June 20, 2016

For today's lecture, we let V be a finite-dimensional vector space over **R**, with positivedefinite inner product. Recall that for $0 \neq \alpha \in V$, $s_{\alpha} \in O(V)$ denotes the reflection

$$s_{\alpha}(\lambda) = \lambda - \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad (\lambda \in V).$$

Definition 1. Let Φ be a nonempty finite set of nonzero vectors in V. We say that Φ is a *root system* if

- (R1) $\Phi \cap \mathbf{R}\alpha = \{\alpha, -\alpha\}$ for all $\alpha \in \Phi$,
- (R2) $s_{\alpha}\Phi = \Phi$ for all $\alpha \in \Phi$.

Let Φ be a root system in V, and let $W = W(\Phi) = \langle s_{\alpha} \mid \alpha \in \Phi \rangle$.

Definition 2. Let Φ be a root system in V. A subset Π of Φ is called a *positive system* if there exists a total ordering < of V such that $\Pi = \{ \alpha \in \Phi \mid \alpha > 0 \}$.

Definition 3. Let Δ be a subset of a root system Φ . We call Δ a *simple system* if Δ is a basis of the subspace spanned by Φ , and if moreover $\Phi \subset \mathbf{R}_{>0}\Delta \cup \mathbf{R}_{<0}\Delta$ holds.

Theorem 4. If Δ is a simple system in a root system Φ , then $W = \langle s_{\alpha} \mid \alpha \in \Delta \rangle$.

Recall that $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$ denote the set of positive systems and that of simple systems, respectively, in Φ .

Lemma 5. Let $w \in W$. Then

(i) $w\Delta \in \mathcal{S}(\Phi)$ and $\pi(w\Delta) = w\pi(\Delta)$ for all $\Delta \in \mathcal{S}(\Phi)$,

(ii) $w\Pi \in \mathcal{P}(\Phi)$ and $\pi^{-1}(w\Pi) = w\pi^{-1}(\Pi)$ for all $\Pi \in \mathcal{P}(\Phi)$.

Theorem 6. The group W acts transitively on both $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$.

Notation 7. For $w \in W$, we write

$$n(w) = |\Pi \cap w^{-1}(-\Pi)|.$$

Definition 8. For $w \in W$, we define the *length* of w, denoted $\ell(w)$, to be

$$\ell(w) = \min\{r \in \mathbf{Z} \mid r \ge 0, \ \exists \alpha_1, \dots, \alpha_r \in \Delta, \ w = s_{\alpha_1} \cdots s_{\alpha_r}\}.$$

By convention, $\ell(1) = 0$.

Corollary 9. If $w \in W$, then $n(w) = \ell(w)$.