
\end{equation*}
$$

by induction on n, where $a \in X^{n}$. The cases $n=0$ is trivial because of (15). Assume $a=a^{\prime} x$, where $a^{\prime} \in F(X)$ and $x \in X$. Then

$$
\begin{aligned}
\mu(a, \mu(b, c)) & =\mu\left(\mu\left(a^{\prime}, x\right), \mu(b, c)\right) & & \\
& =\mu\left(a^{\prime}, \mu(x, \mu(b, c))\right) & & \text { (by induction) } \\
& =\mu\left(a^{\prime}, \mu(\mu(x, b), c)\right) & & \text { (by (18)) } \\
& =\mu\left(\mu\left(a^{\prime}, \mu(x, b)\right), c\right) & & \text { (by induction) } \\
& =\mu\left(\mu\left(\mu\left(a^{\prime}, x\right), b\right), c\right) & & \text { (by induction) } \\
& =\mu(\mu(a, b), c) . & &
\end{aligned}
$$

Therefore, we have proved associativity.
If $a=x_{1} \cdots x_{n} \in F(X) \cap X^{n}$, then the reversed word $a^{\prime}=x_{n} \cdots x_{1} \in F(X) \cap X^{n}$ is the inverse of a.

We call $F(X)$ the free group generated by the set of involutions X. From now on, we omit μ to denote the binary operation in $F(X)$ by juxtaposition. So we write $a b$ instead of $\mu(a, b)$ for $a, b \in F(X)$. Also, for $a=x_{1} \cdots x_{n} \in F(X) \cap X^{n}$, its inverse $x_{n} \cdots x_{1}$ will be denoted by a^{-1}.

Let s and t be the linear transformation of \mathbf{R}^{2} represented by the matrices

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \text { and }\left[\begin{array}{cc}
\cos \frac{2 \pi}{m} & \sin \frac{2 \pi}{m} \\
\sin \frac{2 \pi}{m} & -\cos \frac{2 \pi}{m}
\end{array}\right],
$$

respectively. Let $G=\langle s, t\rangle$ be the set of all linear transformation expressible as a product of s and t. We know

$$
G=\left\{(s t)^{j} \mid 0 \leq j<m\right\} \cup\left\{(s t)^{j} s \mid 0 \leq j<m\right\} .
$$

and $|G|=2 \mathrm{~m}$. The product of linear transformations defines a binary operation on G, and G forms a group under this operation. This group is called the dihedral group of order $2 m$. In order to connect the dihedral group with a free group, we make a definition.

Definition 5. Let G_{1} and G_{2} be groups. A mapping $f: G_{1} \rightarrow G_{2}$ is called a homomorphism if

$$
\begin{equation*}
f(a b)=f(a) f(b) \quad\left(\forall a, b \in G_{1}\right) \tag{20}
\end{equation*}
$$

where the product $a b$ is computed under the binary operation in G_{1}, the product $f(a) f(b)$ is computed under the binary operation in G_{2}. A bijective homomorphism is called an isomorphism. The groups G_{1} and G_{2} are said to be isomorphic if there exists an isomorphism from G_{1} to G_{2}.

Let $X=\{x, y\}$ be a set of two distinct formal symbols. Clearly, there is a homomor$\operatorname{phism} f: F(X) \rightarrow G$ with $f(x)=s$ and $f(y)=t$, where $G=\langle s, t\rangle$ is the dihedral group of order $2 m$ defined above. Note that $f\left((x y)^{m}\right)=(s t)^{m}=1$, but $(x y)^{m} \in F(X)$ is not the identity. This suggests introducing another transformation rule $(x y)^{m}=1$, in addition to $x^{2}=y^{2}=1$ as we adopted when constructing the group $F(X)$. We do this by introducing an equivalence relation on $F(X)$. Let $a, b \in F(X)$. If there exists $c \in F(X)$ such that $a=b c^{-1}(x y)^{m} c$, then $f(a)=f(b)$ holds. So we write $a \sim b$ if there is a finite sequence $a=a_{0}, a_{1}, \ldots, a_{n}=b \in F(X)$ such that for each $i \in\{1,2, \ldots, n\}, a_{i}$ is obtained by multiplying a_{i-1} by an element of the form $c^{-1}(x y)^{m} c$ for some $c \in F(X)$. Then \sim is an equivalence relation, since $a=b c^{-1}(x y)^{m} c$ implies $b=a(x c)^{-1}(x y)^{m}(x c)$. Clearly, $a \sim b$ implies $f(a)=f(b)$. In other words, f induces a mapping from the set of equivalence classes to G. In fact, the set of equivalence classes forms a group under the binary operation inherited from $F(X)$. We can now make this more precise.

