May 16, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R} , with positivedefinite inner product.

Recall that a total ordering < of V partitions V into three parts

$$V = V_+ \cup \{0\} \cup (-V_+),$$

such that

$$V_+ + V_+ \subset V_+, \tag{38}$$

$$\mathbf{R}_{\geq 0}V_{+} \subset V_{+} \cup \{0\}. \tag{39}$$

Lemma 27. Let Δ be a finite set of nonzero vectors in V_+ . If $(\alpha, \beta) \leq 0$ for any distinct $\alpha, \beta \in \Delta$, then Δ consists of linearly independent vectors.

Proof. Let

$$\sum_{\alpha \in \Delta} a_{\alpha} \alpha = 0, \tag{40}$$

and define

$$\sigma = \sum_{\substack{\alpha \in \Delta \\ a_\alpha > 0}} a_\alpha \alpha.$$

Then

$$0 \leq (\sigma, \sigma)$$

$$= \left(\sum_{\substack{\alpha \in \Delta \\ a_{\alpha} > 0}} a_{\alpha} \alpha, \sum_{\alpha \in \Delta} a_{\alpha} \alpha - \sum_{\substack{\beta \in \Delta \\ a_{\beta} < 0}} a_{\beta} \beta\right)$$

$$= \left(\sum_{\substack{\alpha \in \Delta \\ a_{\alpha} > 0}} a_{\alpha} \alpha, -\sum_{\substack{\beta \in \Delta \\ a_{\beta} < 0}} a_{\beta} \beta\right) \qquad (by (40))$$

$$= -\sum_{\substack{\alpha \in \Delta \\ a_{\alpha} > 0}} \sum_{\substack{\beta \in \Delta \\ a_{\beta} < 0}} a_{\alpha} a_{\beta} (\alpha, \beta)$$

$$\leq 0.$$

This forces $\sigma = 0$, so there is no $\alpha \in \Delta$ with $a_{\alpha} > 0$. Similarly, we can show that there is no $\alpha \in \Delta$ with $a_{\alpha} < 0$. Therefore, $a_{\alpha} = 0$ for all $\alpha \in \Delta$.

Lemma 28. Let $\Delta \subset V_+$ be a subset, and let $\alpha, \beta \in \Delta$ be linearly independent. If $\alpha \in \mathbf{R}_{>0}\beta + \mathbf{R}_{\geq 0}\Delta$, then $\alpha \in \mathbf{R}_{\geq 0}(\Delta \setminus \{\alpha\})$.

Proof. Since

$$\alpha \in \mathbf{R}_{>0}\beta + \mathbf{R}_{\ge 0}\Delta$$

$$= \mathbf{R}_{\geq 0}\beta + \mathbf{R}_{\geq 0}\alpha + \mathbf{R}_{\geq 0}\beta + \mathbf{R}_{\geq 0}(\Delta \setminus \{\alpha, \beta\})$$

$$= \mathbf{R}_{\geq 0}\alpha + \mathbf{R}_{\geq 0}\beta + \mathbf{R}_{\geq 0}(\Delta \setminus \{\alpha, \beta\})$$

$$\subset \mathbf{R}_{\geq 0}\alpha + V_{+} \cap \mathbf{R}_{\geq 0}(\Delta \setminus \{\alpha\}),$$

there exists $a \in \mathbf{R}_{\geq 0}$ such that

$$\alpha \in a\alpha + V_{+} \cap \mathbf{R}_{\geq 0}(\Delta \setminus \{\alpha\}). \tag{41}$$

Thus

$$(1-a)\alpha \in V_+,\tag{42}$$

$$(1-a)\alpha \in \mathbf{R}_{\geq 0}(\Delta \setminus \{\alpha\}).$$
(43)

By (42), we have 1 - a > 0. The result then follows from (43).

