Definition 1. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. The set O(V) of orthogonal linear transformations of V forms a group under composition. We call O(V) the *orthogonal group* of V.

Definition 2. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. A subgroup W of the group O(V) is said to be a *finite reflection group* if

- (i) $W \neq {\mathrm{id}_V}$,
- (ii) W is finite,
- (iii) W is generated by a set of reflections.

Let $n \ge 2$ be an integer, and let S_n denote the symmetric group of degree n. In other words, S_n consists of all permutations of the set $\{1, 2, ..., n\}$. Since permutations are bijections from $\{1, 2, ..., n\}$ to itself, S_n forms a group under composition. Let $\varepsilon_1, ..., \varepsilon_n$ denote the standard basis of \mathbb{R}^n . For each $\sigma \in S_n$, we define $g_{\sigma} \in O(\mathbb{R}^n)$ by setting

$$g_{\sigma}(\sum_{i=1}^{n} c_i \varepsilon_i) = \sum_{i=1}^{n} c_i \varepsilon_{\sigma(i)},$$

and set

$$G_n = \{g_\sigma \mid \sigma \in \mathcal{S}_n\}.$$

It is easy to verify that G_n is a subgroup of O(V) and, the mapping $S_n \to G_n$ defined by $\sigma \mapsto g_{\sigma}$ is an isomorphism. We claim that g_{σ} is a reflection if σ is a transposition; more precisely,

$$g_{\sigma} = s_{\varepsilon_i - \varepsilon_j} \quad \text{if } \sigma = (i \ j). \tag{1}$$

It is well known that S_n is generated by its set of transposition. Via the isomorphism $\sigma \mapsto g_{\sigma}$, we see that G_n is generated by the set of reflections

$$\{s_{\varepsilon_i - \varepsilon_j} \mid 1 \le i < j \le n\}.$$

Therefore, G_n is a finite reflection group.

Definition 3. Let V be a finite-dimensional vector space over \mathbb{R} with positive definite inner product. Let $W \subset O(V)$ be a finite reflection group. We say that W is *not essential* if there exists a nonzero vector $\lambda \in V$ such that $t\lambda = \lambda$ for all $t \in W$. Otherwise, we say that W is *essential*.

Given a finite reflection group $W \subset O(V)$, let

$$U = \{ \lambda \in V \mid \forall t \in W, \ t\lambda = \lambda \}.$$

It is easy to see that U is a subspace of V. Let U' be the orthogonal complement of U in V. Since tU = U for all $t \in W$, we have tU' = U' for all $t \in W$. This allows to construct the restriction homomorphism $W \to O(U')$ defined by $t \mapsto t|_{U'}$. **Exercise 4.** Show that the above restriction homomorphism is injective, and the image $W|_{U'}$ is an essential finite reflection group in O(U').

For the group G_3 , we have

$$U = \mathbf{R}(\varepsilon_1 + \varepsilon_2 + \varepsilon_3),$$

$$U' = \mathbf{R}(\varepsilon_1 - \varepsilon_2) + \mathbf{R}(\varepsilon_2 - \varepsilon_3)$$

$$= \mathbf{R}\eta_1 + \mathbf{R}\eta_2,$$

where

$$\eta_1 = \frac{1}{\sqrt{2}}(\varepsilon_1 - \varepsilon_2),$$

$$\eta_2 = \frac{1}{\sqrt{6}}(\varepsilon_1 + \varepsilon_2 - 2\varepsilon_3)$$

is an orthonormal basis of U'.

Exercise 5. Compute the matrix representations of $g_{(1\ 2)}$ and $g_{(2\ 3)}$ with respect to the basis $\{\eta_1, \eta_2\}$. Show that they are reflections whose lines of symmetry form an angle $\pi/3$.