June 27, 2016

For today's lecture, we let V be a finite-dimensional vector space over **R**, with positivedefinite inner product. Let Φ be a root system in V with simple system Δ . Let $W = W(\Phi) = \langle s_{\alpha} \mid \alpha \in \Phi \rangle$. Recall Notation 56.

Lemma 59. Let $I \subset S$. If $u \in W$ satisfies

$$\ell(u) = \min\{\ell(x) \mid x \in uW_I\},\$$

then

$$\ell(uv) = \ell(u) + \ell(v) \quad (\forall v \in W_I).$$

Proof. Let $q = \ell(u)$. Then there exist $s_1, \ldots, s_q \in S$ such that

$$u = s_1 \cdots s_q$$

Let $v \in W_I$. Then by Proposition 58(iv), we have $\ell(v) = \ell_I(v)$. This implies that there exist $s_{q+1}, \ldots, s_{q+r} \in I$ such that

$$v = s_{q+1} \cdots s_{q+r},$$

where $r = \ell(v)$. Then $uv = s_1 \cdots s_{q+r}$, hence $\ell(uv) \le q + r$.

Suppose $\ell(w) < q + r$. Then by Theorem 48, there exist i, j with $1 \le i < j \le q + r$ such that

$$uv = s_1 \cdots \hat{s}_i \cdots \hat{s}_j \cdots s_{q+r}$$

If $i < j \leq q$, then

$$uv = s_1 \cdots \hat{s}_i \cdots \hat{s}_j \cdots s_q v,$$

hence $u = s_1 \cdots \hat{s}_i \cdots \hat{s}_j \cdots s_q$, contradicting $\ell(u) = q$. Similarly, if $q + 1 \le i < j$, then

$$uv = us_{q+1} \cdots \hat{s}_i \cdots \hat{s}_j \cdots s_{q+r},$$

hence $v = s_{q+1} \cdots \hat{s}_i \cdots \hat{s}_j \cdots s_{q+r}$, contradicting $\ell(v) = r$. Thus

$$1 \le i \le q < j \le q + r.$$

Setting

$$u' = s_1 \cdots \hat{s}_i \cdots s_q,$$

$$v' = s_{q+1} \cdots \hat{s}_j \cdots s_{q+r} \in W_I,$$

we have u'v' = uv, and hence $u' = uvv'^{-1} \in uW_I$. But $\ell(u') < q = \ell(u)$, contrary to the minimality of $\ell(u)$. Therefore, we conclude $\ell(w) = q + r = \ell(u) + \ell(v)$.

Notation 60. For $I \subset S$, we define

$$W^{I} = \{ w \in W \mid \ell(ws) > \ell(w) \text{ for all } s \in I \}.$$

Lemma 61. Let $I \subset S$ and $w \in W$. If $u_0 \in wW_I$ satisfies

$$\ell(u_0) = \min\{\ell(x) \mid x \in wW_I\},\$$

and $u_1 \in W^I \cap wW_I$, then $u_0 = u_1$. In particular,

- (i) $W^I \cap wW_I$ consists of a single element,
- (ii) $\min\{\ell(x) \mid x \in wW_I\}$ is achieved by a unique element,

and the elements described in (i) and (ii) coincide.

Proof. Since $u_1 \in wW_I = u_0W_I$, there exists $v \in W_I$ such that $u_1 = u_0v$. Suppose $v \neq 1$. Then there exists $s \in I$ such that $\ell(vs) < \ell(v)$. This implies

$$\ell(u_1s) = \ell(u_0vs)$$

$$= \ell(u_0) + \ell(vs) \qquad \text{(by Lemma 59)}$$

$$< \ell(u_0) + \ell(v)$$

$$= \ell(u_0v) \qquad \text{(by Lemma 59)}$$

$$= \ell(u_1).$$

This contradicts $u_1 \in W^I$. Thus, we conclude v = 1, or equivalently, $u_1 = u_0$. The rest of the statements are immediate.

Lemma 62. Let $I \subset S$. The mapping $\phi : W^I \times W_I \to W$ defined by $\phi(u, v) = uv$ is a bijection, and it satisfies

$$\ell(\phi(u, v)) = \ell(u) + \ell(v) \quad (u \in W^I, v \in W_I).$$

Proof. Let $w \in W$. Choose $u_0 = u_1 \in W^I \cap wW_I$ as in Lemma 61. Then there exists $v \in W_I$ such that $u_0 = wv$. Then $w = \phi(u_0, v^{-1})$. Thus ϕ is surjective.

Suppose $(u, v), (u', v') \in W^I \times W_I$ and $\phi(u, v) = \phi(u', v')$. Then uv = u'v'. Thus $u, u' \in W^I \cap uW_I$, which forces u = u' by Lemma 61(i). Then we also have v = v'. Thus ϕ is injective.

