June 6, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R} , with positivedefinite inner product. Recall that for $0 \neq \alpha \in V$, $s_{\alpha} \in O(V)$ denotes the reflection

$$s_{\alpha}(\lambda) = \lambda - \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad (\lambda \in V).$$

Lemma 1. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $ts_{\alpha}t^{-1} = s_{t\alpha}$.

Definition 2. Let Φ be a root system in V. A subset Π of Φ is called a *positive system* if there exists a total ordering $\langle \text{ of } V \text{ such that } \Pi = \{ \alpha \in \Phi \mid \alpha > 0 \}.$

Lemma 3. If Π is a positive system in a root system Φ , then $\Phi = \Pi \cup (-\Pi)$ (disjoint).

Definition 4. Let Δ be a subset of a root system Φ . We call Δ a *simple system* if Δ is a basis of the subspace spanned by Φ , and if moreover $\Phi \subset \mathbf{R}_{\geq 0}\Delta \cup \mathbf{R}_{\leq 0}\Delta$ holds.

In what follows, we fix a root system Φ in V, a positive system Π and a simple system $\Delta \subset \Pi$.

Lemma 5. For $\alpha \in \Delta$, $s_{\alpha}(\Pi \setminus \{\alpha\}) = \Pi \setminus \{\alpha\}$.

Definition 6. For $\beta = \sum_{\alpha \in \Delta} c_{\alpha} \alpha \in \Phi$, the *height* of β relative to Δ , denoted ht(β), is defined as

$$\operatorname{ht}(\beta) = \sum_{\alpha \in \Delta} c_{\alpha}.$$

Definition 7. For $w \in W$, we define the *length* of w, denoted $\ell(w)$, to be

$$\ell(w) = \min\{r \in \mathbf{Z} \mid r \ge 0, \exists \alpha_1, \dots, \alpha_r \in \Delta, w = s_{\alpha_1} \cdots s_{\alpha_r}\}.$$

By convention, $\ell(1) = 0$.

Notation 8. For $w \in W$, we write

$$n(w) = |\Pi \cap w^{-1}(-\Pi)|.$$

Definition 9. A linear transformation $s : \mathbf{R}^n \to \mathbf{R}^n$ is called a reflection if there exists a nonzero vector α such that $s(\alpha) = -\alpha$ and s(h) = h for all $h \in (\mathbf{R}\alpha)^{\perp}$.

Lemma 10. Let $s : \mathbf{R}^n \to \mathbf{R}^n$ be a reflection. Then the matrix representation S of s is diagonalizable by an orthogonal matrix:

$$P^{-1}SP = \begin{bmatrix} -1 & & \\ & 1 & \\ & \ddots & \\ & & & 1 \end{bmatrix}$$

for some orthogonal matrix P.

Example 11. Let $n \ge 2$ be an integer, and let S_n denote the symmetric group of degree n. In other words, S_n consists of all permutations of the set $\{1, 2, ..., n\}$. Since permutations are bijections from $\{1, 2, ..., n\}$ to itself, S_n forms a group under composition. Let $\varepsilon_1, ..., \varepsilon_n$ denote the standard basis of \mathbb{R}^n . For each $\sigma \in S_n$, we define $g_{\sigma} \in O(\mathbb{R}^n)$ by setting

$$g_{\sigma}(\sum_{i=1}^{n} c_i \varepsilon_i) = \sum_{i=1}^{n} c_i \varepsilon_{\sigma(i)},$$

and set

$$G_n = \{g_\sigma \mid \sigma \in \mathcal{S}_n\}.$$

It is easy to verify that G_n is a subgroup of O(V) and, the mapping $S_n \to G_n$ defined by $\sigma \mapsto g_{\sigma}$ is an isomorphism. It is well known that S_n is generated by its set of transposition. Via the isomorphism $\sigma \mapsto g_{\sigma}$, we see that G_n is generated by the set of reflections

$$\{s_{\varepsilon_i - \varepsilon_j} \mid 1 \le i < j \le n\}. \tag{1}$$

The set

$$\Phi = \{ \pm (\varepsilon_i - \varepsilon_j) \mid 1 \le i < j \le n \}$$

is a root system, with a positive system

$$\Pi = \{ \varepsilon_i - \varepsilon_j \mid 1 \le i < j \le n \},\tag{2}$$

and simple system

$$\Delta = \{ \varepsilon_i - \varepsilon_{i+1} \mid 1 \le i < n \}$$

Exercise 12. Show that (1) is precisely the set of reflections in G_n . In other words, for $\sigma \in S_n$, show that g_{σ} is a reflection if and only if σ is a transposition.

Exercise 13. With reference to Notation 8 and (2), show that

$$n(g_{\sigma}) = |\{(i,j) \mid i, j \in \{1, 2, \dots, n\}, \ i < j, \ \sigma(i) > \sigma(j)\}| \quad (\sigma \in \mathcal{S}_n).$$

Exercises 12 and 13 are due on June 13, 2016.