
Exercise 10. Given a finite reflection group W ⊂ O(V ), let

U = {λ ∈ V | ∀t ∈ W, tλ = λ}.

Let U ′ denote the orthogonal complement of U in V . Then show that the restriction homo-
morphism W → O(U ′) defined by t 7→ t|U ′ is injective, and the image W |U ′ is an essential
finite reflection group in O(U ′).

Proof. For notational convenience, let ϕ : W → O(U ′) denote the restriction homomor-
phism, that is, ϕ(t) = t|U ′ for t ∈ W .

First we show that ϕ is injective. Suppose s, t ∈ W and ϕ(s) = ϕ(t). Given λ ∈ V ,
there exist vectors λ1 ∈ U and λ2 ∈ U ′ such that λ = λ1 + λ2 since U ′ is the orthogonal
complement of U in V . Then

sλ = s(λ1 + λ2)

= sλ1 + sλ2

= λ1 + sλ2 (by λ1 ∈ U )
= λ1 + tλ2 (by λ2 ∈ U ′ and ϕ(s) = ϕ(t))
= tλ1 + tλ2 (by λ1 ∈ U )
= t(λ1 + λ2)

= tλ.

Therefore s = t, so that the restriction homomorphism is injective.
Next we show that the image W |U ′ is a finite reflection group in O(U ′). It is clearly a

subgroup of O(U ′) by its construction. Since W is a finite reflection group W ,

(i) W 6= {idV },

(ii) W is finite,

(iii) W is generated by a set of reflections.

Since the restriction homomorphism ϕ is injective, (i) implies W |U ′ 6= {idV }, while W |U ′

is finite by (ii). To see that W |U ′ is generated by a set of reflections, because of (iii), it
suffices show that ϕ(s) is a reflection for whenever s ∈ W is a reflection. If s ∈ W is a
reflection, then there exists a nonzero vector α ∈ V such that sα = −α and sh = h for all
h ∈ (Rα)⊥. This implies U ⊂ (Rα)⊥, and hence α ∈ U ′. In particular, ϕ(s) is a reflection
in U ′. We have now proved that the image W |U ′ is a finite reflection group in O(U ′).

Finally we show that the image W |U ′ is essential. Suppose that λ ∈ U ′ satisfies t′λ = λ
for all t′ ∈ W |U ′ . Then tλ = λ for all t ∈ W , which implies λ ∈ U . Therefore, λ ∈
U ∩ U ′ = {0}. This proves that the image W |U ′ is essential.
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Exercise 11. Let S3 denote the symmetric group of order 3 and ε1, ε2, ε3 denote the stan-
dard basis of R3. For each σ ∈ S3, we define gσ ∈ O(R3) by gσ(

∑3
i=1 ciεi) =

∑3
i=1 ciεσ(i),

and set G3 = {gσ | σ ∈ S3}. Moreover we set η1 = 1√
2
(ε1−ε2) and η2 =

1√
6
(ε1+ε2−2ε3).

Compute the matrix representations of g(1 2) and g(2 3) with respect to the basis {η1, η2}.
Show that they are reflections whose lines of symmetry form an angle π/3.

Proof. By definition,

g(1 2)(η1) = g(1 2)

(
1√
2
(ε1 − ε2)

)
=

1√
2
(ε2 − ε1) = −η1,

g(1 2)(η2) = g(1 2)

(
1√
6
(ε1 + ε2 − 2ε3)

)
=

1√
6
(ε2 + ε1 − 2ε3) = η2,

g(2 3)(η1) = g(2 3)

(
1√
2
(ε1 − ε2)

)
=

1√
2
(ε1 − ε3) =

1

2
η1 +

√
3

2
η2,

g(2 3)(η2) = g(2 3)

(
1√
6
(ε1 + ε2 − 2ε3)

)
=

1√
6
(ε1 + ε3 − 2ε2) =

√
3

2
η1 −

1

2
η2.

Therefore (
g(1 2)(η1) g(1 2)(η2)

)
=
(
η1 η2

)(−1 0
0 1

)
,

(
g(2 3)(η1) g(2 3)(η2)

)
=
(
η1 η2

)( 1
2

√
3
2√

3
2

−1
2

)
.

Hence the matrix representations of g(1 2) and g(2 3) with respect to the basis {η1, η2} is
given by (

−1 0
0 1

)
,

(
1
2

√
3
2√

3
2

−1
2

)
,

respectively.
It is easy to see that g(1 2) is a reflection with respect to the y-axis which forms an angle

π/2 with the x-axis. Indeed,(
−1 0
0 1

)
=

(
cos π sinπ
sin π − cosπ

)
.

Similarly, g(2 3) is a reflection with respect to a line L which forms an angle π/6 with the
x-axis, since (

1
2

√
3
2√

3
2

−1
2

)
=

(
cos π

3
sin π

3

sin π
3

− cos π
3

)
.

Moreover, the y axis and the line L form an angle
π

2
− π

6
=

π

3
.
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