June 20, 2016

Definition 53. Let G be a group acting on a set Ω. We say that G acts simply transitively on Ω if
(i) G acts transitively on Ω,
(ii) for every pair α, β of elements in Ω, there exists a unique element $g \in G$ such that $g . \alpha=\beta$.

Lemma 54. Let G be a finite group acting transitively on a set Ω. Let G_{α} denote the stabilizer of α in G, that is,

$$
G_{\alpha}=\{g \in G \mid g \cdot \alpha=\alpha\} .
$$

Then the following are equivalent:
(i) G acts simply transitively on Ω,
(ii) for every $\alpha \in \Omega, G_{\alpha}=\{1\}$,
(iii) for some $\alpha \in \Omega, G_{\alpha}=\{1\}$,
(iv) $|G|=|\Omega|$.

Proof. (i) \Longrightarrow (ii): Immediate from Definition 53(ii) by setting $\alpha=\beta$.
(ii) \Longrightarrow (iii): Trivial.
(iii) \Longrightarrow (iv): The mapping $\phi: G \rightarrow \Omega$ defined by $g \mapsto g . \alpha$ is a bijection. Indeed, ϕ is surjective since G is transitive. If $\phi(g)=\phi(h)$, then $g . \alpha=h . \alpha$, hence $g^{-1} h \in G_{\alpha}=\{1\}$. This implies $g=h$. Thus ϕ is injective.
(iv) \Longrightarrow (i): Let $\alpha \in \Omega$. Then

$$
\begin{aligned}
|G| & =|\Omega| \\
& =\sum_{\beta \in \Omega} 1 \\
& \leq \sum_{\beta \in \Omega}|\{g \in G \mid g \cdot \alpha=\beta\}| \\
& =\left|\bigcup_{\beta \in \Omega}\{g \in G \mid g \cdot \alpha=\beta\}\right| \\
& =|\{g \in G \mid g \cdot \alpha \in \Omega\}| \\
& =|G| .
\end{aligned}
$$

This forces

$$
|\{g \in G \mid g \cdot \alpha=\beta\}|=1 \quad(\forall \beta \in \Omega)
$$

Since $\alpha \in \Omega$ was arbitrary, we obtain (i).

For the remainder of today's lecture, we let Φ be a root system.
Theorem 55. The group $W(\Phi)$ acts simply transitively on $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$.
Proof. By Theorem 36, $W(\Phi)$ acts transitively on $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$. Let $w \in W(\Phi)$ and $\Pi \in \mathcal{P}(\Phi)$, and suppose $w \Pi=\Pi$. Let Δ be the unique simple system contained in Π. Then by Corollary 49 and Notation 45,

$$
\begin{aligned}
\ell(w) & =n(w) \\
& =\left|\Pi \cap w^{-1}(-\Pi)\right| \\
& =\left|\Pi \cap\left(-w^{-1} \Pi\right)\right| \\
& =|\Pi \cap(-\Pi)| \\
& =|\emptyset| \\
& =0 .
\end{aligned}
$$

Thus $w=1$. Therefore, $W(\Phi)$ acts simply transitively on $\mathcal{P}(\Phi)$.
Next suppose $w \Delta=\Delta$. Then by Lemma 33(i), we obtain $w \Pi=\Pi$, and hence $w=1$. Therefore, $W(\Phi)$ acts simply transitively on $\mathcal{S}(\Phi)$.

In what follows, we fix a simple system $\Delta \in \mathcal{S}(\Phi)$. Let $\Pi=\Phi \cap \mathbf{R}_{\geq 0} \Delta$ be the unique positive system in Φ containing Δ.

Notation 56. Let $S=\left\{s_{\alpha} \mid \alpha \in \Delta\right\}$. For $I \subset S$, we define

$$
\begin{aligned}
W_{I} & =\langle I\rangle, \\
\Delta_{I} & =\left\{\alpha \in \Delta \mid s_{\alpha} \in I\right\}, \\
V_{I} & =\mathbf{R} \Delta_{I}, \\
\Phi_{I} & =\Phi \cap V_{I}, \\
\Pi_{I} & =\Pi \cap V_{I} .
\end{aligned}
$$

Lemma 57. For $w \in\left\langle s_{\alpha} \mid \alpha \in \Phi_{I}\right\rangle$, we have
(i) $w V_{I}=V_{I}$,
(ii) $w\left(\Pi \backslash \Pi_{I}\right)=\Pi \backslash \Pi_{I}$.

