May 9, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Recall that for $0 \neq \alpha \in V, s_{\alpha} \in O(V)$ denotes the reflection

$$
\begin{equation*}
s_{\alpha}(\lambda)=\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad(\lambda \in V) . \tag{24}
\end{equation*}
$$

Lemma 12. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $t s_{\alpha} t^{-1}=s_{t \alpha}$.
Proof. For $\lambda \in V$, we have

$$
\begin{align*}
t s_{\alpha}(\lambda) & =t\left(\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha\right) \tag{24}\\
& =t \lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} t \alpha \\
& =t \lambda-\frac{2(t \lambda, t \alpha)}{(t \alpha, t \alpha)} t \alpha \\
& =s_{t \alpha}(t \lambda) .
\end{align*}
$$

This implies $t s_{\alpha}=s_{t \alpha} t$, and the result follows.
For example, if s_{α} is a reflection in a dihedral group G, and $t \in G$ is a rotation, then s_{α} and t are not necessarily commutative, but rotating before reflecting can be compensated by reflecting with respect to another line afterwards.

Proposition 13. Let $W \subset O(V)$ be a finite reflection group, and let $0 \neq \alpha \in V$. If $w, s_{\alpha} \in W$, then $s_{w \alpha} \in W$.

Proof. By Lemma 12, we have $s_{w \alpha}=w s_{\alpha} w^{-1} \in W$.
Definition 14. Let Φ be a nonempty finite set of nonzero vectors in V. We say that Φ is a root system if
(R1) $\Phi \cap \mathbf{R} \alpha=\{\alpha,-\alpha\}$ for all $\alpha \in \Phi$,
(R2) $s_{\alpha} \Phi=\Phi$ for all $\alpha \in \Phi$.
Proposition 15. Let Φ be a root system in V. Then the subgroup

$$
W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle
$$

of $O(V)$ is a finite reflection group. Moreover, $W(\Phi)$ is essential if and only if Φ spans V. Conversely, for every finite reflection group $W \subset O(V)$, there exists a root system $\Phi \subset V$ such that $W=W(\Phi)$.

Proof. Since $\Phi \neq \emptyset$, the group $W(\Phi)$ contains at least one reflection. In particular, $W(\Phi) \neq\left\{\mathrm{id}_{V}\right\}$. By construction, W is generated by reflections. In order to show that W is finite, let U be the subspace of V spanned by Φ. Since $U^{\perp} \subset(\mathbf{R} \alpha)^{\perp}$ for all $\alpha \in \Phi$, we have $s_{\alpha}(\lambda)=\lambda$ for all $\alpha \in \Phi$ and $\lambda \in U^{\perp}$. This implies that

$$
\begin{equation*}
\left.w\right|_{U^{\perp}}=\mathrm{id}_{U^{\perp}} \quad(w \in W) . \tag{25}
\end{equation*}
$$

In particular, W leaves U^{\perp} invariant. Since $W \subset O(V), W$ also leaves U invariant. We can form the restriction homomorphism $W \rightarrow O(U)$ which is injective. Indeed, if an element $w \in W$ is in the kernel of the restriction homomorphism, then $\left.w\right|_{U}=\operatorname{id}_{U}$. Together with (25), we see $w=\mathrm{id}_{V}$. By (R2), W permutes the finite set Φ, hence there is a homomorphism f from W to the symmetric group on Φ. An element $w \in \operatorname{Ker} f$ fixes every element of Φ, in particular, a basis of U. This implies that w is in the kernel of the restriction homomorphism, and hence $w=\mathrm{id}_{V}$. We have shown that f is an injection from W to the symmetric group of Φ which is finite. Therefore W is finite. This completes the proof of the first part.

Moreover, $W(\Phi)$ is not essential if and only if there exists a nonzero vector $\lambda \in V$ such that $t \lambda=\lambda$ for all $t \in W(\Phi)$. Since $W(\Phi)$ is generated by $\left\{s_{\alpha} \mid \alpha \in \Phi\right\}$,

$$
\begin{aligned}
t \lambda=\lambda(\forall t \in W(\Phi)) & \Longleftrightarrow s_{\alpha} \lambda=\lambda(\forall \alpha \in \Phi) \\
& \Longleftrightarrow(\lambda, \alpha)=0(\forall \alpha \in \Phi) \\
& \Longleftrightarrow \lambda \in U^{\perp} .
\end{aligned}
$$

