May 30, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R} , with positivedefinite inner product. We also let Φ be a root system in V. Recall that $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$ denote the set of positive systems and that of simple systems, respectively, in Φ . Define

$$\begin{array}{rcl} \pi: \mathcal{S}(\Phi) & \to & \mathcal{P}(\Phi) \\ \Delta & \mapsto & \Phi \cap \mathbf{R}_{\geq 0} \Delta. \end{array}$$

Theorem 30 is proved in an awkward manner, in the sense that $\pi^{-1}(\Pi) \in \mathcal{S}(\Phi)$ for $\Pi \in \mathcal{P}(\Phi)$ is not explicitly shown. Lemma 29(ii) shows that the existence of a simple system in Π does imply $\pi^{-1}(\Pi) \in \mathcal{S}(\Phi)$, but showing the existence of a simple system in Π is a separate problem. Here is how one can show $\pi^{-1}(\Pi) \in \mathcal{S}(\Phi)$ directly. We need a lemma.

Lemma 31. Suppose that V is given a total ordering, let $A \subset V_+$ be a subset, $\alpha_1, \ldots, \alpha_n \in V_+$, and $\beta \in V_+ \setminus \bigcup_{i=1}^n \mathbf{R}\alpha_i$. If

$$\alpha_i \in \mathbf{R}_{\ge 0}(A \cup \{\beta\}),\tag{55}$$

$$\beta \in \mathbf{R}_{\geq 0}(A \cup \{\alpha_1, \dots, \alpha_n\}),\tag{56}$$

then $\alpha_1, \ldots, \alpha_n, \beta \in \mathbf{R}_{\geq 0}A$.

Proof. Let $\mathcal{A} = \mathbf{R}_{\geq 0}A$, $\mathcal{A}_+ = \mathcal{A} \setminus \{0\}$. By the assumption, we have $\mathcal{A}_+ \subset V_+$. Then it suffices to show

$$\beta \in \mathcal{A} \tag{57}$$

only, since $\alpha_i \in \mathcal{A}$ follows immediately from (55) and (57).

By (55), there exist $b_i \in \mathbf{R}_{\geq 0}$ and $\lambda_i \in \mathcal{A}$ such that

$$\alpha_i = b_i \beta + \lambda_i. \tag{58}$$

Since $\beta \notin \mathbf{R}\alpha_i$, we have $\lambda_i \neq 0$, i.e.,

$$\lambda_i \in \mathcal{A}_+. \tag{59}$$

By (56), there exist $a_1, \ldots, a_n \in \mathbf{R}_{\geq 0}$ such that

$$\beta \in \sum_{i=1}^{n} a_i \alpha_i + \mathcal{A}.$$
 (60)

If $a_i = 0$ for all *i*, then (57) holds, so we may assume $a_i > 0$ for some *i*. Then (59) implies

$$\sum_{i=1}^{n} a_i \lambda_i \in \mathcal{A}_+.$$
(61)

By (58) and (60), we obtain

$$\beta \in \sum_{i=1}^{n} a_i (b_i \beta + \lambda_i) + \mathcal{A}$$

$$= \sum_{i=1}^{n} a_{i}b_{i}\beta + \sum_{i=1}^{n} a_{i}\lambda_{i} + \mathcal{A}$$

$$\subset \sum_{i=1}^{n} a_{i}b_{i}\beta + \mathcal{A}_{+} \qquad (by (61))$$

$$= \sum_{i=1}^{n} a_{i}b_{i}\beta + V_{+} \cap \mathcal{A}.$$

This implies

$$\left(1 - \sum_{i=1}^{n} a_i b_i\right) \beta \in V_+,\tag{62}$$

$$\left(1 - \sum_{i=1}^{n} a_i b_i\right) \beta \in \mathcal{A}.$$
(63)

By (62), we have $1 - \sum_{i=1}^{n} a_i b_i > 0$. Then (57) follows from (63). **Proposition 32.** Let $\Pi \in \mathcal{P}(\Phi)$, and set

$$\Delta = \{ \alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \setminus \{\alpha\}) \}.$$

Then

- (i) $(\alpha, \beta) \leq 0$ for all $\alpha \neq \beta$ in Δ ,
- (ii) Δ is a simple system in Φ .

Proof. (i) Suppose, to the contrary, $(\alpha, \beta) > 0$ for some distinct $\alpha, \beta \in \Delta$. Since $\pm s_{\alpha}(\beta) \in \Phi = \Pi \cup (-\Pi)$, in view of (48), we may assume without loss of generality $\alpha \in \mathbf{R}_{>0}\beta + \mathbf{R}_{\geq 0}\Pi$. By Lemma 28, we obtain $\alpha \in \mathbf{R}_{\geq 0}(\Pi \setminus \{\alpha\})$, which contradicts $\alpha \in \Delta$.

