Exercise 10. Given a finite reflection group $W \subset O(V)$, let

$$
U=\{\lambda \in V \mid \forall t \in W, t \lambda=\lambda\} .
$$

Let U^{\prime} denote the orthogonal complement of U in V. Then show that the restriction homomorphism $W \rightarrow O\left(U^{\prime}\right)$ defined by $\left.t \mapsto t\right|_{U^{\prime}}$ is injective, and the image $\left.W\right|_{U^{\prime}}$ is an essential finite reflection group in $O\left(U^{\prime}\right)$.

Proof. For notational convenience, let $\varphi: W \rightarrow O\left(U^{\prime}\right)$ denote the restriction homomorphism, that is, $\varphi(t)=\left.t\right|_{U^{\prime}}$ for $t \in W$.

First we show that φ is injective. Suppose $s, t \in W$ and $\varphi(s)=\varphi(t)$. Given $\lambda \in V$, there exist vectors $\lambda_{1} \in U$ and $\lambda_{2} \in U^{\prime}$ such that $\lambda=\lambda_{1}+\lambda_{2}$ since U^{\prime} is the orthogonal complement of U in V. Then

$$
\begin{aligned}
s \lambda & =s\left(\lambda_{1}+\lambda_{2}\right) & & \\
& =s \lambda_{1}+s \lambda_{2} & & \\
& =\lambda_{1}+s \lambda_{2} & & \left(\text { by } \lambda_{1} \in U\right) \\
& =\lambda_{1}+t \lambda_{2} & & \left(\text { by } \lambda_{2} \in U^{\prime} \text { and } \varphi(s)=\varphi(t)\right) \\
& =t \lambda_{1}+t \lambda_{2} & & \left(\text { by } \lambda_{1} \in U\right) \\
& =t\left(\lambda_{1}+\lambda_{2}\right) & & \\
& =t \lambda . & &
\end{aligned}
$$

Therefore $s=t$, so that the restriction homomorphism is injective.
Next we show that the image $\left.W\right|_{U^{\prime}}$ is a finite reflection group in $O\left(U^{\prime}\right)$. It is clearly a subgroup of $O\left(U^{\prime}\right)$ by its construction. Since W is a finite reflection group W,
(i) $W \neq\left\{\mathrm{id}_{V}\right\}$,
(ii) W is finite,
(iii) W is generated by a set of reflections.

Since the restriction homomorphism φ is injective, (i) implies $\left.W\right|_{U^{\prime}} \neq\left\{\mathrm{id}_{V}\right\}$, while $\left.W\right|_{U^{\prime}}$ is finite by (ii). To see that $\left.W\right|_{U^{\prime}}$ is generated by a set of reflections, because of (iii), it suffices show that $\varphi(s)$ is a reflection for whenever $s \in W$ is a reflection. If $s \in W$ is a reflection, then there exists a nonzero vector $\alpha \in V$ such that $s \alpha=-\alpha$ and $s h=h$ for all $h \in(\mathbf{R} \alpha)^{\perp}$. This implies $U \subset(\mathbf{R} \alpha)^{\perp}$, and hence $\alpha \in U^{\prime}$. In particular, $\varphi(s)$ is a reflection in U^{\prime}. We have now proved that the image $\left.W\right|_{U^{\prime}}$ is a finite reflection group in $O\left(U^{\prime}\right)$.

Finally we show that the image $\left.W\right|_{U^{\prime}}$ is essential. Suppose that $\lambda \in U^{\prime}$ satisfies $t^{\prime} \lambda=\lambda$ for all $\left.t^{\prime} \in W\right|_{U^{\prime}}$. Then $t \lambda=\lambda$ for all $t \in W$, which implies $\lambda \in U$. Therefore, $\lambda \in$ $U \cap U^{\prime}=\{0\}$. This proves that the image $\left.W\right|_{U^{\prime}}$ is essential.