Thus, $W(\Phi)$ is not essential if and only if $U^{\perp} \neq 0$, or equivalently, Φ does not span V.
Conversely, let $W \subset O(V)$ be a finite reflection group, and let S be the set of all reflections of W. By Definition 8(iii), W is generated by S. Define

$$
\begin{equation*}
\Phi=\left\{\alpha \in V \mid s_{\alpha} \in S,\|\alpha\|=1\right\} . \tag{26}
\end{equation*}
$$

Observe

$$
\begin{equation*}
S=\left\{s_{\alpha} \mid \alpha \in \Phi\right\} . \tag{27}
\end{equation*}
$$

We claim that Φ is a root system. First, since $W \neq\left\{\operatorname{id}_{V}\right\}$, we have $\Phi \neq \emptyset$. Let $\alpha \in \Phi$. Since $s_{\alpha}=s_{-\alpha}$ and $\|\alpha\|=\|-\alpha\|$, we see that Φ satisfies (R1). For $\beta \in \Phi$, we have $\left\|s_{\alpha}(\beta)\right\|=\|\beta\|=1$, and $s_{s_{\alpha}(\beta)} \in W$ by Proposition 13, since $s_{\alpha}, s_{\beta} \in W$. This implies $s_{\alpha}(\beta) \in \Phi$, and hence $s_{\alpha}(\Phi)=\Phi$. Therefore, Φ is a root system. It remains to show that $W=W(\Phi)$. But this follows immediately from (27) since $W=\langle S\rangle$.
Example 16. We have seen that the group G_{n} generated by reflections

$$
\begin{equation*}
\left\{s_{\varepsilon_{i}-\varepsilon_{j}} \mid 1 \leq i<j \leq n\right\} \tag{28}
\end{equation*}
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ is the standard basis of \mathbf{R}^{n}, is a finite reflection group which is abstractly isomorphic to the symmetric group of degree n. The set

$$
\begin{equation*}
\Phi=\left\{ \pm\left(\varepsilon_{i}-\varepsilon_{j}\right) \mid 1 \leq i<j \leq n\right\} \tag{29}
\end{equation*}
$$

is a root system. Indeed, Φ clearly satisfies (R1). It is also clear that $g_{\sigma} \Phi=\Phi$ for all $\sigma \in \mathcal{S}_{n}$, so in particular, (R2) holds.

Exercise 17. Show that (28) is precisely the set of reflections in G_{n}. In other words, show that g_{σ} is a reflection if and only if σ is a transposition.

Definition 18. A total ordering of V is a transitive relation on V (denoted $<$) satisfying the following axioms.
(i) For each pair $\lambda, \mu \in V$, exactly one of $\lambda<\mu, \lambda=\mu, \mu<\lambda$ holds.
(ii) For all $\lambda, \mu, \nu \in V, \mu<\nu$ implies $\lambda+\mu<\lambda+\nu$.
(iii) Let $\mu<\nu$ and $c \in \mathbf{R}$. If $c>0$ then $c \mu<c \nu$, and if $c<0$ then $c \nu<c \mu$.

For convenience, we write $\lambda>\mu$ if $\mu<\lambda$. By (ii), $\lambda>0$ implies $0>-\lambda$. Thus

$$
\begin{equation*}
V=V_{+} \cup\{0\} \cup V_{-} \quad \text { (disjoint) }, \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
& V_{+}=\{\lambda \in V \mid \lambda>0\} \tag{31}\\
& V_{-}=\{\lambda \in V \mid \lambda<0\} . \tag{32}
\end{align*}
$$

We say that $\lambda \in V_{+}$is positive, and $\lambda \in V_{-}$is negative.
Example 19. Let $\lambda_{1}, \ldots, \lambda_{n}$ be a basis of V. Define the lexicographic ordering of V with respect to $\lambda_{1}, \ldots, \lambda_{n}$ by

$$
\sum_{i=1}^{n} a_{i} \lambda_{i}<\sum_{i=1}^{n} b_{i} \lambda_{i} \Longleftrightarrow \exists k \in\{1,2, \ldots, n\}, a_{1}=b_{1}, \ldots, a_{k-1}=b_{k-1}, a_{k}<b_{k}
$$

Clearly, this is a total ordering of V. Note that $\lambda_{i}>0$ for all $i \in\{1, \ldots, n\}$. For $n=2$, we have

$$
V_{+}=\left\{c_{1} \lambda_{1}+c_{2} \lambda_{2} \mid c_{1}>0, c_{2} \in \mathbf{R}\right\} \cup\left\{c_{2} \lambda_{2} \mid c_{2}>0\right\} .
$$

Lemma 20. Let $<$ be a total ordering of V, and let $\lambda, \mu \in V$.
(i) If $\lambda, \mu>0$, then $\lambda+\mu>0$.
(ii) If $\lambda>0, c \in \mathbf{R}$ and $c>0$, then $c \lambda>0$.
(iii) If $\lambda>0, c \in \mathbf{R}$ and $c<0$, then $c \lambda<0$. In particular, $-\lambda<0$.

