May 30, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. We also let Φ be a root system in V. Recall that $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$ denote the set of positive systems and that of simple systems, respectively, in Φ. Define

$$
\begin{aligned}
\pi: \mathcal{S}(\Phi) & \rightarrow \mathcal{P}(\Phi) \\
\Delta & \mapsto \Phi \cap \mathbf{R}_{\geq 0} \Delta .
\end{aligned}
$$

Theorem 30 is proved in an awkward manner, in the sense that $\pi^{-1}(\Pi) \in \mathcal{S}(\Phi)$ for $\Pi \in$ $\mathcal{P}(\Phi)$ is not explicitly shown. Lemma 29 (ii) shows that the existence of a simple system in Π does imply $\pi^{-1}(\Pi) \in \mathcal{S}(\Phi)$, but showing the existence of a simple system in Π is a separate problem. Here is how one can show $\pi^{-1}(\Pi) \in \mathcal{S}(\Phi)$ directly. We need a lemma.

Lemma 31. Suppose that V is given a total ordering, let $A \subset V_{+}$be a subset, $\alpha_{1}, \ldots, \alpha_{n} \in$ V_{+}, and $\beta \in V_{+} \backslash \bigcup_{i=1}^{n} \mathbf{R} \alpha_{i}$. If

$$
\begin{align*}
\alpha_{i} & \in \mathbf{R}_{\geq 0}(A \cup\{\beta\}), \tag{55}\\
\beta & \in \mathbf{R}_{\geq 0}\left(A \cup\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right), \tag{56}
\end{align*}
$$

then $\alpha_{1}, \ldots, \alpha_{n}, \beta \in \mathbf{R}_{\geq 0} A$.
Proof. Let $\mathcal{A}=\mathbf{R}_{\geq 0} A, \mathcal{A}_{+}=\mathcal{A} \backslash\{0\}$. By the assumption, we have $\mathcal{A}_{+} \subset V_{+}$. Then it suffices to show

$$
\begin{equation*}
\beta \in \mathcal{A} \tag{57}
\end{equation*}
$$

only, since $\alpha_{i} \in \mathcal{A}$ follows immediately from (55) and (57).
By (55), there exist $b_{i} \in \mathbf{R}_{\geq 0}$ and $\lambda_{i} \in \mathcal{A}$ such that

$$
\begin{equation*}
\alpha_{i}=b_{i} \beta+\lambda_{i} . \tag{58}
\end{equation*}
$$

Since $\beta \notin \mathbf{R} \alpha_{i}$, we have $\lambda_{i} \neq 0$, i.e.,

$$
\begin{equation*}
\lambda_{i} \in \mathcal{A}_{+} . \tag{59}
\end{equation*}
$$

By (56), there exist $a_{1}, \ldots, a_{n} \in \mathbf{R}_{\geq 0}$ such that

$$
\begin{equation*}
\beta \in \sum_{i=1}^{n} a_{i} \alpha_{i}+\mathcal{A} . \tag{60}
\end{equation*}
$$

If $a_{i}=0$ for all i, then (57) holds, so we may assume $a_{i}>0$ for some i. Then (59) implies

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} \lambda_{i} \in \mathcal{A}_{+} \tag{61}
\end{equation*}
$$

By (58) and (60), we obtain

$$
\beta \in \sum_{i=1}^{n} a_{i}\left(b_{i} \beta+\lambda_{i}\right)+\mathcal{A}
$$

$$
\begin{align*}
& =\sum_{i=1}^{n} a_{i} b_{i} \beta+\sum_{i=1}^{n} a_{i} \lambda_{i}+\mathcal{A} \\
& \subset \sum_{i=1}^{n} a_{i} b_{i} \beta+\mathcal{A}_{+} \tag{61}\\
& =\sum_{i=1}^{n} a_{i} b_{i} \beta+V_{+} \cap \mathcal{A} .
\end{align*}
$$

This implies

$$
\begin{align*}
& \left(1-\sum_{i=1}^{n} a_{i} b_{i}\right) \beta \in V_{+}, \tag{62}\\
& \left(1-\sum_{i=1}^{n} a_{i} b_{i}\right) \beta \in \mathcal{A} \tag{63}
\end{align*}
$$

By (62), we have $1-\sum_{i=1}^{n} a_{i} b_{i}>0$. Then (57) follows from (63).
Proposition 32. Let $\Pi \in \mathcal{P}(\Phi)$, and set

$$
\Delta=\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\}
$$

Then
(i) $(\alpha, \beta) \leq 0$ for all $\alpha \neq \beta$ in Δ,
(ii) Δ is a simple system in Φ.

