May 9, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R} , with positivedefinite inner product. Recall that for $0 \neq \alpha \in V$, $s_{\alpha} \in O(V)$ denotes the reflection

$$s_{\alpha}(\lambda) = \lambda - \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad (\lambda \in V).$$
(24)

Lemma 12. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $ts_{\alpha}t^{-1} = s_{t\alpha}$.

Proof. For $\lambda \in V$, we have

$$ts_{\alpha}(\lambda) = t \left(\lambda - \frac{2(\lambda, \alpha)}{(\alpha, \alpha)}\alpha\right)$$
 (by (24))
$$= t\lambda - \frac{2(\lambda, \alpha)}{(\alpha, \alpha)}t\alpha$$

$$= t\lambda - \frac{2(t\lambda, t\alpha)}{(t\alpha, t\alpha)}t\alpha$$

$$= s_{t\alpha}(t\lambda).$$

This implies $ts_{\alpha} = s_{t\alpha}t$, and the result follows.

For example, if s_{α} is a reflection in a dihedral group G, and $t \in G$ is a rotation, then s_{α} and t are not necessarily commutative, but rotating before reflecting can be compensated by reflecting with respect to another line afterwards.

Proposition 13. Let $W \subset O(V)$ be a finite reflection group, and let $0 \neq \alpha \in V$. If $w, s_{\alpha} \in W$, then $s_{w\alpha} \in W$.

Proof. By Lemma 12, we have $s_{w\alpha} = w s_{\alpha} w^{-1} \in W$.

Definition 14. Let Φ be a nonempty finite set of nonzero vectors in V. We say that Φ is a *root system* if

(R1) $\Phi \cap \mathbf{R}\alpha = \{\alpha, -\alpha\}$ for all $\alpha \in \Phi$,

(R2) $s_{\alpha}\Phi = \Phi$ for all $\alpha \in \Phi$.

Proposition 15. Let Φ be a root system in V. Then the subgroup

$$W(\Phi) = \langle s_{\alpha} \mid \alpha \in \Phi \rangle$$

of O(V) is a finite reflection group. Moreover, $W(\Phi)$ is essential if and only if Φ spans V. Conversely, for every finite reflection group $W \subset O(V)$, there exists a root system $\Phi \subset V$ such that $W = W(\Phi)$.

 \square

Proof. Since $\Phi \neq \emptyset$, the group $W(\Phi)$ contains at least one reflection. In particular, $W(\Phi) \neq \{ id_V \}$. By construction, W is generated by reflections. In order to show that W is finite, let U be the subspace of V spanned by Φ . Since $U^{\perp} \subset (\mathbf{R}\alpha)^{\perp}$ for all $\alpha \in \Phi$, we have $s_{\alpha}(\lambda) = \lambda$ for all $\alpha \in \Phi$ and $\lambda \in U^{\perp}$. This implies that

$$w|_{U^{\perp}} = \mathrm{id}_{U^{\perp}} \quad (w \in W).$$
⁽²⁵⁾

In particular, W leaves U^{\perp} invariant. Since $W \subset O(V)$, W also leaves U invariant. We can form the restriction homomorphism $W \to O(U)$ which is injective. Indeed, if an element $w \in W$ is in the kernel of the restriction homomorphism, then $w|_U = \mathrm{id}_U$. Together with (25), we see $w = \mathrm{id}_V$. By (R2), W permutes the finite set Φ , hence there is a homomorphism f from W to the symmetric group on Φ . An element $w \in \mathrm{Ker} f$ fixes every element of Φ , in particular, a basis of U. This implies that w is in the kernel of the restriction homomorphism, and hence $w = \mathrm{id}_V$. We have shown that f is an injection from W to the symmetric group of Φ which is finite. Therefore W is finite. This completes the proof of the first part.

Moreover, $W(\Phi)$ is not essential if and only if there exists a nonzero vector $\lambda \in V$ such that $t\lambda = \lambda$ for all $t \in W(\Phi)$. Since $W(\Phi)$ is generated by $\{s_{\alpha} \mid \alpha \in \Phi\}$,

$$t\lambda = \lambda \; (\forall t \in W(\Phi)) \iff s_{\alpha}\lambda = \lambda \; (\forall \alpha \in \Phi)$$
$$\iff (\lambda, \alpha) = 0 \; (\forall \alpha \in \Phi)$$
$$\iff \lambda \in U^{\perp}.$$

Thus, $W(\Phi)$ is not essential if and only if $U^{\perp} \neq 0$, or equivalently, Φ does not span V.