Exercise 11. Let \mathcal{S}_{3} denote the symmetric group of order 3 and $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ denote the standard basis of \mathbf{R}^{3}. For each $\sigma \in \mathcal{S}_{3}$, we define $g_{\sigma} \in O\left(\mathbf{R}^{3}\right)$ by $g_{\sigma}\left(\sum_{i=1}^{3} c_{i} \varepsilon_{i}\right)=\sum_{i=1}^{3} c_{i} \varepsilon_{\sigma(i)}$, and set $G_{3}=\left\{g_{\sigma} \mid \sigma \in \mathcal{S}_{3}\right\}$. Moreover we set $\eta_{1}=\frac{1}{\sqrt{2}}\left(\varepsilon_{1}-\varepsilon_{2}\right)$ and $\eta_{2}=\frac{1}{\sqrt{6}}\left(\varepsilon_{1}+\varepsilon_{2}-2 \varepsilon_{3}\right)$. Compute the matrix representations of $g_{(12)}$ and $g_{(23)}$ with respect to the basis $\left\{\eta_{1}, \eta_{2}\right\}$. Show that they are reflections whose lines of symmetry form an angle $\pi / 3$.

Proof. By definition,

$$
\begin{aligned}
& g_{(12)}\left(\eta_{1}\right)=g_{(12)}\left(\frac{1}{\sqrt{2}}\left(\varepsilon_{1}-\varepsilon_{2}\right)\right)=\frac{1}{\sqrt{2}}\left(\varepsilon_{2}-\varepsilon_{1}\right)=-\eta_{1}, \\
& g_{(12)}\left(\eta_{2}\right)=g_{(12)}\left(\frac{1}{\sqrt{6}}\left(\varepsilon_{1}+\varepsilon_{2}-2 \varepsilon_{3}\right)\right)=\frac{1}{\sqrt{6}}\left(\varepsilon_{2}+\varepsilon_{1}-2 \varepsilon_{3}\right)=\eta_{2}, \\
& g_{(23)}\left(\eta_{1}\right)=g_{(23)}\left(\frac{1}{\sqrt{2}}\left(\varepsilon_{1}-\varepsilon_{2}\right)\right)=\frac{1}{\sqrt{2}}\left(\varepsilon_{1}-\varepsilon_{3}\right)=\frac{1}{2} \eta_{1}+\frac{\sqrt{3}}{2} \eta_{2}, \\
& g_{(23)}\left(\eta_{2}\right)=g_{(23)}\left(\frac{1}{\sqrt{6}}\left(\varepsilon_{1}+\varepsilon_{2}-2 \varepsilon_{3}\right)\right)=\frac{1}{\sqrt{6}}\left(\varepsilon_{1}+\varepsilon_{3}-2 \varepsilon_{2}\right)=\frac{\sqrt{3}}{2} \eta_{1}-\frac{1}{2} \eta_{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left(\begin{array}{ll}
g_{(12)}\left(\eta_{1}\right) & g_{(12)}\left(\eta_{2}\right)
\end{array}\right)=\left(\begin{array}{ll}
\eta_{1} & \eta_{2}
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \\
& \left(\begin{array}{ll}
g_{(23)}\left(\eta_{1}\right) & g_{(23)}\left(\eta_{2}\right)
\end{array}\right)=\left(\begin{array}{ll}
\eta_{1} & \eta_{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) .
\end{aligned}
$$

Hence the matrix representations of $g_{(12)}$ and $g_{(23)}$ with respect to the basis $\left\{\eta_{1}, \eta_{2}\right\}$ is given by

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right),
$$

respectively.
It is easy to see that $g_{(12)}$ is a reflection with respect to the y-axis which forms an angle $\pi / 2$ with the x-axis. Indeed,

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\cos \pi & \sin \pi \\
\sin \pi & -\cos \pi
\end{array}\right)
$$

Similarly, $g_{\left(2_{3} 3\right)}$ is a reflection with respect to a line L which forms an angle $\pi / 6$ with the x-axis, since

$$
\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
\cos \frac{\pi}{3} & \sin \frac{\pi}{3} \\
\sin \frac{\pi}{3} & -\cos \frac{\pi}{3}
\end{array}\right) .
$$

Moreover, the y axis and the line L form an angle

$$
\frac{\pi}{2}-\frac{\pi}{6}=\frac{\pi}{3}
$$