Proof. (i) Suppose, to the contrary, $(\alpha, \beta)>0$ for some distinct $\alpha, \beta \in \Delta$. Since $\pm s_{\alpha}(\beta) \in$ $\Phi=\Pi \cup(-\Pi)$, in view of (48), we may assume without loss of generality $\alpha \in \mathbf{R}_{>0} \beta+$ $\mathbf{R}_{\geq 0} \Pi$. By Lemma 28, we obtain $\alpha \in \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})$, which contradicts $\alpha \in \Delta$.
(ii) By (i) and Lemma 27, Δ consists of linearly independent vectors. It remains to show $\Pi \subset \mathbf{R}_{\geq 0} \Delta$. We consider the set

$$
\mathcal{B}=\left\{B \subset \Pi \backslash \Delta \mid B \subset \mathbf{R}_{\geq 0}(\Pi \backslash B)\right\}
$$

For all $\alpha \in \Pi \backslash \Delta$, we have $\alpha \in \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})$. Thus $\{\alpha\} \in \mathcal{B}$, and hence $\mathcal{B} \neq \emptyset$.
Let $B=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a maximal member of \mathcal{B}. Suppose $B \subsetneq \Pi \backslash \Delta$. Then there exists $\beta \in \Pi \backslash(B \cup \Delta)$. Set $A=\Pi \backslash(B \cup\{\beta\})$. Then (55) holds since $B \in \mathcal{B}$, while (56) holds since $\beta \notin \Delta$. Lemma 31 then implies $\alpha_{1}, \ldots, \alpha_{n}, \beta \in \mathbf{R}_{\geq 0}(\Pi \backslash(B \cup\{\beta\})$. This implies $B \cup\{\beta\} \in \mathcal{B}$, contradicting maximality of B. Therefore, $B=\Pi \backslash \Delta$. This implies $\Pi \backslash \Delta \in \mathcal{B}$, which in turn implies $\Pi \backslash \Delta \subset \mathbf{R}_{\geq 0} \Delta$. Since $\Delta \subset \mathbf{R}_{\geq 0} \Delta$ holds trivially, we obtain $\Pi \subset \mathbf{R}_{\geq 0} \Delta$. This completes the proof of (ii).

Recall

$$
W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle .
$$

By Definition 14(R2), we have

$$
\begin{equation*}
w \Phi=\Phi \quad(w \in W(\Phi)) . \tag{64}
\end{equation*}
$$

Lemma 33. Let $w \in W(\Phi)$. Then
(i) $w \Delta \in \mathcal{S}(\Phi)$ and $\pi(w \Delta)=w \pi(\Delta)$ for all $\Delta \in \mathcal{S}(\Phi)$,
(ii) $w \Pi \in \mathcal{P}(\Phi)$ and $\pi^{-1}(w \Pi)=w \pi^{-1}(\Pi)$ for all $\Pi \in \mathcal{P}(\Phi)$.

Proof. (i) Clear from (64) and (44).
(ii) For $\Pi \in \mathcal{P}(\Phi)$, let $\Delta=\pi^{-1}(\Pi) \in \mathcal{S}(\Phi)$. Then $w \Pi=w \pi(\Delta)=\pi(w \Delta) \in$ $\pi(\mathcal{S}(\Phi))=\mathcal{P}(\Phi)$ by (i). Also, $\pi^{-1}(w \Pi)=w \Delta=w \pi^{-1}(\Pi)$.

Lemma 34. Let $\alpha \in \Delta \in \mathcal{S}(\Phi)$ and $\Pi=\pi(\Delta)$. Then $s_{\alpha}(\Pi \backslash\{\alpha\})=\Pi \backslash\{\alpha\}$.
Proof. Let $\beta \in \Pi \backslash\{\alpha\}$, and write $\beta=\sum_{\gamma \in \Delta} c_{\gamma} \gamma$. Then

$$
\begin{equation*}
\exists \gamma \in \Delta \backslash\{\alpha\}, c_{\gamma}>0 \tag{65}
\end{equation*}
$$

Set

$$
c=\frac{2(\beta, \alpha)}{(\alpha, \alpha)},
$$

so that

$$
\begin{aligned}
s_{\alpha} \beta & =\beta-c \alpha \\
& =\sum_{\gamma \in \Delta} c_{\gamma} \gamma-c \alpha \\
& =\sum_{\gamma \in \Delta \backslash\{\alpha\}} c_{\gamma} \gamma+\left(c_{\alpha}-c\right) \alpha .
\end{aligned}
$$

Since $s_{\alpha} \beta \in \Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta$, (65) implies $s_{\alpha} \beta \in \Phi \cap \mathbf{R}_{\geq 0} \Delta=\pi(\Delta)=\Pi$. Since $\beta \in \Pi \not \supset-\alpha$, we have $\beta \neq-\alpha=s_{\alpha} \alpha$. Thus $s_{\alpha} \beta \neq \alpha$. Therefore, $s_{\alpha} \beta \in \Pi \backslash\{\alpha\}$.