Proof. It suffices to show (i) and (ii) for $w=s_{\alpha}$ with $\alpha \in \Phi_{I}$. Let $\alpha \in \Phi_{I}$.
(i) For $\beta \in \Delta_{I} \subset V_{I}, s_{\alpha} \beta \in \mathbf{R} \alpha+\mathbf{R} \beta \subset V_{I}$. Thus $s_{\alpha} \Delta_{I} \subset V_{I}$, and this implies $s_{\alpha} V_{I}=V_{I}$.
(ii) Let $\beta \in \Pi \backslash \Pi_{I}$. Then $\beta \notin V_{I}=\mathbf{R} \Delta_{I}$, so there exists $\gamma \in \Delta \backslash \Delta_{I}$ such that

$$
\beta \in \mathbf{R}_{>0} \gamma+\mathbf{R}_{\geq 0} \Delta
$$

Since $\alpha \in \Phi_{I} \subset V_{I}=\mathbf{R} \Delta_{I}$, we have

$$
\begin{aligned}
s_{\alpha} \beta & =\beta-\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha \\
& \in \mathbf{R}_{>0} \gamma+\mathbf{R}_{\geq 0} \Delta+\mathbf{R} \alpha \\
& \subset \mathbf{R}_{>0} \gamma+\mathbf{R}_{\geq 0} \Delta+\mathbf{R} \Delta_{I} .
\end{aligned}
$$

Since $\gamma \notin \Delta_{I}$, the coefficient of γ in the expansion of $s_{\alpha} \beta$ is positive. This implies $s_{\alpha} \beta \in$ $\Phi \cap \mathbf{R}_{\geq 0} \Delta=\Pi$. Since $\beta \in \Pi \backslash \Pi_{I}$ was arbitrary, we obtain $s_{\alpha}\left(\Pi \backslash \Pi_{I}\right) \subset \Pi$. Since

$$
\begin{align*}
s_{\alpha}\left(\Pi \backslash \Pi_{I}\right) \cap V_{I} & =s_{\alpha}\left(\Pi \backslash V_{I}\right) \cap V_{I} \\
& =s_{\alpha}\left(\Pi \backslash V_{I}\right) \cap s_{\alpha} V_{I} \tag{i}\\
& =s_{\alpha}\left(\left(\Pi \backslash V_{I}\right) \cap V_{I}\right) \\
& =\emptyset,
\end{align*}
$$

we have $s_{\alpha}\left(\Pi \backslash \Pi_{I}\right) \subset \Pi \backslash V_{I}=\Pi \backslash \Pi_{I}$. Since s_{α} is a bijection, we conclude $s_{\alpha}\left(\Pi \backslash \Pi_{I}\right)=$ $\Pi \backslash \Pi_{I}$.

Proposition 58. Let $I \subset S$.

(i) Φ_{I} is a root system with simple system Δ_{I}.
(ii) Π_{I} is the unique positive system of Φ_{I} containing the simple system Δ_{I}.
(iii) $W\left(\Phi_{I}\right)=W_{I}$.
(iv) Let ℓ be the length function of W with respect to Δ. Then the restriction of ℓ to W_{I} coincides with the length function ℓ_{I} of W_{I} with respect to the simple system Δ_{I}.