Conversely, let $W \subset O(V)$ be a finite reflection group, and let S be the set of all reflections of W. By Definition 8(iii), W is generated by S. Define

$$\Phi = \{ \alpha \in V \mid s_{\alpha} \in S, \ \|\alpha\| = 1 \}.$$

$$(26)$$

Observe

$$S = \{ s_{\alpha} \mid \alpha \in \Phi \}.$$
⁽²⁷⁾

We claim that Φ is a root system. First, since $W \neq \{id_V\}$, we have $\Phi \neq \emptyset$. Let $\alpha \in \Phi$. Since $s_{\alpha} = s_{-\alpha}$ and $\|\alpha\| = \|-\alpha\|$, we see that Φ satisfies (R1). For $\beta \in \Phi$, we have $\|s_{\alpha}(\beta)\| = \|\beta\| = 1$, and $s_{s_{\alpha}(\beta)} \in W$ by Proposition 13, since $s_{\alpha}, s_{\beta} \in W$. This implies $s_{\alpha}(\beta) \in \Phi$, and hence $s_{\alpha}(\Phi) = \Phi$. Therefore, Φ is a root system. It remains to show that $W = W(\Phi)$. But this follows immediately from (27) since $W = \langle S \rangle$.

Example 16. We have seen that the group G_n generated by reflections

$$\{s_{\varepsilon_i - \varepsilon_j} \mid 1 \le i < j \le n\},\tag{28}$$

where $\varepsilon_1, \ldots, \varepsilon_n$ is the standard basis of \mathbb{R}^n , is a finite reflection group which is abstractly isomorphic to the symmetric group of degree n. The set

$$\Phi = \{ \pm (\varepsilon_i - \varepsilon_j) \mid 1 \le i < j \le n \}$$
(29)

is a root system. Indeed, Φ clearly satisfies (R1). It is also clear that $g_{\sigma}\Phi = \Phi$ for all $\sigma \in S_n$, so in particular, (R2) holds.

Exercise 17. Show that (28) is precisely the set of reflections in G_n . In other words, show that g_{σ} is a reflection if and only if σ is a transposition.

Definition 18. A *total ordering* of V is a transitive relation on V (denoted <) satisfying the following axioms.

- (i) For each pair $\lambda, \mu \in V$, exactly one of $\lambda < \mu, \lambda = \mu, \mu < \lambda$ holds.
- (ii) For all $\lambda, \mu, \nu \in V$, $\mu < \nu$ implies $\lambda + \mu < \lambda + \nu$.
- (iii) Let $\mu < \nu$ and $c \in \mathbf{R}$. If c > 0 then $c\mu < c\nu$, and if c < 0 then $c\nu < c\mu$.

For convenience, we write $\lambda > \mu$ if $\mu < \lambda$. By (ii), $\lambda > 0$ implies $0 > -\lambda$. Thus

$$V = V_+ \cup \{0\} \cup V_- \quad \text{(disjoint)}, \tag{30}$$

where

$$V_{+} = \{\lambda \in V \mid \lambda > 0\},\tag{31}$$

$$V_{-} = \{\lambda \in V \mid \lambda < 0\}.$$
(32)

We say that $\lambda \in V_+$ is *positive*, and $\lambda \in V_-$ is *negative*.

Example 19. Let $\lambda_1, \ldots, \lambda_n$ be a basis of V. Define the lexicographic ordering of V with respect to $\lambda_1, \ldots, \lambda_n$ by

$$\sum_{i=1}^{n} a_i \lambda_i < \sum_{i=1}^{n} b_i \lambda_i \iff \exists k \in \{1, 2, \dots, n\}, \ a_1 = b_1, \dots, a_{k-1} = b_{k-1}, a_k < b_k.$$

Clearly, this is a total ordering of V. Note that $\lambda_i > 0$ for all $i \in \{1, ..., n\}$. For n = 2, we have

$$V_{+} = \{c_1\lambda_1 + c_2\lambda_2 \mid c_1 > 0, \ c_2 \in \mathbf{R}\} \cup \{c_2\lambda_2 \mid c_2 > 0\}.$$

Lemma 20. Let < be a total ordering of V, and let $\lambda, \mu \in V$.

