May 16, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product.

Recall that for $0 \neq \alpha \in V, s_{\alpha} \in O(V)$ denotes the reflection

$$
s_{\alpha}(\lambda)=\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad(\lambda \in V) .
$$

Definition 1. Let Φ be a nonempty finite set of nonzero vectors in V. We say that Φ is a root system if
(R1) $\Phi \cap \mathbf{R} \alpha=\{\alpha,-\alpha\}$ for all $\alpha \in \Phi$,
(R2) $s_{\alpha} \Phi=\Phi$ for all $\alpha \in \Phi$.
Definition 2. A total ordering of V is a transitive relation on V (denoted $<$) satisfying the following axioms.
(i) For each pair $\lambda, \mu \in V$, exactly one of $\lambda<\mu, \lambda=\mu, \mu<\lambda$ holds.
(ii) For all $\lambda, \mu, \nu \in V, \mu<\nu$ implies $\lambda+\mu<\lambda+\nu$.
(iii) Let $\mu<\nu$ and $c \in \mathbf{R}$. If $c>0$ then $c \mu<c \nu$, and if $c<0$ then $c \nu<c \mu$.

For convenience, we write $\lambda>\mu$ if $\mu<\lambda$. By (ii), $\lambda>0$ implies $0>-\lambda$. Thus

$$
V=V_{+} \cup\{0\} \cup V_{-} \quad \text { (disjoint) },
$$

where

$$
\begin{aligned}
& V_{+}=\{\lambda \in V \mid \lambda>0\}, \\
& V_{-}=\{\lambda \in V \mid \lambda<0\} .
\end{aligned}
$$

We say that $\lambda \in V_{+}$is positive, and $\lambda \in V_{-}$is negative.
Example 3. Let $\lambda_{1}, \ldots, \lambda_{n}$ be a basis of V. Define the lexicographic ordering of V with respect to $\lambda_{1}, \ldots, \lambda_{n}$ by

$$
\sum_{i=1}^{n} a_{i} \lambda_{i}<\sum_{i=1}^{n} b_{i} \lambda_{i} \Longleftrightarrow \exists k \in\{1,2, \ldots, n\}, a_{1}=b_{1}, \ldots, a_{k-1}=b_{k-1}, a_{k}<b_{k}
$$

Clearly, this is a total ordering of V. Note that $\lambda_{i}>0$ for all $i \in\{1, \ldots, n\}$.
Lemma 4. Let $<$ be a total ordering of V, and let $\lambda, \mu \in V$.
(i) If $\lambda, \mu>0$, then $\lambda+\mu>0$.
(ii) If $\lambda>0, c \in \mathbf{R}$ and $c>0$, then $c \lambda>0$.
(iii) If $\lambda>0, c \in \mathbf{R}$ and $c<0$, then $c \lambda<0$. In particular, $-\lambda<0$.

Definition 5. Let Φ be a root system in V. A subset Π of Φ is called a positive system if there exists a total ordering $<$ of V such that

$$
\Pi=\{\alpha \in \Phi \mid \alpha>0\} .
$$

Definition 6. Let Δ be a subset of a root system Φ. We call Δ a simple system if Δ is a basis of the subspace spanned by Φ, and if moreover each $\alpha \in \Phi$ is a linear combination of Δ with coefficients all of the same sign (all nonnegative or all nonpositive). In other words,

$$
\Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta,
$$

where

$$
\mathbf{R}_{\geq 0} \Delta=\left\{\sum_{\alpha \in \Delta} c_{\alpha} \alpha \mid c_{\alpha} \geq 0(\alpha \in \Delta)\right\} .
$$

If Δ is a simple system, we call its elements simple roots.
Example 7. Let $n \geq 2$ be an integer, and let \mathcal{S}_{n} denote the symmetric group of degree n. In other words, \mathcal{S}_{n} consists of all permutations of the set $\{1,2, \ldots, n\}$. Since permutations are bijections from $\{1,2, \ldots, n\}$ to itself, \mathcal{S}_{n} forms a group under composition. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ denote the standard basis of \mathbf{R}^{n}. For each $\sigma \in \mathcal{S}_{n}$, we define $g_{\sigma} \in O\left(\mathbf{R}^{n}\right)$ by setting

$$
g_{\sigma}\left(\sum_{i=1}^{n} c_{i} \varepsilon_{i}\right)=\sum_{i=1}^{n} c_{i} \varepsilon_{\sigma(i)},
$$

and set

$$
G_{n}=\left\{g_{\sigma} \mid \sigma \in \mathcal{S}_{n}\right\} .
$$

It is easy to verify that G_{n} is a subgroup of $O(V)$ and, the mapping $\mathcal{S}_{n} \rightarrow G_{n}$ defined by $\sigma \mapsto g_{\sigma}$ is an isomorphism.

It is well known that \mathcal{S}_{n} is generated by its set of transposition. Via the isomorphism $\sigma \mapsto g_{\sigma}$, we see that G_{n} is generated by the set of reflections

$$
\begin{equation*}
\left\{s_{\varepsilon_{i}-\varepsilon_{j}} \mid 1 \leq i<j \leq n\right\} . \tag{1}
\end{equation*}
$$

Exercise 8. Show that (1) is precisely the set of reflections in G_{n}. In other words, show that g_{σ} is a reflection if and only if σ is a transposition.

