May 16, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product.

Recall that a total ordering $<$ of V partitions V into three parts

$$
V=V_{+} \cup\{0\} \cup\left(-V_{+}\right),
$$

such that

$$
\begin{align*}
V_{+}+V_{+} & \subset V_{+} \tag{38}\\
\mathbf{R}_{\geq 0} V_{+} & \subset V_{+} \cup\{0\} . \tag{39}
\end{align*}
$$

Lemma 27. Let Δ be a finite set of nonzero vectors in V_{+}. If $(\alpha, \beta) \leq 0$ for any distinct $\alpha, \beta \in \Delta$, then Δ consists of linearly independent vectors.

Proof. Let

$$
\begin{equation*}
\sum_{\alpha \in \Delta} a_{\alpha} \alpha=0, \tag{40}
\end{equation*}
$$

and define

$$
\sigma=\sum_{\substack{\alpha \in \Delta \\ a_{\alpha}>0}} a_{\alpha} \alpha .
$$

Then

$$
\begin{aligned}
0 & \leq(\sigma, \sigma) \\
& =\left(\sum_{\substack{\alpha \in \Delta \\
a_{\alpha}>0}} a_{\alpha} \alpha, \sum_{\alpha \in \Delta} a_{\alpha} \alpha-\sum_{\substack{\beta \in \Delta \\
a_{\beta}<0}} a_{\beta} \beta\right) \\
& =\left(\sum_{\substack{\alpha \in \Delta \\
a_{\alpha}>0}} a_{\alpha} \alpha,-\sum_{\substack{\beta \in \Delta \\
a_{\beta}<0}} a_{\beta} \beta\right) \\
& =-\sum_{\substack{\alpha \in \Delta \\
a_{\alpha}>0}} \sum_{\substack{\beta \in \Delta \\
a_{\beta}<0}} a_{\alpha} a_{\beta}(\alpha, \beta) \\
& \leq 0 .
\end{aligned}
$$

This forces $\sigma=0$, so there is no $\alpha \in \Delta$ with $a_{\alpha}>0$. Similarly, we can show that there is no $\alpha \in \Delta$ with $a_{\alpha}<0$. Therefore, $a_{\alpha}=0$ for all $\alpha \in \Delta$.

Lemma 28. Let $\Delta \subset V_{+}$be a subset, and let $\alpha, \beta \in \Delta$ be linearly independent. If $\alpha \in \mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0} \Delta$, then $\alpha \in \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\})$.

Proof. Since

$$
\alpha \in \mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0} \Delta
$$

$$
\begin{aligned}
& =\mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0} \alpha+\mathbf{R}_{\geq 0} \beta+\mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha, \beta\}) \\
& =\mathbf{R}_{\geq 0} \alpha+\mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha, \beta\}) \\
& \subset \mathbf{R}_{\geq 0} \alpha+V_{+} \cap \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\}),
\end{aligned}
$$

there exists $a \in \mathbf{R}_{\geq 0}$ such that

$$
\begin{equation*}
\alpha \in a \alpha+V_{+} \cap \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\}) \tag{41}
\end{equation*}
$$

Thus

$$
\begin{align*}
& (1-a) \alpha \in V_{+} \tag{42}\\
& (1-a) \alpha \in \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\}) . \tag{43}
\end{align*}
$$

By (42), we have $1-a>0$. The result then follows from (43).
For a root system Φ in V, we denote by $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$, the set of positive systems and that of simple systems, respectively, in Φ. More specifically,

$$
\begin{aligned}
& \mathcal{P}(\Phi)=\{\{\alpha \in \Phi \mid \alpha>0\} \mid ">" \text { is a total ordering of } V\} \\
& \mathcal{S}(\Phi)=\left\{\Delta \subset \Phi \mid \Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta, \Delta \text { is linearly independent }\right\} .
\end{aligned}
$$

It is clear that $\mathcal{P}(\Phi)$ is non-empty, since V can be given a total ordering. We show that $\mathcal{S}(\Phi)$ is non-empty by establishing a bijection between $\mathcal{S}(\Phi)$ and $\mathcal{P}(\Phi)$, which is defined by

$$
\begin{align*}
\pi: \mathcal{S}(\Phi) & \rightarrow \mathcal{P}(\Phi) \\
\Delta & \mapsto \Phi \cap \mathbf{R}_{\geq 0} \Delta . \tag{44}
\end{align*}
$$

Lemma 29. Let Φ be a root system in V. If Δ is a simple system contained in a positive system Π, then
(i) $\Pi=\Phi \cap \mathbf{R}_{\geq 0} \Delta$,
(ii) $\Delta=\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\}$.

Proof. (i) Since Δ is a simple system, we have

$$
\begin{equation*}
\Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta . \tag{45}
\end{equation*}
$$

Since $\Delta \subset \Pi \subset V_{+}$for some total ordering of V, we have

$$
\begin{align*}
& \mathbf{R}_{\geq 0} \Delta \subset V_{+} \cup\{0\}, \tag{46}\\
& \mathbf{R}_{\leq 0} \Delta \subset V_{-} \cup\{0\} . \tag{47}
\end{align*}
$$

Thus

$$
\begin{align*}
\Pi & =\Phi \cap V_{+} \\
& =\Phi \cap\left(\mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta\right) \cap V_{+} \tag{45}
\end{align*}
$$

$$
\begin{aligned}
& =\Phi \cap \mathbf{R}_{\geq 0} \Delta \cap V_{+} \\
& =\Phi \cap\left(\mathbf{R}_{\geq 0} \Delta \backslash\{0\}\right) \\
& =\Phi \cap \mathbf{R}_{\geq 0} \Delta
\end{aligned}
$$

