May 16, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R} , with positivedefinite inner product.

Recall that for $0 \neq \alpha \in V$, $s_{\alpha} \in O(V)$ denotes the reflection

$$s_{\alpha}(\lambda) = \lambda - \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad (\lambda \in V).$$

Definition 1. Let Φ be a nonempty finite set of nonzero vectors in V. We say that Φ is a *root system* if

- (R1) $\Phi \cap \mathbf{R}\alpha = \{\alpha, -\alpha\}$ for all $\alpha \in \Phi$,
- (R2) $s_{\alpha}\Phi = \Phi$ for all $\alpha \in \Phi$.

Definition 2. A *total ordering* of V is a transitive relation on V (denoted <) satisfying the following axioms.

- (i) For each pair $\lambda, \mu \in V$, exactly one of $\lambda < \mu, \lambda = \mu, \mu < \lambda$ holds.
- (ii) For all $\lambda, \mu, \nu \in V$, $\mu < \nu$ implies $\lambda + \mu < \lambda + \nu$.
- (iii) Let $\mu < \nu$ and $c \in \mathbf{R}$. If c > 0 then $c\mu < c\nu$, and if c < 0 then $c\nu < c\mu$.

For convenience, we write $\lambda > \mu$ if $\mu < \lambda$. By (ii), $\lambda > 0$ implies $0 > -\lambda$. Thus

$$V = V_+ \cup \{0\} \cup V_- \quad (\text{disjoint}),$$

where

$$V_{+} = \{\lambda \in V \mid \lambda > 0\},\$$
$$V_{-} = \{\lambda \in V \mid \lambda < 0\}.$$

We say that $\lambda \in V_+$ is *positive*, and $\lambda \in V_-$ is *negative*.

Example 3. Let $\lambda_1, \ldots, \lambda_n$ be a basis of V. Define the lexicographic ordering of V with respect to $\lambda_1, \ldots, \lambda_n$ by

$$\sum_{i=1}^{n} a_i \lambda_i < \sum_{i=1}^{n} b_i \lambda_i \iff \exists k \in \{1, 2, \dots, n\}, \ a_1 = b_1, \dots, a_{k-1} = b_{k-1}, a_k < b_k.$$

Clearly, this is a total ordering of V. Note that $\lambda_i > 0$ for all $i \in \{1, ..., n\}$.

Lemma 4. Let < be a total ordering of V, and let $\lambda, \mu \in V$.

- (i) If $\lambda, \mu > 0$, then $\lambda + \mu > 0$.
- (ii) If $\lambda > 0$, $c \in \mathbf{R}$ and c > 0, then $c\lambda > 0$.

(iii) If $\lambda > 0$, $c \in \mathbf{R}$ and c < 0, then $c\lambda < 0$. In particular, $-\lambda < 0$.

Definition 5. Let Φ be a root system in V. A subset Π of Φ is called a *positive system* if there exists a total ordering < of V such that

$$\Pi = \{ \alpha \in \Phi \mid \alpha > 0 \}.$$

Definition 6. Let Δ be a subset of a root system Φ . We call Δ a *simple system* if Δ is a basis of the subspace spanned by Φ , and if moreover each $\alpha \in \Phi$ is a linear combination of Δ with coefficients all of the same sign (all nonnegative or all nonpositive). In other words,

$$\Phi \subset \mathbf{R}_{>0} \Delta \cup \mathbf{R}_{<0} \Delta,$$

where

$$\mathbf{R}_{\geq 0}\Delta = \{\sum_{\alpha \in \Delta} c_{\alpha}\alpha \mid c_{\alpha} \geq 0 \ (\alpha \in \Delta)\}.$$

If Δ is a simple system, we call its elements *simple roots*.

Example 7. Let $n \ge 2$ be an integer, and let S_n denote the symmetric group of degree n. In other words, S_n consists of all permutations of the set $\{1, 2, ..., n\}$. Since permutations are bijections from $\{1, 2, ..., n\}$ to itself, S_n forms a group under composition. Let $\varepsilon_1, ..., \varepsilon_n$ denote the standard basis of \mathbb{R}^n . For each $\sigma \in S_n$, we define $g_{\sigma} \in O(\mathbb{R}^n)$ by setting

$$g_{\sigma}(\sum_{i=1}^{n} c_i \varepsilon_i) = \sum_{i=1}^{n} c_i \varepsilon_{\sigma(i)},$$

and set

$$G_n = \{g_\sigma \mid \sigma \in \mathcal{S}_n\}.$$

It is easy to verify that G_n is a subgroup of O(V) and, the mapping $S_n \to G_n$ defined by $\sigma \mapsto g_\sigma$ is an isomorphism.

It is well known that S_n is generated by its set of transposition. Via the isomorphism $\sigma \mapsto g_{\sigma}$, we see that G_n is generated by the set of reflections

$$\{s_{\varepsilon_i - \varepsilon_j} \mid 1 \le i < j \le n\}. \tag{1}$$

Exercise 8. Show that (1) is precisely the set of reflections in G_n . In other words, show that g_{σ} is a reflection if and only if σ is a transposition.