Finally, for $u \in W^I$, we have $u \in W^I \cap uW_I$, so Lemma 61 implies $\ell(u) = \min\{\ell(x) \mid x \in uW_I\}$. Then by Lemma 59, we have $\ell(uv) = \ell(u) + \ell(v)$ for all $v \in W_I$.

Notation 63. Let t be an indeterminate over \mathbf{Q} , or in other words, consider the polynomial ring $\mathbf{Q}[t]$ (or its field of fractions $\mathbf{Q}(t)$). For a subset X of W, write

$$X(t) = \sum_{w \in X} t^{\ell(w)}.$$

Definition 64. The *Poincaré polynomial* W(t) of W is defined as

$$W(t) = \sum_{w \in W} t^{\ell(w)}.$$

We remark that W(t) is independent of the choice of a simple system, even though the length function ℓ does depend on it. Indeed, let Δ' be another simple system. Then there exists $z \in W$ such that $\Delta' = z\Delta$ by Theorem 36. Let

$$S = \{ s_{\alpha} \mid \alpha \in \Delta \},\$$

$$S' = \{ s_{\alpha} \mid \alpha \in \Delta' \}.$$

Then

$$zSz^{-1} = \{zs_{\alpha}z^{-1} \mid \alpha \in \Delta\}$$

= $\{s_{z\alpha} \mid \alpha \in \Delta\}$ (by Lemma 12)
= $\{s_{\alpha} \mid \alpha \in z\Delta\}$
= $\{s_{\alpha} \mid \alpha \in \Delta'\}$
= S' .

If we denote by the length function with respect to Δ and Δ' by ℓ_{Δ} and $\ell_{\Delta'}$, respectively, then $\ell_{\Delta}(w) = \ell_{\Delta'}(zwz^{-1})$ for all $w \in W$. Thus

$$\sum_{w \in W} t^{\ell_{\Delta}(w)} = \sum_{w \in W} t^{\ell_{\Delta'}(zwz^{-1})} = \sum_{w \in W} t^{\ell_{\Delta'}(w)}.$$

Lemma 65. For $I \subset S$,

$$W(t) = W^I(t)W_I(t).$$

Proof. By Lemma 62,

$$W(t) = \sum_{w \in W} t^{\ell(w)}$$

=
$$\sum_{(u,v) \in W^I \times W_I} t^{\ell(\phi(u,v))}$$

=
$$\sum_{u \in W^I} \sum_{v \in W_I} t^{\ell(u) + \ell(v)}$$

=
$$\sum_{u \in W^I} t^{\ell(u)} \sum_{v \in W_I} t^{\ell(v)}$$

=
$$W^I(t) W_I(t).$$

Lemma 66. Let Π be the unique positive system containing Δ . For $w \in W$, set

$$K(w) = \{ s \in S \mid \ell(ws) > \ell(w) \}.$$

Then the following are equivalent:

(i) $K(w) = \emptyset$,

(ii) $w\Pi = -\Pi$,

(iii) $\ell(w) = |\Pi|.$

Moreover, there exists a unique $w \in W$ satisfying these conditions. Proof. Equivalence of (ii) and (iii) follows from Corollary 49.

(i)
$$\iff \ell(ws) < \ell(w) \quad (\forall s \in S)$$

 $\iff w\Delta \subset -\Pi$ (by Lemma 47)
 $\iff w\Pi \subset -\Pi$
 \iff (ii).

The uniqueness of w follows from Theorem 55.

Proposition 67. Then

$$\sum_{I \subset S} (-1)^{|I|} \frac{W(t)}{W_I(t)} = \sum_{I \subset S} (-1)^{|I|} W^I(t) = t^{|\Pi|}.$$

Proof. The first equality follows immediately from Lemma 65. For $I \subset S$, we have

$$w \in W^I \iff K(w) \supset I.$$

Thus

$$\begin{split} \sum_{I \subset S} (-1)^{|I|} W^{I}(t) &= \sum_{I \subset S} (-1)^{|I|} \sum_{w \in W^{I}} t^{\ell(w)} \\ &= \sum_{w \in W} \sum_{I \subset S} (-1)^{|I|} t^{\ell(w)} \\ &= \sum_{w \in W} \sum_{I \subset K(w)} (-1)^{|I|} t^{\ell(w)} \\ &= \sum_{w \in W} t^{\ell(w)} \sum_{i=0}^{|K(w)|} \sum_{I \subset K(w)} (-1)^{i} \\ &= \sum_{w \in W} t^{\ell(w)} \sum_{i=0}^{|K(w)|} (-1)^{i} \binom{|K(w)|}{i} \\ &= \sum_{\substack{w \in W \\ |K(w)| = 0}} t^{\ell(w)} + \sum_{\substack{w \in W \\ |K(w)| \ge 1}} t^{\ell(w)} (1 + (-1))^{|K(w)|} \\ &= \sum_{\substack{w \in W \\ K(w) = \emptyset}} t^{\ell(w)} \\ &= t^{|\Pi|} \end{split}$$

by Lemma 66.