For a root system Φ in V, we denote by $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$, the set of positive systems and that of simple systems, respectively, in Φ . More specifically,

$$\mathcal{P}(\Phi) = \{ \{ \alpha \in \Phi \mid \alpha > 0 \} \mid \text{``>'' is a total ordering of } V \}, \\ \mathcal{S}(\Phi) = \{ \Delta \subset \Phi \mid \Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta, \ \Delta \text{ is linearly independent} \}.$$

It is clear that $\mathcal{P}(\Phi)$ is non-empty, since V can be given a total ordering. We show that $\mathcal{S}(\Phi)$ is non-empty by establishing a bijection between $\mathcal{S}(\Phi)$ and $\mathcal{P}(\Phi)$, which is defined by

$$\begin{aligned} \pi : \mathcal{S}(\Phi) &\to \mathcal{P}(\Phi) \\ \Delta &\mapsto \Phi \cap \mathbf{R}_{>0} \Delta. \end{aligned}$$

$$(44)$$

Lemma 29. Let Φ be a root system in V. If Δ is a simple system contained in a positive system Π , then

- (i) $\Pi = \Phi \cap \mathbf{R}_{\geq 0} \Delta$,
- (ii) $\Delta = \{ \alpha \in \Pi \mid \alpha \notin \mathbf{R}_{>0}(\Pi \setminus \{\alpha\}) \}.$

Proof. (i) Since Δ is a simple system, we have

$$\Phi \subset \mathbf{R}_{>0} \Delta \cup \mathbf{R}_{<0} \Delta. \tag{45}$$

Since $\Delta \subset \Pi \subset V_+$ for some total ordering of V, we have

$$\mathbf{R}_{\geq 0}\Delta \subset V_+ \cup \{0\},\tag{46}$$

$$\mathbf{R}_{\leq 0}\Delta \subset V_{-} \cup \{0\}. \tag{47}$$

Thus

$$\Pi = \Phi \cap V_{+}$$

= $\Phi \cap (\mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta) \cap V_{+}$ (by (45))

$$= \Phi \cap \mathbf{R}_{\geq 0} \Delta \cap V_{+}$$
 (by (47))
$$= \Phi \cap (\mathbf{R}_{\geq 0} \Delta \setminus \{0\})$$
 (by (46))
$$= \Phi \cap \mathbf{R}_{\geq 0} \Delta.$$

(ii) If $\alpha \in \Pi \setminus \Delta$, then $\Delta \subset \Pi \setminus \{\alpha\}$, so $\mathbf{R}_{\geq 0}(\Pi \setminus \{\alpha\}) \supset \mathbf{R}_{\geq 0}\Delta \ni \alpha$. This proves

$$\Delta \supset \{ \alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \setminus \{\alpha\}) \}.$$

Conversely, suppose $\alpha \in \Pi$ and $\alpha \in \mathbf{R}_{\geq 0}(\Pi \setminus \{\alpha\})$. Then there exists $\beta \in \Pi \setminus \{\alpha\}$ such that

$$\begin{aligned} \alpha \in \mathbf{R}_{>0}\beta + \mathbf{R}_{\geq 0}(\Pi \setminus \{\alpha, \beta\}) \\ \subset \mathbf{R}_{>0}\beta + \mathbf{R}_{\geq 0}\Pi \\ = \mathbf{R}_{>0}\beta + \mathbf{R}_{>0}\Delta \end{aligned}$$
(by (i)).

Since $\beta \in \Pi \setminus {\alpha} \subset \mathbf{R}_{\geq 0} \Delta \setminus \mathbf{R}_{\geq 0} \alpha$, there exists $\delta \in \Delta \setminus {\alpha}$ such that

$$\beta \in \mathbf{R}_{>0}\delta + \mathbf{R}_{\geq 0}\Delta.$$

Thus $\alpha \in \mathbf{R}_{>0}\delta + \mathbf{R}_{\geq 0}\Delta$, and hence $\{\alpha\} \cup \Delta$ is linearly dependent. This implies $\alpha \notin \Delta$. \Box

Recall that for $0 \neq \alpha \in V$, $s_{\alpha} \in O(V)$ denotes the reflection

$$s_{\alpha}(\lambda) = \lambda - \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad (\lambda \in V).$$
(48)

Theorem 30. Let Φ be a root system in V. Then the mapping $\pi : S(\Phi) \to \mathcal{P}(\Phi)$ defined by (44) is a bijection whose inverse is given by

$$\pi^{-1}: \mathcal{P}(\Phi) \to \mathcal{S}(\Phi) \Pi \mapsto \{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \setminus \{\alpha\})\}.$$
(49)

Moreover,

- (i) for every simple system Δ in Φ , $\pi(\Delta)$ is the unique positive system containing Δ ,
- (ii) for every positive system Π in Φ , $\pi^{-1}(\Pi)$ is the unique simple system contained in Π .

