June 20, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Recall that for $0 \neq \alpha \in V, s_{\alpha} \in O(V)$ denotes the reflection

$$
s_{\alpha}(\lambda)=\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad(\lambda \in V) .
$$

Definition 1. Let Φ be a nonempty finite set of nonzero vectors in V. We say that Φ is a root system if
(R1) $\Phi \cap \mathbf{R} \alpha=\{\alpha,-\alpha\}$ for all $\alpha \in \Phi$,
(R2) $s_{\alpha} \Phi=\Phi$ for all $\alpha \in \Phi$.
Let Φ be a root system in V, and let $W=W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle$.
Definition 2. Let Φ be a root system in V. A subset Π of Φ is called a positive system if there exists a total ordering $<$ of V such that $\Pi=\{\alpha \in \Phi \mid \alpha>0\}$.

Definition 3. Let Δ be a subset of a root system Φ. We call Δ a simple system if Δ is a basis of the subspace spanned by Φ, and if moreover $\Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta$ holds.

Theorem 4. If Δ is a simple system in a root system Φ, then $W=\left\langle s_{\alpha} \mid \alpha \in \Delta\right\rangle$.
Recall that $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$ denote the set of positive systems and that of simple systems, respectively, in Φ.

Lemma 5. Let $w \in W$. Then
(i) $w \Delta \in \mathcal{S}(\Phi)$ and $\pi(w \Delta)=w \pi(\Delta)$ for all $\Delta \in \mathcal{S}(\Phi)$,
(ii) $w \Pi \in \mathcal{P}(\Phi)$ and $\pi^{-1}(w \Pi)=w \pi^{-1}(\Pi)$ for all $\Pi \in \mathcal{P}(\Phi)$.

Theorem 6. The group W acts transitively on both $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$.
Notation 7. For $w \in W$, we write

$$
n(w)=\left|\Pi \cap w^{-1}(-\Pi)\right|
$$

Definition 8. For $w \in W$, we define the length of w, denoted $\ell(w)$, to be

$$
\ell(w)=\min \left\{r \in \mathbf{Z} \mid r \geq 0, \exists \alpha_{1}, \ldots, \alpha_{r} \in \Delta, w=s_{\alpha_{1}} \cdots s_{\alpha_{r}}\right\} .
$$

By convention, $\ell(1)=0$.
Corollary 9. If $w \in W$, then $n(w)=\ell(w)$.

