Exercise 10. *Given a finite reflection group* $W \subset O(V)$ *, let*

$$U = \{ \lambda \in V \mid \forall t \in W, \ t\lambda = \lambda \}.$$

Let U' denote the orthogonal complement of U in V. Then show that the restriction homomorphism $W \to O(U')$ defined by $t \mapsto t|_{U'}$ is injective, and the image $W|_{U'}$ is an essential finite reflection group in O(U').

Proof. For notational convenience, let $\varphi : W \to O(U')$ denote the restriction homomorphism, that is, $\varphi(t) = t|_{U'}$ for $t \in W$.

First we show that φ is injective. Suppose $s, t \in W$ and $\varphi(s) = \varphi(t)$. Given $\lambda \in V$, there exist vectors $\lambda_1 \in U$ and $\lambda_2 \in U'$ such that $\lambda = \lambda_1 + \lambda_2$ since U' is the orthogonal complement of U in V. Then

$$\begin{split} s\lambda &= s(\lambda_1 + \lambda_2) \\ &= s\lambda_1 + s\lambda_2 \\ &= \lambda_1 + s\lambda_2 \\ &= \lambda_1 + t\lambda_2 \\ &= t\lambda_1 + t\lambda_2 \\ &= t(\lambda_1 + t\lambda_2) \\ &= t(\lambda_1 + \lambda_2) \\ &= t\lambda. \end{split}$$
 (by $\lambda_1 \in U$)

Therefore s = t, so that the restriction homomorphism is injective.

Next we show that the image $W|_{U'}$ is a finite reflection group in O(U'). It is clearly a subgroup of O(U') by its construction. Since W is a finite reflection group W,

- (i) $W \neq {\mathrm{id}_V}$,
- (ii) W is finite,
- (iii) W is generated by a set of reflections.

Since the restriction homomorphism φ is injective, (i) implies $W|_{U'} \neq {\text{id}_V}$, while $W|_{U'}$ is finite by (ii). To see that $W|_{U'}$ is generated by a set of reflections, because of (iii), it suffices show that $\varphi(s)$ is a reflection for whenever $s \in W$ is a reflection. If $s \in W$ is a reflection, then there exists a nonzero vector $\alpha \in V$ such that $s\alpha = -\alpha$ and sh = h for all $h \in (\mathbf{R}\alpha)^{\perp}$. This implies $U \subset (\mathbf{R}\alpha)^{\perp}$, and hence $\alpha \in U'$. In particular, $\varphi(s)$ is a reflection in U'. We have now proved that the image $W|_{U'}$ is a finite reflection group in O(U').

Finally we show that the image $W|_{U'}$ is essential. Suppose that $\lambda \in U'$ satisfies $t'\lambda = \lambda$ for all $t' \in W|_{U'}$. Then $t\lambda = \lambda$ for all $t \in W$, which implies $\lambda \in U$. Therefore, $\lambda \in U \cap U' = \{0\}$. This proves that the image $W|_{U'}$ is essential.

Exercise 11. Let S_3 denote the symmetric group of order 3 and $\varepsilon_1, \varepsilon_2, \varepsilon_3$ denote the standard basis of \mathbb{R}^3 . For each $\sigma \in S_3$, we define $g_{\sigma} \in O(\mathbb{R}^3)$ by $g_{\sigma}(\sum_{i=1}^3 c_i \varepsilon_i) = \sum_{i=1}^3 c_i \varepsilon_{\sigma(i)}$, and set $G_3 = \{g_{\sigma} \mid \sigma \in S_3\}$. Moreover we set $\eta_1 = \frac{1}{\sqrt{2}}(\varepsilon_1 - \varepsilon_2)$ and $\eta_2 = \frac{1}{\sqrt{6}}(\varepsilon_1 + \varepsilon_2 - 2\varepsilon_3)$. Compute the matrix representations of $g_{(1\ 2)}$ and $g_{(2\ 3)}$ with respect to the basis $\{\eta_1, \eta_2\}$. Show that they are reflections whose lines of symmetry form an angle $\pi/3$.

Proof. By definition,

$$g_{(1\ 2)}(\eta_1) = g_{(1\ 2)}\left(\frac{1}{\sqrt{2}}(\varepsilon_1 - \varepsilon_2)\right) = \frac{1}{\sqrt{2}}(\varepsilon_2 - \varepsilon_1) = -\eta_1,$$

$$g_{(1\ 2)}(\eta_2) = g_{(1\ 2)}\left(\frac{1}{\sqrt{6}}(\varepsilon_1 + \varepsilon_2 - 2\varepsilon_3)\right) = \frac{1}{\sqrt{6}}(\varepsilon_2 + \varepsilon_1 - 2\varepsilon_3) = \eta_2,$$

$$g_{(2\ 3)}(\eta_1) = g_{(2\ 3)}\left(\frac{1}{\sqrt{2}}(\varepsilon_1 - \varepsilon_2)\right) = \frac{1}{\sqrt{2}}(\varepsilon_1 - \varepsilon_3) = \frac{1}{2}\eta_1 + \frac{\sqrt{3}}{2}\eta_2,$$

$$g_{(2\ 3)}(\eta_2) = g_{(2\ 3)}\left(\frac{1}{\sqrt{6}}(\varepsilon_1 + \varepsilon_2 - 2\varepsilon_3)\right) = \frac{1}{\sqrt{6}}(\varepsilon_1 + \varepsilon_3 - 2\varepsilon_2) = \frac{\sqrt{3}}{2}\eta_1 - \frac{1}{2}\eta_2.$$

Therefore

$$\begin{pmatrix} g_{(1\ 2)}(\eta_1) & g_{(1\ 2)}(\eta_2) \end{pmatrix} = \begin{pmatrix} \eta_1 & \eta_2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} g_{(2\ 3)}(\eta_1) & g_{(2\ 3)}(\eta_2) \end{pmatrix} = \begin{pmatrix} \eta_1 & \eta_2 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

Hence the matrix representations of $g_{(1\ 2)}$ and $g_{(2\ 3)}$ with respect to the basis $\{\eta_1, \eta_2\}$ is given by

$$\begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix},$$

respectively.

It is easy to see that $g_{(1\ 2)}$ is a reflection with respect to the y-axis which forms an angle $\pi/2$ with the x-axis. Indeed,

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos \pi & \sin \pi \\ \sin \pi & -\cos \pi \end{pmatrix}.$$

Similarly, $g_{(2\ 3)}$ is a reflection with respect to a line L which forms an angle $\pi/6$ with the x-axis, since

$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \cos\frac{\pi}{3} & \sin\frac{\pi}{3} \\ \sin\frac{\pi}{3} & -\cos\frac{\pi}{3} \end{pmatrix}.$$

Moreover, the y axis and the line L form an angle

$$\frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3}.$$