Definition 35. Let G be a group, and let Ω be a set. We say that G acts on Ω if there is a mapping

$$
\begin{aligned}
G \times \Omega & \rightarrow \Omega \\
(g, \alpha) & \mapsto g \cdot \alpha
\end{aligned} \quad(g \in G, \alpha \in \Omega)
$$

such that
(i) $1 . \alpha=\alpha$ for all $\alpha \in \Omega$,
(ii) $g .(h . \alpha)=(g h) . \alpha$ for all $g, h \in G$ and $\alpha \in \Omega$.

We say that G acts transitively on Ω, or the action of G is transitive, if

$$
\forall \alpha, \beta \in \Omega, \exists g \in G, g . \alpha=\beta
$$

Observe, by Lemma 23,

$$
\begin{equation*}
|\Pi|=\frac{1}{2}|\Phi| \quad(\Pi \in \mathcal{P}(\Phi)) \tag{66}
\end{equation*}
$$

Theorem 36. The group $W(\Phi)$ acts transitively on both $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$.
Proof. First we show that

$$
\begin{equation*}
\forall \Pi, \Pi^{\prime} \in \mathcal{P}(\Phi), \exists w \in W(\Phi), w \Pi=\Pi^{\prime} \tag{67}
\end{equation*}
$$

by induction on $r=\left|\Pi \cap\left(-\Pi^{\prime}\right)\right|$. If $r=0$, then $\Pi \subset \Pi^{\prime}$, and we obtain $\Pi=\Pi^{\prime}$ by (66).
If $r>0$, then $\Pi \neq \Pi^{\prime}$. Let $\Delta=\pi^{-1}(\Pi)$. Then $\Delta \neq \pi^{-1}\left(\Pi^{\prime}\right)$, so Δ is not contained in Π^{\prime} by Theorem $30(i i)$. This implies $\Delta \cap\left(-\Pi^{\prime}\right) \neq \emptyset$ since $\Phi=\Pi^{\prime} \cup\left(-\Pi^{\prime}\right)$. Choose $\alpha \in \Delta \cap\left(-\Pi^{\prime}\right)$. Then

$$
\begin{equation*}
-\alpha \notin-\Pi^{\prime} . \tag{68}
\end{equation*}
$$

Since

$$
\begin{aligned}
s_{\alpha} \Pi & =s_{\alpha}(\{\alpha\} \cup(\Pi \backslash\{\alpha\})) \\
& =\left\{s_{\alpha} \alpha\right\} \cup\left(s_{\alpha}(\Pi \backslash\{\alpha\})\right) \\
& =\{-\alpha\} \cup s_{\alpha}(\Pi \backslash\{\alpha\})
\end{aligned}
$$

$$
=\{-\alpha\} \cup(\Pi \backslash\{\alpha\}) \quad \text { (by Lemma 34), }
$$

we have

$$
\begin{align*}
\left|s_{\alpha} \Pi \cap\left(-\Pi^{\prime}\right)\right| & =\left|(\{-\alpha\} \cup(\Pi \backslash\{\alpha\})) \cap\left(-\Pi^{\prime}\right)\right| \\
& =\left|(\Pi \backslash\{\alpha\}) \cap\left(-\Pi^{\prime}\right)\right| \tag{68}\\
& =\left|\left(\Pi \cap\left(-\Pi^{\prime}\right)\right) \backslash\{\alpha\}\right| \\
& =r-1 .
\end{align*}
$$

Since $s_{\alpha} \Pi \in \mathcal{P}(\Phi)$ by Lemma 33(ii), the inductive hypothesis applied to the pair $s_{\alpha} \Pi, \Pi^{\prime}$ implies that there exists $w \in W(\Phi)$ such that $w s_{\alpha} \Pi=\Pi^{\prime}$. Therefore, we have proved (67), which implies that $W(\Phi)$ acts transitively on $\mathcal{P}(\Phi)$. The transitivity of $W(\Phi)$ on $\mathcal{S}(\Phi)$ now follows immediately from Lemma 33 using the fact that π is a bijection from $\mathcal{S}(\Phi)$ to $\mathcal{P}(\Phi)$.

Definition 37. Let $\Delta \in \mathcal{S}(\Phi)$. For $\beta=\sum_{\alpha \in \Delta} c_{\alpha} \alpha \in \Phi$, the height of β relative to Δ, denoted $h t(\beta)$, is defined as

$$
\operatorname{ht}(\beta)=\sum_{\alpha \in \Delta} c_{\alpha} .
$$

Example 38. Continuing Example 26, let

$$
\Delta=\left\{\varepsilon_{i}-\varepsilon_{i+1} \mid 1 \leq i<n\right\} \in \mathcal{S}(\Phi),
$$

where

$$
\Phi=\left\{ \pm\left(\varepsilon_{i}-\varepsilon_{j}\right) \mid 1 \leq i<j \leq n\right\} .
$$

Then for $i<j$,

$$
\operatorname{ht}\left(\varepsilon_{i}-\varepsilon_{j}\right)=\operatorname{ht}\left(\sum_{k=i}^{j-1}\left(\varepsilon_{k}-\varepsilon_{k+1}\right)\right)=j-i .
$$

