May 2, 2016

Definition 6. Let X be a set of formal symbols, and let $F(X)$ be the free group generated by the set of involutions X. Let $R \subset F(X)$. Let N be the subgroup generated by the set

$$
\begin{equation*}
\left\{c^{-1} r^{ \pm} c \mid c \in F(X), r \in R\right\} . \tag{21}
\end{equation*}
$$

In other words, N is the set of elements of $F(X)$ expressible as a product of elements in the set (21). The set

$$
F(X) / N=\{a N \mid a \in F(X)\}
$$

where $a N=\{a b \mid b \in N\}$ for $a \in F(X)$, forms a group under the binary operation

$$
\begin{aligned}
F(X) / N \times F(X) / N & \rightarrow F(X) / N \\
(a N, b N) & \mapsto a b N
\end{aligned}
$$

and it is called the group with presentation $\langle X \mid R\rangle$.
In view of Definition 6, we show that the dihedral group G of order $2 m$ is isomorphic to the the group with presentation $\left\langle x, y \mid(x y)^{m}\right\rangle$. Indeed, we have seen that there is a homomorphism $f: F(X) \rightarrow G$ with $f(x)=s$ and $f(y)=t$. In our case, $R=\left\{(x y)^{m}\right\}$ which is mapped to 1 under f. So f is constant on each equivalence class, and hence f induces a mapping $\bar{f}: F(X) / N \rightarrow G$ defined by $\bar{f}(a N)=f(a)(a \in F(X))$. This mapping \bar{f} is a homomorphism since

$$
\begin{aligned}
\bar{f}((a N)(b N)) & =\bar{f}(a b N) \\
& =f(a b) \\
& =f(a) f(b) \\
& =\bar{f}(a N) \bar{f}(b N) .
\end{aligned}
$$

Moreover, it is clear that both f and \bar{f} are surjective, since $G=\langle s, t\rangle=\langle f(x), f(y)\rangle$. The most important part of the proof is injectivity of \bar{f}. The argument on the transformation rule defined by $(x y)^{m}$ shows

$$
F(X) / N=\left\{(x y)^{j} N \mid 0 \leq j<m\right\} \cup\left\{(x y)^{j} x N \mid 0 \leq j<m\right\} .
$$

In particular, $|F(X) / N| \leq 2 m=|G|$. Since \bar{f} is surjective, equality and injectivity of \bar{f} are forced.

Definition 7. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. The set $O(V)$ of orthogonal linear transformations of V forms a group under composition. We call $O(V)$ the orthogonal group of V.

Definition 8. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. A subgroup W of the group $O(V)$ is said to be a finite reflection group if
(i) $W \neq\left\{\mathrm{id}_{V}\right\}$,
(ii) W is finite,
(iii) W is generated by a set of reflections.

For example, the dihedral group G of order $2 m$ is a finite reflection group, since $G \subset$ $O\left(\mathbf{R}^{2}\right),|G|=2 m$ is neither 1 nor infinite, and G is generated by two reflections. We have seen that G has presentation $\left\langle s, t \mid(s t)^{m}\right\rangle$. One of the goal of these lectures is to show that every finite reflection group has presentation $\left\langle s_{1}, \ldots, s_{n} \mid R\right\rangle$, where $R \subset F\left(\left\{s_{1}, \ldots, s_{n}\right\}\right)$ is of the form $\left\{\left(s_{i} s_{j}\right)^{m_{i j}} \mid 1 \leq i, j \leq n\right\}$.

Let $n \geq 2$ be an integer, and let \mathcal{S}_{n} denote the symmetric group of degree n. In other words, \mathcal{S}_{n} consists of all permutations of the set $\{1,2, \ldots, n\}$. Since permutations are bijections from $\{1,2, \ldots, n\}$ to itself, \mathcal{S}_{n} forms a group under composition. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ denote the standard basis of \mathbf{R}^{n}. For each $\sigma \in \mathcal{S}_{n}$, we define $g_{\sigma} \in O\left(\mathbf{R}^{n}\right)$ by setting

$$
g_{\sigma}\left(\sum_{i=1}^{n} c_{i} \varepsilon_{i}\right)=\sum_{i=1}^{n} c_{i} \varepsilon_{\sigma(i)},
$$

and set

$$
G_{n}=\left\{g_{\sigma} \mid \sigma \in \mathcal{S}_{n}\right\} .
$$

It is easy to verify that G_{n} is a subgroup of $O(V)$ and, the mapping $\mathcal{S}_{n} \rightarrow G_{n}$ defined by $\sigma \mapsto g_{\sigma}$ is an isomorphism. We claim that g_{σ} is a reflection if σ is a transposition; more precisely,

$$
\begin{equation*}
g_{\sigma}=s_{\varepsilon_{i}-\varepsilon_{j}} \quad \text { if } \sigma=(i j) \tag{22}
\end{equation*}
$$