Proof. If $\Delta \in \mathcal{S}(\Phi)$, then Δ is a basis of the subspace spanned by Φ , so there exists a basis $\tilde{\Delta}$ of V containing Δ . By Example 19, there exists a total ordering < of V such that $\alpha > 0$ for all $\alpha \in \tilde{\Delta}$. Then

$$\pi(\Delta) = \Phi \cap \mathbf{R}_{\geq 0} \Delta$$

= $\Phi \cap (\mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta) \cap V_{+}$
= $\Phi \cap V_{+}$

is a positive system containing Δ .

Next we show that π is injective. Suppose $\Delta, \Delta' \in \mathcal{S}(\Phi)$ and $\pi(\Delta) = \pi(\Delta')$. Then both Δ and Δ' are simple system contained in $\Pi = \pi(\Delta)$. By Lemma 29(ii), we have

$$\Delta = \{ \alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \setminus \{\alpha\}) \} = \Delta'.$$

Therefore, π is injective. Note that this shows

$$\pi^{-1}(\Pi) \subset \{\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \setminus \{\alpha\})\}\}.$$
(50)

Next we show that π is surjective. Suppose $\Pi \in \mathcal{P}(\Phi)$. Define \mathcal{D} by

$$\mathcal{D} = \{ \Delta \subset \Pi \mid \Pi \subset \mathbf{R}_{\geq 0} \Delta \}.$$
(51)

Since Φ is a finite set, so are Π and \mathcal{D} . Since $\Pi \in \mathcal{D}$, \mathcal{D} is non-empty. Thus, there exists a minimal member Δ of \mathcal{D} . This means

$$\Pi \subset \mathbf{R}_{>0}\Delta,\tag{52}$$

$$\forall \alpha \in \Delta, \ \Pi \not\subset \mathbf{R}_{\geq 0}(\Delta \setminus \{\alpha\}).$$
(53)

Since Π is a positive system, there exists a total ordering of V such that $\Pi = \Phi \cap V_+$. In particular, $\Delta \subset V_+$. We claim

$$(\alpha, \beta) \le 0$$
 for all pairs $\alpha \ne \beta$ in Δ . (54)

Indeed, suppose, to the contrary, $(\alpha, \beta) > 0$ for some distinct $\alpha, \beta \in \Delta$. Since $\pm s_{\alpha}(\beta) \in \Phi = \Pi \cup (-\Pi)$, in view of (48), we may assume without loss of generality $\alpha \in \mathbf{R}_{>0}\beta + \mathbf{R}_{\geq 0}\Delta$. Then by Lemma 28, we obtain $\alpha \in \mathbf{R}_{\geq 0}(\Delta \setminus \{\alpha\})$. Now

$$\begin{aligned} \mathbf{R}_{\geq 0}(\Delta \setminus \{\alpha\}) &= \mathbf{R}_{\geq 0}\alpha + \mathbf{R}_{\geq 0}(\Delta \setminus \{\alpha\}) \\ &= \mathbf{R}_{\geq 0}\Delta \\ &\supset \Pi, \end{aligned}$$

contradicting (53). This proves (54). Now, by Lemma 27, Δ consists of linearly independent vectors. We have shown that Δ is a simple system, and by construction, $\Delta \subset \Pi$. Lemma 29(i) then implies $\Pi = \pi(\Delta)$. Therefore, π is surjective. This also implies that equality holds in (50), which shows that the inverse π^{-1} is given by (49).

Finally, (i) follows from Lemma 29(i), while (ii) follows from Lemma 29(ii). \Box