Definition 1. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. The set $O(V)$ of orthogonal linear transformations of V forms a group under composition. We call $O(V)$ the orthogonal group of V.

Definition 2. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. A subgroup W of the group $O(V)$ is said to be a finite reflection group if
(i) $W \neq\left\{\mathrm{id}_{V}\right\}$,
(ii) W is finite,
(iii) W is generated by a set of reflections.

Let $n \geq 2$ be an integer, and let \mathcal{S}_{n} denote the symmetric group of degree n. In other words, \mathcal{S}_{n} consists of all permutations of the set $\{1,2, \ldots, n\}$. Since permutations are bijections from $\{1,2, \ldots, n\}$ to itself, \mathcal{S}_{n} forms a group under composition. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ denote the standard basis of \mathbf{R}^{n}. For each $\sigma \in \mathcal{S}_{n}$, we define $g_{\sigma} \in O\left(\mathbf{R}^{n}\right)$ by setting

$$
g_{\sigma}\left(\sum_{i=1}^{n} c_{i} \varepsilon_{i}\right)=\sum_{i=1}^{n} c_{i} \varepsilon_{\sigma(i)},
$$

and set

$$
G_{n}=\left\{g_{\sigma} \mid \sigma \in \mathcal{S}_{n}\right\} .
$$

It is easy to verify that G_{n} is a subgroup of $O(V)$ and, the mapping $\mathcal{S}_{n} \rightarrow G_{n}$ defined by $\sigma \mapsto g_{\sigma}$ is an isomorphism. We claim that g_{σ} is a reflection if σ is a transposition; more precisely,

$$
\begin{equation*}
g_{\sigma}=s_{\varepsilon_{i}-\varepsilon_{j}} \quad \text { if } \sigma=(i j) \tag{1}
\end{equation*}
$$

It is well known that \mathcal{S}_{n} is generated by its set of transposition. Via the isomorphism $\sigma \mapsto g_{\sigma}$, we see that G_{n} is generated by the set of reflections

$$
\left\{s_{\varepsilon_{i}-\varepsilon_{j}} \mid 1 \leq i<j \leq n\right\} .
$$

Therefore, G_{n} is a finite reflection group.
Definition 3. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. Let $W \subset O(V)$ be a finite reflection group. We say that W is not essential if there exists a nonzero vector $\lambda \in V$ such that $t \lambda=\lambda$ for all $t \in W$. Otherwise, we say that W is essential.

Given a finite reflection group $W \subset O(V)$, let

$$
U=\{\lambda \in V \mid \forall t \in W, t \lambda=\lambda\}
$$

It is easy to see that U is a subspace of V. Let U^{\prime} be the orthogonal complement of U in V. Since $t U=U$ for all $t \in W$, we have $t U^{\prime}=U^{\prime}$ for all $t \in W$. This allows to construct the restriction homomorphism $W \rightarrow O\left(U^{\prime}\right)$ defined by $\left.t \mapsto t\right|_{U^{\prime}}$.

Exercise 4. Show that the above restriction homomorphism is injective, and the image $\left.W\right|_{U^{\prime}}$ is an essential finite reflection group in $O\left(U^{\prime}\right)$.

For the group G_{3}, we have

$$
\begin{aligned}
U & =\mathbf{R}\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right), \\
U^{\prime} & =\mathbf{R}\left(\varepsilon_{1}-\varepsilon_{2}\right)+\mathbf{R}\left(\varepsilon_{2}-\varepsilon_{3}\right) \\
& =\mathbf{R} \eta_{1}+\mathbf{R} \eta_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \eta_{1}=\frac{1}{\sqrt{2}}\left(\varepsilon_{1}-\varepsilon_{2}\right), \\
& \eta_{2}=\frac{1}{\sqrt{6}}\left(\varepsilon_{1}+\varepsilon_{2}-2 \varepsilon_{3}\right)
\end{aligned}
$$

is an orthonormal basis of U^{\prime}.
Exercise 5. Compute the matrix representations of $g_{(12)}$ and $g_{(23)}$ with respect to the basis $\left\{\eta_{1}, \eta_{2}\right\}$. Show that they are reflections whose lines of symmetry form an angle $\pi / 3$.