(ii) If $\alpha \in \Pi \backslash \Delta$, then $\Delta \subset \Pi \backslash\{\alpha\}$, so $\mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\}) \supset \mathbf{R}_{\geq 0} \Delta \ni \alpha$. This proves

$$
\Delta \supset\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\}
$$

Conversely, suppose $\alpha \in \Pi$ and $\alpha \in \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})$. Then there exists $\beta \in \Pi \backslash\{\alpha\}$ such that

$$
\begin{aligned}
\alpha & \in \mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha, \beta\}) \\
& \subset \mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0} \Pi \\
& =\mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0} \Delta
\end{aligned}
$$

Since $\beta \in \Pi \backslash\{\alpha\} \subset \mathbf{R}_{\geq 0} \Delta \backslash \mathbf{R}_{\geq 0} \alpha$, there exists $\delta \in \Delta \backslash\{\alpha\}$ such that

$$
\beta \in \mathbf{R}_{>0} \delta+\mathbf{R}_{\geq 0} \Delta
$$

Thus $\alpha \in \mathbf{R}_{>0} \delta+\mathbf{R}_{\geq 0} \Delta$, and hence $\{\alpha\} \cup \Delta$ is linearly dependent. This implies $\alpha \notin \Delta$.
Recall that for $0 \neq \alpha \in V, s_{\alpha} \in O(V)$ denotes the reflection

$$
\begin{equation*}
s_{\alpha}(\lambda)=\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad(\lambda \in V) . \tag{48}
\end{equation*}
$$

Theorem 30. Let Φ be a root system in V. Then the mapping $\pi: \mathcal{S}(\Phi) \rightarrow \mathcal{P}(\Phi)$ defined by (44) is a bijection whose inverse is given by

$$
\begin{align*}
\pi^{-1}: \mathcal{P}(\Phi) & \rightarrow \mathcal{S}(\Phi) \\
\Pi & \mapsto\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\} . \tag{49}
\end{align*}
$$

Moreover,

(i) for every simple system Δ in $\Phi, \pi(\Delta)$ is the unique positive system containing Δ,
(ii) for every positive system Π in $\Phi, \pi^{-1}(\Pi)$ is the unique simple system contained in Π.

Proof. If $\Delta \in \mathcal{S}(\Phi)$, then Δ is a basis of the subspace spanned by Φ, so there exists a basis $\tilde{\Delta}$ of V containing Δ. By Example 19, there exists a total ordering $<$ of V such that $\alpha>0$ for all $\alpha \in \tilde{\Delta}$. Then

$$
\begin{aligned}
\pi(\Delta) & =\Phi \cap \mathbf{R}_{\geq 0} \Delta \\
& =\Phi \cap\left(\mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta\right) \cap V_{+} \\
& =\Phi \cap V_{+}
\end{aligned}
$$

is a positive system containing Δ.

Next we show that π is injective. Suppose $\Delta, \Delta^{\prime} \in \mathcal{S}(\Phi)$ and $\pi(\Delta)=\pi\left(\Delta^{\prime}\right)$. Then both Δ and Δ^{\prime} are simple system contained in $\Pi=\pi(\Delta)$. By Lemma 29(ii), we have

$$
\Delta=\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\}=\Delta^{\prime}
$$

Therefore, π is injective. Note that this shows

$$
\begin{equation*}
\pi^{-1}(\Pi) \subset\left\{\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\}\right\} \tag{50}
\end{equation*}
$$

Next we show that π is surjective. Suppose $\Pi \in \mathcal{P}(\Phi)$. Define \mathcal{D} by

$$
\begin{equation*}
\mathcal{D}=\left\{\Delta \subset \Pi \mid \Pi \subset \mathbf{R}_{\geq 0} \Delta\right\} \tag{51}
\end{equation*}
$$

Since Φ is a finite set, so are Π and \mathcal{D}. Since $\Pi \in \mathcal{D}, \mathcal{D}$ is non-empty. Thus, there exists a minimal member Δ of \mathcal{D}. This means

$$
\begin{align*}
& \Pi \subset \mathbf{R}_{\geq 0} \Delta \tag{52}\\
& \forall \alpha \in \Delta, \Pi \not \subset \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\}) . \tag{53}
\end{align*}
$$

Since Π is a positive system, there exists a total ordering of V such that $\Pi=\Phi \cap V_{+}$. In particular, $\Delta \subset V_{+}$. We claim

$$
\begin{equation*}
(\alpha, \beta) \leq 0 \text { for all pairs } \alpha \neq \beta \text { in } \Delta . \tag{54}
\end{equation*}
$$

Indeed, suppose, to the contrary, $(\alpha, \beta)>0$ for some distinct $\alpha, \beta \in \Delta$. Since $\pm s_{\alpha}(\beta) \in$ $\Phi=\Pi \cup(-\Pi)$, in view of (48), we may assume without loss of generality $\alpha \in \mathbf{R}_{>0} \beta+$ $\mathbf{R}_{\geq 0} \Delta$. Then by Lemma 28 , we obtain $\alpha \in \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\})$. Now

$$
\begin{aligned}
\mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\}) & =\mathbf{R}_{\geq 0} \alpha+\mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\}) \\
& =\mathbf{R}_{\geq 0} \Delta \\
& \supset \Pi
\end{aligned}
$$

contradicting (53). This proves (54). Now, by Lemma 27, Δ consists of linearly independent vectors. We have shown that Δ is a simple system, and by construction, $\Delta \subset \Pi$. Lemma 29(i) then implies $\Pi=\pi(\Delta)$. Therefore, π is surjective. This also implies that equality holds in (50), which shows that the inverse π^{-1} is given by (49).

Finally, (i) follows from Lemma 29(i), while (ii) follows from Lemma 29(ii).

