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For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product. Let � be a root system in V with simple system �. Let W =

W (�) = hs↵ | ↵ 2 �i. Recall Notation 56.

Lemma 59. Let I ⇢ S. If u 2 W satisfies

`(u) = min{`(x) | x 2 uWI},

then

`(uv) = `(u) + `(v) (8v 2 WI).

Proof. Let q = `(u). Then there exist s1, . . . , sq 2 S such that

u = s1 · · · sq.

Let v 2 WI . Then by Proposition 58(iv), we have `(v) = `I(v). This implies that there
exist sq+1, . . . , sq+r 2 I such that

v = sq+1 · · · sq+r,

where r = `(v). Then uv = s1 · · · sq+r, hence `(uv)  q + r.
Suppose `(w) < q + r. Then by Theorem 48, there exist i, j with 1  i < j  q + r

such that
uv = s1 · · · ŝi · · · ŝj · · · sq+r.

If i < j  q, then
uv = s1 · · · ŝi · · · ŝj · · · sqv,

hence u = s1 · · · ŝi · · · ŝj · · · sq, contradicting `(u) = q. Similarly, if q + 1  i < j, then

uv = usq+1 · · · ŝi · · · ŝj · · · sq+r,

hence v = sq+1 · · · ŝi · · · ŝj · · · sq+r, contradicting `(v) = r. Thus

1  i  q < j  q + r.

Setting

u0
= s1 · · · ŝi · · · sq,

v0 = sq+1 · · · ŝj · · · sq+r 2 WI ,

we have u0v0 = uv, and hence u0
= uvv0�1 2 uWI . But `(u0

) < q = `(u), contrary to the
minimality of `(u). Therefore, we conclude `(w) = q + r = `(u) + `(v).

Notation 60. For I ⇢ S, we define

W I
= {w 2 W | `(ws) > `(w) for all s 2 I}.
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Lemma 61. Let I ⇢ S and w 2 W . If u0 2 wWI satisfies

`(u0) = min{`(x) | x 2 wWI},

and u1 2 W I \ wWI , then u0 = u1. In particular,

(i) W I \ wWI consists of a single element,

(ii) min{`(x) | x 2 wWI} is achieved by a unique element,

and the elements described in (i) and (ii) coincide.

Proof. Since u1 2 wWI = u0WI , there exists v 2 WI such that u1 = u0v. Suppose v 6= 1.
Then there exists s 2 I such that `(vs) < `(v). This implies

`(u1s) = `(u0vs)

= `(u0) + `(vs) (by Lemma 59)
< `(u0) + `(v)

= `(u0v) (by Lemma 59)
= `(u1).

This contradicts u1 2 W I . Thus, we conclude v = 1, or equivalently, u1 = u0. The rest of
the statements are immediate.

Lemma 62. Let I ⇢ S. The mapping � : W I ⇥ WI ! W defined by �(u, v) = uv is a

bijection, and it satisfies

`(�(u, v)) = `(u) + `(v) (u 2 W I , v 2 WI).

Proof. Let w 2 W . Choose u0 = u1 2 W I \ wWI as in Lemma 61. Then there exists
v 2 WI such that u0 = wv. Then w = �(u0, v

�1
). Thus � is surjective.

Suppose (u, v), (u0, v0) 2 W I ⇥ WI and �(u, v) = �(u0, v0). Then uv = u0v0. Thus
u, u0 2 W I \ uWI , which forces u = u0 by Lemma 61(i). Then we also have v = v0. Thus
� is injective.

Finally, for u 2 W I , we have u 2 W I \uWI , so Lemma 61 implies `(u) = min{`(x) |
x 2 uWI}. Then by Lemma 59, we have `(uv) = `(u) + `(v) for all v 2 WI .

Notation 63. Let t be an indeterminate over Q, or in other words, consider the polynomial
ring Q[t] (or its field of fractions Q(t)). For a subset X of W , write

X(t) =
X

w2X

t`(w).

Definition 64. The Poincar´e polynomial W (t) of W is defined as

W (t) =
X

w2W

t`(w).
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We remark that W (t) is independent of the choice of a simple system, even though the
length function ` does depend on it. Indeed, let �0 be another simple system. Then there
exists z 2 W such that �0

= z� by Theorem 36. Let

S = {s↵ | ↵ 2 �},
S 0

= {s↵ | ↵ 2 �

0}.

Then

zSz�1
= {zs↵z�1 | ↵ 2 �}
= {sz↵ | ↵ 2 �} (by Lemma 12)
= {s↵ | ↵ 2 z�}
= {s↵ | ↵ 2 �

0}
= S 0.

If we denote by the length function with respect to � and �

0 by `� and `�0 , respectively,
then `�(w) = `�0

(zwz�1
) for all w 2 W . Thus

X

w2W

t`�(w)
=

X

w2W

t`�0 (zwz�1)
=

X

w2W

t`�0 (w).

Lemma 65. For I ⇢ S,

W (t) = W I
(t)WI(t).

Proof. By Lemma 62,

W (t) =
X

w2W

t`(w)

=

X

(u,v)2W I⇥WI

t`(�(u,v))

=

X

u2W I

X

v2WI

t`(u)+`(v)

=

X

u2W I

t`(u)
X

v2WI

t`(v)

= W I
(t)WI(t).

Lemma 66. Let ⇧ be the unique positive system containing �. For w 2 W , set

K(w) = {s 2 S | `(ws) > `(w)}.

Then the following are equivalent:

(i) K(w) = ;,
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(ii) w⇧ = �⇧,

(iii) `(w) = |⇧|.
Moreover, there exists a unique w 2 W satisfying these conditions.

Proof. Equivalence of (ii) and (iii) follows from Corollary 49.

(i) () `(ws) < `(w) (8s 2 S)

() w� ⇢ �⇧ (by Lemma 47)
() w⇧ ⇢ �⇧

() (ii).

The uniqueness of w follows from Theorem 55.

Proposition 67. Then

X

I⇢S

(�1)

|I| W (t)

WI(t)
=

X

I⇢S

(�1)

|I|W I
(t) = t|⇧|.

Proof. The first equality follows immediately from Lemma 65. For I ⇢ S, we have

w 2 W I () K(w) � I.

Thus
X

I⇢S

(�1)

|I|W I
(t) =

X

I⇢S

(�1)

|I|
X

w2W I

t`(w)

=

X

w2W

X

I⇢S
w2W I

(�1)

|I|t`(w)

=

X

w2W

X

I⇢K(w)

(�1)

|I|t`(w)

=

X

w2W

t`(w)

|K(w)|X

i=0

X

I⇢K(w)
|I|=i

(�1)

i

=

X

w2W

t`(w)

|K(w)|X

i=0

(�1)

i

✓
|K(w)|

i

◆

=

X

w2W
|K(w)|=0

t`(w)
+

X

w2W
|K(w)|�1

t`(w)
(1 + (�1))

|K(w)|

=

X

w2W
K(w)=;

t`(w)

= t|⇧|

by Lemma 66.
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