May 30, 2016

For today's lecture, we let V be a finite-dimensional vector space over **R**, with positivedefinite inner product. Recall that for $0 \neq \alpha \in V$, $s_{\alpha} \in O(V)$ denotes the reflection

$$s_{\alpha}(\lambda) = \lambda - \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad (\lambda \in V).$$

Lemma 1. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $ts_{\alpha}t^{-1} = s_{t\alpha}$.

Definition 2. Let Φ be a nonempty finite set of nonzero vectors in V. We say that Φ is a *root system* if

- (R1) $\Phi \cap \mathbf{R}\alpha = \{\alpha, -\alpha\}$ for all $\alpha \in \Phi$,
- (R2) $s_{\alpha}\Phi = \Phi$ for all $\alpha \in \Phi$.

Definition 3. A *total ordering* of V is a transitive relation on V (denoted <) satisfying the following axioms.

- (i) For each pair $\lambda, \mu \in V$, exactly one of $\lambda < \mu, \lambda = \mu, \mu < \lambda$ holds.
- (ii) For all $\lambda, \mu, \nu \in V$, $\mu < \nu$ implies $\lambda + \mu < \lambda + \nu$.
- (iii) Let $\mu < \nu$ and $c \in \mathbf{R}$. If c > 0 then $c\mu < c\nu$, and if c < 0 then $c\nu < c\mu$.

For convenience, we write $\lambda > \mu$ if $\mu < \lambda$. By (ii), $\lambda > 0$ implies $0 > -\lambda$. Thus

$$V = V_+ \cup \{0\} \cup V_- \quad \text{(disjoint)},$$

where

$$V_{+} = \{\lambda \in V \mid \lambda > 0\},$$

$$V_{-} = \{\lambda \in V \mid \lambda < 0\}.$$

Lemma 4. Let < be a total ordering of V, and let $\lambda, \mu \in V$.

- (i) If $\lambda, \mu > 0$, then $\lambda + \mu > 0$.
- (ii) If $\lambda > 0$, $c \in \mathbf{R}$ and c > 0, then $c\lambda > 0$.
- (iii) If $\lambda > 0$, $c \in \mathbf{R}$ and c < 0, then $c\lambda < 0$. In particular, $-\lambda < 0$.

Lemma 5. Let Δ be a finite set of nonzero vectors in V_+ . If $(\alpha, \beta) \leq 0$ for any distinct $\alpha, \beta \in \Delta$, then Δ consists of linearly independent vectors.

Lemma 6. Let $\Delta \subset V_+$ be a subset, and let $\alpha, \beta \in \Delta$ be linearly independent. If $\alpha \in \mathbf{R}_{>0}\beta + \mathbf{R}_{>0}\Delta$, then $\alpha \in \mathbf{R}_{>0}(\Delta \setminus \{\alpha\})$.

Definition 7. Let Φ be a root system in V. A subset Π of Φ is called a *positive system* if there exists a total ordering < of V such that $\Pi = \{ \alpha \in \Phi \mid \alpha > 0 \}$.

Lemma 8. If Π is a positive system in a root system Φ , then $\Phi = \Pi \cup (-\Pi)$ (disjoint), where

$$-\Pi = \{-\alpha \mid \alpha \in \Pi\}.$$

In particular,

 $-\Pi = \{ \alpha \in \Phi \mid \alpha < 0 \}.$

Definition 9. Let Δ be a subset of a root system Φ . We call Δ a *simple system* if Δ is a basis of the subspace spanned by Φ , and if moreover $\Phi \subset \mathbf{R}_{>0}\Delta \cup \mathbf{R}_{<0}\Delta$ holds.

In what follows, we fix a root system Φ in V. Recall that $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$ denote the set of positive systems and that of simple systems, respectively, in Φ .

Lemma 10. If $\Delta \in \mathcal{S}(\Phi)$, $\Pi \in \mathcal{P}(\Phi)$ and $\Delta \subset \Pi$, then

- (i) $\Pi = \Phi \cap \mathbf{R}_{\geq 0} \Delta$,
- (ii) $\Delta = \{ \alpha \in \Pi \mid \alpha \notin \mathbf{R}_{>0}(\Pi \setminus \{\alpha\}) \}.$

Theorem 11. *The mapping*

$$\begin{array}{rccc} \pi: \mathcal{S}(\Phi) & \to & \mathcal{P}(\Phi) \\ \Delta & \mapsto & \Phi \cap \mathbf{R}_{\geq 0} \Delta \end{array}$$

is a bijection whose inverse is given by

$$\pi^{-1} : \mathcal{P}(\Phi) \to \mathcal{S}(\Phi) \Pi \mapsto \{ \alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \setminus \{\alpha\}) \}.$$

$$(1)$$

Moreover,

- (i) for every simple system Δ in Φ , $\pi(\Delta)$ is the unique positive system containing Δ ,
- (ii) for every positive system Π in Φ , $\pi^{-1}(\Pi)$ is the unique simple system contained in Π .

Example 12. Let $\varepsilon_1, \ldots, \varepsilon_n$ be the standard basis of \mathbb{R}^n . The set

$$\Phi = \{ \pm (\varepsilon_i - \varepsilon_j) \mid 1 \le i < j \le n \}$$

is a root system, with a positive system

$$\Pi = \{ \varepsilon_i - \varepsilon_j \mid 1 \le i < j \le n \},\$$

and simple system

$$\Delta = \{ \varepsilon_i - \varepsilon_{i+1} \mid 1 \le i < n \}$$