Indeed, for $k \in\{1,2, \ldots, n\}$,

$$
\begin{aligned}
s_{\varepsilon_{i}-\varepsilon_{j}}\left(\varepsilon_{k}\right) & =\varepsilon_{k}-\frac{2\left(\varepsilon_{k}, \varepsilon_{i}-\varepsilon_{j}\right)}{\left(\varepsilon_{i}-\varepsilon_{j}, \varepsilon_{i}-\varepsilon_{j}\right)}\left(\varepsilon_{i}-\varepsilon_{j}\right) \\
& =\varepsilon_{k}-\left(\varepsilon_{k}, \varepsilon_{i}-\varepsilon_{j}\right)\left(\varepsilon_{i}-\varepsilon_{j}\right) \\
& = \begin{cases}\varepsilon_{i}-\left(\varepsilon_{i}-\varepsilon_{j}\right) & \text { if } k=i, \\
\varepsilon_{j}+\left(\varepsilon_{i}-\varepsilon_{j}\right) & \text { if } k=j, \\
\varepsilon_{k} & \text { otherwise }\end{cases} \\
& = \begin{cases}\varepsilon_{j} & \text { if } k=i, \\
\varepsilon_{i} & \text { if } k=j, \\
\varepsilon_{k} & \text { otherwise }\end{cases} \\
& =\varepsilon_{\sigma(k)} \\
& =g_{\sigma}\left(\varepsilon_{k}\right) .
\end{aligned}
$$

It is well known that \mathcal{S}_{n} is generated by its set of transposition. Via the isomorphism $\sigma \mapsto g_{\sigma}$, we see that G_{n} is generated by the set of reflections

$$
\left\{s_{\varepsilon_{i}-\varepsilon_{j}} \mid 1 \leq i<j \leq n\right\} .
$$

Therefore, G_{n} is a finite reflection group.
Observe that G_{3} has order 6 , and we know another finite reflection group of order 6 , namely, the dihedral group of order 6 . Although $G_{3} \subset O\left(\mathbf{R}^{3}\right)$ while the dihedral group is a subgroup of $O\left(\mathbf{R}^{2}\right)$, these two groups are isomorphic. In order to see their connection, we make a definition.
Definition 9. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. Let $W \subset O(V)$ be a finite reflection group. We say that W is not essential if there exists a nonzero vector $\lambda \in V$ such that $t \lambda=\lambda$ for all $t \in W$. Otherwise, we say that W is essential.

For example, the dihedral group G of order $2 m \geq 6$ is essential. Indeed, G contains a rotation t whose matrix representation is

$$
\left[\begin{array}{cc}
\cos \frac{2 \pi}{m} & -\sin \frac{2 \pi}{m} \tag{23}\\
\sin \frac{2 \pi}{m} & \cos \frac{2 \pi}{m}
\end{array}\right] .
$$

There exists no nonzero vector $\lambda \in V$ such that $t \lambda=\lambda$ since the matrix (23) does not have 1 as an eigenvalue:

$$
\left|\begin{array}{cc}
\cos \frac{2 \pi}{m}-1 & -\sin \frac{2 \pi}{m} \\
\sin \frac{2 \pi}{m} & \cos \frac{2 \pi}{m}-1
\end{array}\right|=2\left(1-\cos \frac{2 \pi}{m}\right) \neq 0 .
$$

On the other hand, the group G_{n} which is isomorphic to \mathcal{S}_{n} is not essential. Indeed, the vector $\lambda=\sum_{i=1}^{n} \varepsilon_{i}$ is fixed by every $t \in G_{n}$. In order to find connections between the dihedral group of order 6 and the group G_{3}, we need a method to produce an essential finite reflection group from non-essential one.

Given a finite reflection group $W \subset O(V)$, let

$$
U=\{\lambda \in V \mid \forall t \in W, t \lambda=\lambda\} .
$$

It is easy to see that U is a subspace of V. Let U^{\prime} be the orthogonal complement of U in V. Since $t U=U$ for all $t \in W$, we have $t U^{\prime}=U^{\prime}$ for all $t \in W$. This allows to construct the restriction homomorphism $W \rightarrow O\left(U^{\prime}\right)$ defined by $\left.t \mapsto t\right|_{U^{\prime}}$.
Exercise 10. Show that the above restriction homomorphism is injective, and the image $\left.W\right|_{U^{\prime}}$ is an essential finite reflection group in $O\left(U^{\prime}\right)$.

For the group G_{3}, we have

$$
\begin{aligned}
U & =\mathbf{R}\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right), \\
U^{\prime} & =\mathbf{R}\left(\varepsilon_{1}-\varepsilon_{2}\right)+\mathbf{R}\left(\varepsilon_{2}-\varepsilon_{3}\right) \\
& =\mathbf{R} \eta_{1}+\mathbf{R} \eta_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \eta_{1}=\frac{1}{\sqrt{2}}\left(\varepsilon_{1}-\varepsilon_{2}\right), \\
& \eta_{2}=\frac{1}{\sqrt{6}}\left(\varepsilon_{1}+\varepsilon_{2}-2 \varepsilon_{3}\right)
\end{aligned}
$$

is an orthonormal basis of U^{\prime}.

Exercise 11. Compute the matrix representations of $g_{(12)}$ and $g_{(23)}$ with respect to the basis $\left\{\eta_{1}, \eta_{2}\right\}$. Show that they are reflections whose lines of symmetry form an angle $\pi / 3$.

As a consequence of Exercise 10, we see that the group G_{3}, restricted to the subspace U^{\prime} so that it becomes essential, is nothing but the dihedral group of order 6 .