Proof. (i) For $\alpha \in \Phi_{I} \subset V_{I}$,

$$
\begin{aligned}
\mathbf{R} \alpha \cap \Phi_{I} & =(\mathbf{R} \alpha \cap \Phi) \cap V_{I} \\
& =\{\alpha,-\alpha\} \cap V_{I} \\
& =\{\alpha,-\alpha\} .
\end{aligned}
$$

Since

$$
\begin{aligned}
s_{\alpha} \Phi_{I} & =s_{\alpha} \Phi \cap s_{\alpha} V_{I} \\
& =\Phi \cap V_{I} \\
& =\Phi_{I}
\end{aligned} \quad \text { (by Lemma 57(i)) }
$$

we see that Φ_{I} is a root system. Since Δ is linearly independent, so is Δ_{I}. Since

$$
\begin{aligned}
\Phi_{I} & =\Phi \cap V_{I} \\
& \subset\left(\mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta\right) \cap \mathbf{R} \Delta_{I}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\mathbf{R}_{\geq 0} \Delta \cap \mathbf{R} \Delta_{I}\right) \cup\left(\mathbf{R}_{\leq 0} \Delta \cap \mathbf{R} \Delta_{I}\right) \\
& =\left(\mathbf{R}_{\geq 0} \Delta_{I}\right) \cup\left(\mathbf{R}_{\leq 0} \Delta_{I}\right)
\end{aligned}
$$

we see that Δ_{I} is a simple system in Φ_{I}.
(ii) Since

$$
\begin{aligned}
\Pi_{I} & =\Pi \cap V_{I} \\
& =\Phi \cap \mathbf{R}_{\geq 0} \Delta \cap V_{I} \\
& =\Phi \cap V_{I} \cap \mathbf{R}_{\geq 0} \Delta \cap \mathbf{R} \Delta_{I} \\
& =\Phi_{I} \cap \mathbf{R}_{\geq 0} \Delta_{I},
\end{aligned}
$$

the result follows from Lemma 29(i).
(iii)

$$
\begin{aligned}
W\left(\Phi_{I}\right) & =\left\langle s_{\alpha} \mid \alpha \in \Delta_{I}\right\rangle \quad \text { (by Theorem 41) } \\
& =\langle I\rangle \\
& =W_{I} .
\end{aligned}
$$

(iv) Let $w \in W_{I}=W(\Phi)$. Then by Lemma 57(i), we have

$$
\begin{equation*}
w \Phi_{I}=\Phi_{I} \tag{90}
\end{equation*}
$$

and by Lemma 57(ii), we have $w\left(\Pi \backslash \Pi_{I}\right)=\Pi \backslash \Pi_{I} \subset \Pi$. This implies $w\left(\Pi \backslash \Pi_{I}\right) \cap(-\Pi)=$ \emptyset. Thus

$$
\begin{align*}
w \Pi \cap(-\Pi) & =w\left(\Pi_{I} \cup\left(\Pi \backslash \Pi_{I}\right)\right) \cap(-\Pi) \\
& =\left(w \Pi_{I} \cup w\left(\Pi \backslash \Pi_{I}\right)\right) \cap(-\Pi) \\
& =\left(w\left(\Pi_{I}\right) \cap(-\Pi)\right) \cup\left(w\left(\Pi \backslash \Pi_{I}\right) \cap(-\Pi)\right) \\
& =w\left(\Pi_{I}\right) \cap(-\Pi) \\
& =w\left(\Pi \cap V_{I}\right) \cap(-\Pi) \\
& =w \Pi \cap w V_{I} \cap V_{I} \cap(-\Pi) \\
& =w\left(\Pi \cap V_{I}\right) \cap\left(-\Pi \cap V_{I}\right) \\
& =w\left(\Pi_{I}\right) \cap\left(-\Pi_{I}\right) \tag{91}
\end{align*}
$$

(by (90)).

Therefore,

$$
\begin{array}{rlrl}
\ell(w) & =\left|\Pi \cap w^{-1}(-\Pi)\right| & & \text { (by Corollary 49) } \\
& =|w \Pi \cap(-\Pi)| & & \text { (by (91)) } \\
& =\left|w\left(\Pi_{I}\right) \cap\left(-\Pi_{I}\right)\right| & & \\
& =\left|\Pi_{I} \cap w^{-1}\left(-\Pi_{I}\right)\right| & \text { (by Corollary } 49) .
\end{array}
$$

