May 30, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Recall that for $0 \neq \alpha \in V, s_{\alpha} \in O(V)$ denotes the reflection

$$
s_{\alpha}(\lambda)=\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad(\lambda \in V) .
$$

Lemma 1. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $t s_{\alpha} t^{-1}=s_{t \alpha}$.
Definition 2. Let Φ be a nonempty finite set of nonzero vectors in V. We say that Φ is a root system if
(R1) $\Phi \cap \mathbf{R} \alpha=\{\alpha,-\alpha\}$ for all $\alpha \in \Phi$,
(R2) $s_{\alpha} \Phi=\Phi$ for all $\alpha \in \Phi$.
Definition 3. A total ordering of V is a transitive relation on V (denoted $<$) satisfying the following axioms.
(i) For each pair $\lambda, \mu \in V$, exactly one of $\lambda<\mu, \lambda=\mu, \mu<\lambda$ holds.
(ii) For all $\lambda, \mu, \nu \in V, \mu<\nu$ implies $\lambda+\mu<\lambda+\nu$.
(iii) Let $\mu<\nu$ and $c \in \mathbf{R}$. If $c>0$ then $c \mu<c \nu$, and if $c<0$ then $c \nu<c \mu$.

For convenience, we write $\lambda>\mu$ if $\mu<\lambda$. By (ii), $\lambda>0$ implies $0>-\lambda$. Thus

$$
V=V_{+} \cup\{0\} \cup V_{-} \quad \text { (disjoint) }
$$

where

$$
\begin{aligned}
& V_{+}=\{\lambda \in V \mid \lambda>0\}, \\
& V_{-}=\{\lambda \in V \mid \lambda<0\} .
\end{aligned}
$$

Lemma 4. Let $<$ be a total ordering of V, and let $\lambda, \mu \in V$.
(i) If $\lambda, \mu>0$, then $\lambda+\mu>0$.
(ii) If $\lambda>0, c \in \mathbf{R}$ and $c>0$, then $c \lambda>0$.
(iii) If $\lambda>0, c \in \mathbf{R}$ and $c<0$, then $c \lambda<0$. In particular, $-\lambda<0$.

Lemma 5. Let Δ be a finite set of nonzero vectors in V_{+}. If $(\alpha, \beta) \leq 0$ for any distinct $\alpha, \beta \in \Delta$, then Δ consists of linearly independent vectors.

Lemma 6. Let $\Delta \subset V_{+}$be a subset, and let $\alpha, \beta \in \Delta$ be linearly independent. If $\alpha \in$ $\mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0} \Delta$, then $\alpha \in \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\})$.

Definition 7. Let Φ be a root system in V. A subset Π of Φ is called a positive system if there exists a total ordering $<$ of V such that $\Pi=\{\alpha \in \Phi \mid \alpha>0\}$.

Lemma 8. If Π is a positive system in a root system Φ, then $\Phi=\Pi \cup(-\Pi)$ (disjoint), where

$$
-\Pi=\{-\alpha \mid \alpha \in \Pi\}
$$

In particular,

$$
-\Pi=\{\alpha \in \Phi \mid \alpha<0\} .
$$

Definition 9. Let Δ be a subset of a root system Φ. We call Δ a simple system if Δ is a basis of the subspace spanned by Φ, and if moreover $\Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta$ holds.

In what follows, we fix a root system Φ in V. Recall that $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$ denote the set of positive systems and that of simple systems, respectively, in Φ.

Lemma 10. If $\Delta \in \mathcal{S}(\Phi), \Pi \in \mathcal{P}(\Phi)$ and $\Delta \subset \Pi$, then
(i) $\Pi=\Phi \cap \mathbf{R}_{\geq 0} \Delta$,
(ii) $\Delta=\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\}$.

Theorem 11. The mapping

$$
\begin{aligned}
\pi: \mathcal{S}(\Phi) & \rightarrow \mathcal{P}(\Phi) \\
\Delta & \mapsto \Phi \cap \mathbf{R}_{\geq 0} \Delta
\end{aligned}
$$

is a bijection whose inverse is given by

$$
\begin{align*}
\pi^{-1}: \mathcal{P}(\Phi) & \rightarrow \mathcal{S}(\Phi) \\
\Pi & \mapsto\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\} . \tag{1}
\end{align*}
$$

Moreover,
(i) for every simple system Δ in $\Phi, \pi(\Delta)$ is the unique positive system containing Δ,
(ii) for every positive system Π in $\Phi, \pi^{-1}(\Pi)$ is the unique simple system contained in Π.

Example 12. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be the standard basis of \mathbf{R}^{n}. The set

$$
\Phi=\left\{ \pm\left(\varepsilon_{i}-\varepsilon_{j}\right) \mid 1 \leq i<j \leq n\right\}
$$

is a root system, with a positive system

$$
\Pi=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i<j \leq n\right\},
$$

and simple system

$$
\Delta=\left\{\varepsilon_{i}-\varepsilon_{i+1} \mid 1 \leq i<n\right\} .
$$

