June 6, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Recall that for $0 \neq \alpha \in V, s_{\alpha} \in O(V)$ denotes the reflection

$$
s_{\alpha}(\lambda)=\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad(\lambda \in V) .
$$

Lemma 1. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $t s_{\alpha} t^{-1}=s_{t \alpha}$.
Definition 2. Let Φ be a root system in V. A subset Π of Φ is called a positive system if there exists a total ordering $<$ of V such that $\Pi=\{\alpha \in \Phi \mid \alpha>0\}$.

Lemma 3. If Π is a positive system in a root system Φ, then $\Phi=\Pi \cup(-\Pi)$ (disjoint).
Definition 4. Let Δ be a subset of a root system Φ. We call Δ a simple system if Δ is a basis of the subspace spanned by Φ, and if moreover $\Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta$ holds.

In what follows, we fix a root system Φ in V, a positive system Π and a simple system $\Delta \subset \Pi$.

Lemma 5. For $\alpha \in \Delta, s_{\alpha}(\Pi \backslash\{\alpha\})=\Pi \backslash\{\alpha\}$.
Definition 6. For $\beta=\sum_{\alpha \in \Delta} c_{\alpha} \alpha \in \Phi$, the height of β relative to Δ, denoted $\operatorname{ht}(\beta)$, is defined as

$$
\operatorname{ht}(\beta)=\sum_{\alpha \in \Delta} c_{\alpha} .
$$

Definition 7. For $w \in W$, we define the length of w, denoted $\ell(w)$, to be

$$
\ell(w)=\min \left\{r \in \mathbf{Z} \mid r \geq 0, \exists \alpha_{1}, \ldots, \alpha_{r} \in \Delta, w=s_{\alpha_{1}} \cdots s_{\alpha_{r}}\right\} .
$$

By convention, $\ell(1)=0$.
Notation 8. For $w \in W$, we write

$$
n(w)=\left|\Pi \cap w^{-1}(-\Pi)\right| .
$$

Definition 9. A linear transformation $s: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is called a reflection if there exists a nonzero vector α such that $s(\alpha)=-\alpha$ and $s(h)=h$ for all $h \in(\mathbf{R} \alpha)^{\perp}$.

Lemma 10. Let $s: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a reflection. Then the matrix representation S of s is diagonalizable by an orthogonal matrix:

$$
P^{-1} S P=\left[\begin{array}{cccc}
-1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

for some orthogonal matrix P.
Example 11. Let $n \geq 2$ be an integer, and let \mathcal{S}_{n} denote the symmetric group of degree n. In other words, \mathcal{S}_{n} consists of all permutations of the set $\{1,2, \ldots, n\}$. Since permutations are bijections from $\{1,2, \ldots, n\}$ to itself, \mathcal{S}_{n} forms a group under composition. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ denote the standard basis of \mathbf{R}^{n}. For each $\sigma \in \mathcal{S}_{n}$, we define $g_{\sigma} \in O\left(\mathbf{R}^{n}\right)$ by setting

$$
g_{\sigma}\left(\sum_{i=1}^{n} c_{i} \varepsilon_{i}\right)=\sum_{i=1}^{n} c_{i} \varepsilon_{\sigma(i)}
$$

and set

$$
G_{n}=\left\{g_{\sigma} \mid \sigma \in \mathcal{S}_{n}\right\}
$$

It is easy to verify that G_{n} is a subgroup of $O(V)$ and, the mapping $\mathcal{S}_{n} \rightarrow G_{n}$ defined by $\sigma \mapsto g_{\sigma}$ is an isomorphism. It is well known that \mathcal{S}_{n} is generated by its set of transposition. Via the isomorphism $\sigma \mapsto g_{\sigma}$, we see that G_{n} is generated by the set of reflections

$$
\begin{equation*}
\left\{s_{\varepsilon_{i}-\varepsilon_{j}} \mid 1 \leq i<j \leq n\right\} . \tag{1}
\end{equation*}
$$

The set

$$
\Phi=\left\{ \pm\left(\varepsilon_{i}-\varepsilon_{j}\right) \mid 1 \leq i<j \leq n\right\}
$$

is a root system, with a positive system

$$
\begin{equation*}
\Pi=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i<j \leq n\right\} \tag{2}
\end{equation*}
$$

and simple system

$$
\Delta=\left\{\varepsilon_{i}-\varepsilon_{i+1} \mid 1 \leq i<n\right\}
$$

Exercise 12. Show that (1) is precisely the set of reflections in G_{n}. In other words, for $\sigma \in \mathcal{S}_{n}$, show that g_{σ} is a reflection if and only if σ is a transposition.

Exercise 13. With reference to Notation 8 and (2), show that

$$
n\left(g_{\sigma}\right)=|\{(i, j) \mid i, j \in\{1,2, \ldots, n\}, i<j, \sigma(i)>\sigma(j)\}| \quad\left(\sigma \in \mathcal{S}_{n}\right)
$$

Exercises 12 and 13 are due on June 13, 2016.