(ii) By (i) and Lemma 27, Δ consists of linearly independent vectors. It remains to show $\Pi \subset \mathbf{R}_{\geq 0}\Delta$. We consider the set

$$\mathcal{B} = \{ B \subset \Pi \setminus \Delta \mid B \subset \mathbf{R}_{\geq 0}(\Pi \setminus B) \}.$$

For all $\alpha \in \Pi \setminus \Delta$, we have $\alpha \in \mathbf{R}_{>0}(\Pi \setminus \{\alpha\})$. Thus $\{\alpha\} \in \mathcal{B}$, and hence $\mathcal{B} \neq \emptyset$.

Let $B = \{\alpha_1, \ldots, \alpha_n\}$ be a maximal member of \mathcal{B} . Suppose $B \subsetneq \Pi \setminus \Delta$. Then there exists $\beta \in \Pi \setminus (B \cup \Delta)$. Set $A = \Pi \setminus (B \cup \{\beta\})$. Then (55) holds since $B \in \mathcal{B}$, while (56) holds since $\beta \notin \Delta$. Lemma 31 then implies $\alpha_1, \ldots, \alpha_n, \beta \in \mathbb{R}_{\geq 0}(\Pi \setminus (B \cup \{\beta\}))$. This implies $B \cup \{\beta\} \in \mathcal{B}$, contradicting maximality of B. Therefore, $B = \Pi \setminus \Delta$. This implies $\Pi \setminus \Delta \in \mathcal{B}$, which in turn implies $\Pi \setminus \Delta \subset \mathbb{R}_{\geq 0}\Delta$. Since $\Delta \subset \mathbb{R}_{\geq 0}\Delta$ holds trivially, we obtain $\Pi \subset \mathbb{R}_{\geq 0}\Delta$. This completes the proof of (ii).

Recall

$$W(\Phi) = \langle s_{\alpha} \mid \alpha \in \Phi \rangle.$$

By Definition 14(R2), we have

$$w\Phi = \Phi \quad (w \in W(\Phi)). \tag{64}$$

Lemma 33. Let $w \in W(\Phi)$. Then

(i) $w\Delta \in \mathcal{S}(\Phi)$ and $\pi(w\Delta) = w\pi(\Delta)$ for all $\Delta \in \mathcal{S}(\Phi)$,

(ii) $w\Pi \in \mathcal{P}(\Phi)$ and $\pi^{-1}(w\Pi) = w\pi^{-1}(\Pi)$ for all $\Pi \in \mathcal{P}(\Phi)$.

Proof. (i) Clear from (64) and (44).

(ii) For $\Pi \in \mathcal{P}(\Phi)$, let $\Delta = \pi^{-1}(\Pi) \in \mathcal{S}(\Phi)$. Then $w\Pi = w\pi(\Delta) = \pi(w\Delta) \in \pi(\mathcal{S}(\Phi)) = \mathcal{P}(\Phi)$ by (i). Also, $\pi^{-1}(w\Pi) = w\Delta = w\pi^{-1}(\Pi)$.

Lemma 34. Let $\alpha \in \Delta \in \mathcal{S}(\Phi)$ and $\Pi = \pi(\Delta)$. Then $s_{\alpha}(\Pi \setminus {\alpha}) = \Pi \setminus {\alpha}$.

Proof. Let $\beta \in \Pi \setminus \{\alpha\}$, and write $\beta = \sum_{\gamma \in \Delta} c_{\gamma} \gamma$. Then

$$\exists \gamma \in \Delta \setminus \{\alpha\}, \ c_{\gamma} > 0. \tag{65}$$

Set

$$c = \frac{2(\beta, \alpha)}{(\alpha, \alpha)},$$

so that

$$s_{\alpha}\beta = \beta - c\alpha$$

= $\sum_{\gamma \in \Delta} c_{\gamma}\gamma - c\alpha$
= $\sum_{\gamma \in \Delta \setminus \{\alpha\}} c_{\gamma}\gamma + (c_{\alpha} - c)\alpha.$

Since $s_{\alpha}\beta \in \Phi \subset \mathbf{R}_{\geq 0}\Delta \cup \mathbf{R}_{\leq 0}\Delta$, (65) implies $s_{\alpha}\beta \in \Phi \cap \mathbf{R}_{\geq 0}\Delta = \pi(\Delta) = \Pi$. Since $\beta \in \Pi \not\ni -\alpha$, we have $\beta \neq -\alpha = s_{\alpha}\alpha$. Thus $s_{\alpha}\beta \neq \alpha$. Therefore, $s_{\alpha}\beta \in \Pi \setminus \{\alpha\}$. \Box