- (i) If $\lambda, \mu > 0$, then $\lambda + \mu > 0$.
- (ii) If $\lambda > 0$, $c \in \mathbf{R}$ and c > 0, then $c\lambda > 0$.
- (iii) If $\lambda > 0$, $c \in \mathbf{R}$ and c < 0, then $c\lambda < 0$. In particular, $-\lambda < 0$.

Proof. (i) By Definition 18(ii), we have $\lambda + \mu > \lambda > 0$.

(ii) By Definition 18(iii), we have $c\lambda > c \cdot 0 = 0$.

(iii) By Definition 18(iii), we have $c\lambda < c \cdot 0 = 0$. Taking c = -1 gives the second statement.

Definition 21. Let Φ be a root system in V. A subset Π of Φ is called a *positive system* if there exists a total ordering < of V such that

$$\Pi = \{ \alpha \in \Phi \mid \alpha > 0 \}.$$
(33)

Since a total ordering of V always exists by Example 19, and every total ordering of V defines a positive system of a root system Φ in V, according to Definition 21, there are many positive systems in Φ .

Example 22. Continuing Example 16, let < be the total ordering defined by the basis $\varepsilon_1, \ldots, \varepsilon_n$. Then $\varepsilon_i > \varepsilon_j$ if i < j. Thus, according to (33),

 $\Pi = \{ \varepsilon_i - \varepsilon_j \mid 1 \le i < j \le n \}.$

Lemma 23. If Π is a positive system in a root system Φ , then $\Phi = \Pi \cup (-\Pi)$ (disjoint), where

$$-\Pi = \{-\alpha \mid \alpha \in \Pi\}. \tag{34}$$

In particular,

$$-\Pi = \{ \alpha \in \Phi \mid \alpha < 0 \}.$$
(35)

Proof. We have

$\Pi \cap (-\Pi) = \emptyset$	(by Lemma 20(iii)),
$\Pi \subset \Phi$	(by Definition 21),
$-\Pi \subset \Phi$	(by Definition 14(R1)).

Thus, it remains to show $\Phi \subset \Pi \cup (-\Pi)$. Suppose $\alpha \in \Phi \setminus \Pi$. Then

$\alpha \notin \Pi \implies \alpha \neq 0$	(by (33))
$\implies \alpha < 0$	(since $0 \notin \Phi$)
$\implies 0 < -\alpha$	(by Definition 18(ii)
$\implies -\alpha \in \Pi$	(by (33))
$\implies \alpha \in -\Pi$	(by (34)).

This proves $\Phi \setminus \Pi \subset (-\Pi)$, proving $\Phi \subset \Pi \cup (-\Pi)$.

Since $\Phi = \Pi \cup (-\Pi)$ (disjoint) and $0 \notin \Phi$, (33) implies (35).

Definition 24. Let Π be a positive system in a root system Φ . We call $-\Pi$ defined by (34) the *negative system* in Φ with respect to Π .

Definition 25. Let Δ be a subset of a root system Φ . We call Δ a *simple system* if Δ is a basis of the subspace spanned by Φ , and if moreover each $\alpha \in \Phi$ is a linear combination of Δ with coefficients all of the same sign (all nonnegative or all nonpositive). In other words,

$$\Phi \subset \mathbf{R}_{>0} \Delta \cup \mathbf{R}_{<0} \Delta, \tag{36}$$

where

$$\mathbf{R}_{\geq 0}\Delta = \{\sum_{\alpha \in \Delta} c_{\alpha}\alpha \mid c_{\alpha} \geq 0 \ (\alpha \in \Delta)\}.$$

If Δ is a simple system, we call its elements *simple roots*.

Example 26. Continuing Example 22,

$$\Delta = \{ \varepsilon_i - \varepsilon_{i+1} \mid 1 \le i < n \}$$
(37)

is a simple system. Indeed, for $\varepsilon_i - \varepsilon_j \in \Phi$, we have

$$\varepsilon_i - \varepsilon_j = \begin{cases} \sum_{k=i}^{j-1} (\varepsilon_k - \varepsilon_{k+1}) \in \mathbf{R}_{\geq 0} \Delta & \text{if } i < j, \\ \sum_{k=j}^{i-1} (-(\varepsilon_j - \varepsilon_{j+1})) \in \mathbf{R}_{\leq 0} \Delta & \text{otherwise.} \end{cases}$$