Proof. (i) By Definition 18(ii), we have $\lambda+\mu>\lambda>0$.
(ii) By Definition 18(iii), we have $c \lambda>c \cdot 0=0$.
(iii) By Definition 18(iii), we have $c \lambda<c \cdot 0=0$. Taking $c=-1$ gives the second statement.

Definition 21. Let Φ be a root system in V. A subset Π of Φ is called a positive system if there exists a total ordering $<$ of V such that

$$
\begin{equation*}
\Pi=\{\alpha \in \Phi \mid \alpha>0\} \tag{33}
\end{equation*}
$$

Since a total ordering of V always exists by Example 19, and every total ordering of V defines a positive system of a root system Φ in V, according to Definition 21, there are many positive systems in Φ.

Example 22. Continuing Example 16, let $<$ be the total ordering defined by the basis $\varepsilon_{1}, \ldots, \varepsilon_{n}$. Then $\varepsilon_{i}>\varepsilon_{j}$ if $i<j$. Thus, according to (33),

$$
\Pi=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i<j \leq n\right\} .
$$

Lemma 23. If Π is a positive system in a root system Φ, then $\Phi=\Pi \cup(-\Pi)$ (disjoint), where

$$
\begin{equation*}
-\Pi=\{-\alpha \mid \alpha \in \Pi\} \tag{34}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
-\Pi=\{\alpha \in \Phi \mid \alpha<0\} . \tag{35}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\Pi \cap(-\Pi) & =\emptyset
\end{aligned} \begin{array}{ll}
\text { (by Lemma 20(iii)), } \\
\Pi \subset \Phi & \\
-\Pi \subset \Phi & \\
\text { (by Definition 21), } \\
\text { (by Definition 14(R1)). }
\end{array}
$$

Thus, it remains to show $\Phi \subset \Pi \cup(-\Pi)$. Suppose $\alpha \in \Phi \backslash \Pi$. Then

$$
\begin{aligned}
\alpha \notin \Pi & \Longrightarrow \alpha \ngtr 0 & & \text { (by (33)) } \\
& \Longrightarrow \alpha<0 & & \text { (since } 0 \notin \Phi) \\
& \Longrightarrow 0<-\alpha & & \text { (by Definition 18(ii) } \\
& \Longrightarrow-\alpha \in \Pi & & \text { (by (33)) } \\
& \Longrightarrow \alpha \in-\Pi & & \text { (by (34)). }
\end{aligned}
$$

This proves $\Phi \backslash \Pi \subset(-\Pi)$, proving $\Phi \subset \Pi \cup(-\Pi)$.
Since $\Phi=\Pi \cup(-\Pi)$ (disjoint) and $0 \notin \Phi$, (33) implies (35).
Definition 24. Let Π be a positive system in a root system Φ. We call $-\Pi$ defined by (34) the negative system in Φ with respect to Π.

Definition 25. Let Δ be a subset of a root system Φ. We call Δ a simple system if Δ is a basis of the subspace spanned by Φ, and if moreover each $\alpha \in \Phi$ is a linear combination of Δ with coefficients all of the same sign (all nonnegative or all nonpositive). In other words,

$$
\begin{equation*}
\Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta, \tag{36}
\end{equation*}
$$

where

$$
\mathbf{R}_{\geq 0} \Delta=\left\{\sum_{\alpha \in \Delta} c_{\alpha} \alpha \mid c_{\alpha} \geq 0(\alpha \in \Delta)\right\}
$$

If Δ is a simple system, we call its elements simple roots.

Example 26. Continuing Example 22,

$$
\begin{equation*}
\Delta=\left\{\varepsilon_{i}-\varepsilon_{i+1} \mid 1 \leq i<n\right\} \tag{37}
\end{equation*}
$$

is a simple system. Indeed, for $\varepsilon_{i}-\varepsilon_{j} \in \Phi$, we have

$$
\varepsilon_{i}-\varepsilon_{j}= \begin{cases}\sum_{k=i}^{j-1}\left(\varepsilon_{k}-\varepsilon_{k+1}\right) \in \mathbf{R}_{\geq 0} \Delta & \text { if } i<j \\ \sum_{k=j}^{i-1}\left(-\left(\varepsilon_{j}-\varepsilon_{j+1}\right)\right) \in \mathbf{R}_{\leq 0} \Delta & \text { otherwise }\end{cases}
$$