Definition 35. Let G be a group, and let Ω be a set. We say that G acts on Ω if there is a mapping

$$\begin{array}{rccc} G\times\Omega &\to& \Omega\\ (g,\alpha) &\mapsto& g.\alpha \end{array} \quad (g\in G,\; \alpha\in\Omega) \end{array}$$

such that

- (i) $1.\alpha = \alpha$ for all $\alpha \in \Omega$,
- (ii) $g.(h.\alpha) = (gh).\alpha$ for all $g, h \in G$ and $\alpha \in \Omega$.

We say that G acts *transitively* on Ω , or the action of G is *transitive*, if

$$\forall \alpha, \beta \in \Omega, \ \exists g \in G, \ g.\alpha = \beta.$$

Observe, by Lemma 23,

$$|\Pi| = \frac{1}{2} |\Phi| \quad (\Pi \in \mathcal{P}(\Phi)).$$
(66)

Theorem 36. The group $W(\Phi)$ acts transitively on both $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$.

Proof. First we show that

$$\forall \Pi, \Pi' \in \mathcal{P}(\Phi), \ \exists w \in W(\Phi), \ w\Pi = \Pi'$$
(67)

by induction on $r = |\Pi \cap (-\Pi')|$. If r = 0, then $\Pi \subset \Pi'$, and we obtain $\Pi = \Pi'$ by (66).

If r > 0, then $\Pi \neq \Pi'$. Let $\Delta = \pi^{-1}(\Pi)$. Then $\Delta \neq \pi^{-1}(\Pi')$, so Δ is not contained in Π' by Theorem 30(ii). This implies $\Delta \cap (-\Pi') \neq \emptyset$ since $\Phi = \Pi' \cup (-\Pi')$. Choose $\alpha \in \Delta \cap (-\Pi')$. Then

$$-\alpha \notin -\Pi'. \tag{68}$$

Since

$$s_{\alpha}\Pi = s_{\alpha}(\{\alpha\} \cup (\Pi \setminus \{\alpha\}))$$

= $\{s_{\alpha}\alpha\} \cup (s_{\alpha}(\Pi \setminus \{\alpha\}))$
= $\{-\alpha\} \cup s_{\alpha}(\Pi \setminus \{\alpha\})$
= $\{-\alpha\} \cup (\Pi \setminus \{\alpha\})$ (by Lemma 34),

we have

$$|s_{\alpha}\Pi \cap (-\Pi')| = |(\{-\alpha\} \cup (\Pi \setminus \{\alpha\})) \cap (-\Pi')|$$

= $|(\Pi \setminus \{\alpha\}) \cap (-\Pi')|$ (by (68))
= $|(\Pi \cap (-\Pi')) \setminus \{\alpha\}|$
= $r - 1$.

Since $s_{\alpha}\Pi \in \mathcal{P}(\Phi)$ by Lemma 33(ii), the inductive hypothesis applied to the pair $s_{\alpha}\Pi, \Pi'$ implies that there exists $w \in W(\Phi)$ such that $ws_{\alpha}\Pi = \Pi'$. Therefore, we have proved (67), which implies that $W(\Phi)$ acts transitively on $\mathcal{P}(\Phi)$. The transitivity of $W(\Phi)$ on $\mathcal{S}(\Phi)$ now follows immediately from Lemma 33 using the fact that π is a bijection from $\mathcal{S}(\Phi)$ to $\mathcal{P}(\Phi)$.

Definition 37. Let $\Delta \in \mathcal{S}(\Phi)$. For $\beta = \sum_{\alpha \in \Delta} c_{\alpha} \alpha \in \Phi$, the *height* of β relative to Δ , denoted ht(β), is defined as

$$\operatorname{ht}(\beta) = \sum_{\alpha \in \Delta} c_{\alpha}.$$

Example 38. Continuing Example 26, let

$$\Delta = \{ \varepsilon_i - \varepsilon_{i+1} \mid 1 \le i < n \} \in \mathcal{S}(\Phi),$$

where

$$\Phi = \{ \pm (\varepsilon_i - \varepsilon_j) \mid 1 \le i < j \le n \}.$$

Then for i < j,

$$\operatorname{ht}(\varepsilon_i - \varepsilon_j) = \operatorname{ht}(\sum_{k=i}^{j-1} (\varepsilon_k - \varepsilon_{k+1})) = j - i.$$