June 27, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Let Φ be a root system in V with simple system Δ. Let $W=$ $W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle$. Recall Notation 56.

Lemma 59. Let $I \subset S$. If $u \in W$ satisfies

$$
\ell(u)=\min \left\{\ell(x) \mid x \in u W_{I}\right\},
$$

then

$$
\ell(u v)=\ell(u)+\ell(v) \quad\left(\forall v \in W_{I}\right) .
$$

Proof. Let $q=\ell(u)$. Then there exist $s_{1}, \ldots, s_{q} \in S$ such that

$$
u=s_{1} \cdots s_{q} .
$$

Let $v \in W_{I}$. Then by Proposition 58(iv), we have $\ell(v)=\ell_{I}(v)$. This implies that there exist $s_{q+1}, \ldots, s_{q+r} \in I$ such that

$$
v=s_{q+1} \cdots s_{q+r}
$$

where $r=\ell(v)$. Then $u v=s_{1} \cdots s_{q+r}$, hence $\ell(u v) \leq q+r$.
Suppose $\ell(w)<q+r$. Then by Theorem 48, there exist i, j with $1 \leq i<j \leq q+r$ such that

$$
u v=s_{1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{q+r} .
$$

If $i<j \leq q$, then

$$
u v=s_{1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{q} v
$$

hence $u=s_{1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{q}$, contradicting $\ell(u)=q$. Similarly, if $q+1 \leq i<j$, then

$$
u v=u s_{q+1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{q+r},
$$

hence $v=s_{q+1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{q+r}$, contradicting $\ell(v)=r$. Thus

$$
1 \leq i \leq q<j \leq q+r .
$$

Setting

$$
\begin{aligned}
u^{\prime} & =s_{1} \cdots \hat{s}_{i} \cdots s_{q} \\
v^{\prime} & =s_{q+1} \cdots \hat{s}_{j} \cdots s_{q+r} \in W_{I},
\end{aligned}
$$

we have $u^{\prime} v^{\prime}=u v$, and hence $u^{\prime}=u v v^{\prime-1} \in u W_{I}$. But $\ell\left(u^{\prime}\right)<q=\ell(u)$, contrary to the minimality of $\ell(u)$. Therefore, we conclude $\ell(w)=q+r=\ell(u)+\ell(v)$.

Notation 60. For $I \subset S$, we define

$$
W^{I}=\{w \in W \mid \ell(w s)>\ell(w) \text { for all } s \in I\} .
$$

Lemma 61. Let $I \subset S$ and $w \in W$. If $u_{0} \in w W_{I}$ satisfies

$$
\ell\left(u_{0}\right)=\min \left\{\ell(x) \mid x \in w W_{I}\right\},
$$

and $u_{1} \in W^{I} \cap w W_{I}$, then $u_{0}=u_{1}$. In particular,
(i) $W^{I} \cap w W_{I}$ consists of a single element,
(ii) $\min \left\{\ell(x) \mid x \in w W_{I}\right\}$ is achieved by a unique element,
and the elements described in (i) and (ii) coincide.
Proof. Since $u_{1} \in w W_{I}=u_{0} W_{I}$, there exists $v \in W_{I}$ such that $u_{1}=u_{0} v$. Suppose $v \neq 1$. Then there exists $s \in I$ such that $\ell(v s)<\ell(v)$. This implies

$$
\begin{aligned}
\ell\left(u_{1} s\right) & =\ell\left(u_{0} v s\right) \\
& =\ell\left(u_{0}\right)+\ell(v s) \\
& <\ell\left(u_{0}\right)+\ell(v) \\
& =\ell\left(u_{0} v\right) \\
& =\ell\left(u_{1}\right) .
\end{aligned}
$$

$$
=\ell\left(u_{0}\right)+\ell(v s) \quad(\text { by Lemma } 59)
$$

$$
=\ell\left(u_{0} v\right) \quad(\text { by Lemma } 59)
$$

This contradicts $u_{1} \in W^{I}$. Thus, we conclude $v=1$, or equivalently, $u_{1}=u_{0}$. The rest of the statements are immediate.

Lemma 62. Let $I \subset S$. The mapping $\phi: W^{I} \times W_{I} \rightarrow W$ defined by $\phi(u, v)=u v$ is a bijection, and it satisfies

$$
\ell(\phi(u, v))=\ell(u)+\ell(v) \quad\left(u \in W^{I}, v \in W_{I}\right) .
$$

Proof. Let $w \in W$. Choose $u_{0}=u_{1} \in W^{I} \cap w W_{I}$ as in Lemma 61. Then there exists $v \in W_{I}$ such that $u_{0}=w v$. Then $w=\phi\left(u_{0}, v^{-1}\right)$. Thus ϕ is surjective.

Suppose $(u, v),\left(u^{\prime}, v^{\prime}\right) \in W^{I} \times W_{I}$ and $\phi(u, v)=\phi\left(u^{\prime}, v^{\prime}\right)$. Then $u v=u^{\prime} v^{\prime}$. Thus $u, u^{\prime} \in W^{I} \cap u W_{I}$, which forces $u=u^{\prime}$ by Lemma 61(i). Then we also have $v=v^{\prime}$. Thus ϕ is injective.

Finally, for $u \in W^{I}$, we have $u \in W^{I} \cap u W_{I}$, so Lemma 61 implies $\ell(u)=\min \{\ell(x) \mid$ $\left.x \in u W_{I}\right\}$. Then by Lemma 59, we have $\ell(u v)=\ell(u)+\ell(v)$ for all $v \in W_{I}$.

Notation 63. Let t be an indeterminate over \mathbf{Q}, or in other words, consider the polynomial ring $\mathbf{Q}[t]$ (or its field of fractions $\mathbf{Q}(t)$). For a subset X of W, write

$$
X(t)=\sum_{w \in X} t^{\ell(w)} .
$$

Definition 64. The Poincaré polynomial $W(t)$ of W is defined as

$$
W(t)=\sum_{w \in W} t^{\ell(w)} .
$$

We remark that $W(t)$ is independent of the choice of a simple system, even though the length function ℓ does depend on it. Indeed, let Δ^{\prime} be another simple system. Then there exists $z \in W$ such that $\Delta^{\prime}=z \Delta$ by Theorem 36. Let

$$
\begin{aligned}
S & =\left\{s_{\alpha} \mid \alpha \in \Delta\right\}, \\
S^{\prime} & =\left\{s_{\alpha} \mid \alpha \in \Delta^{\prime}\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
z S z^{-1} & =\left\{z s_{\alpha} z^{-1} \mid \alpha \in \Delta\right\} \\
& =\left\{s_{z \alpha} \mid \alpha \in \Delta\right\} \\
& =\left\{s_{\alpha} \mid \alpha \in z \Delta\right\} \\
& =\left\{s_{\alpha} \mid \alpha \in \Delta^{\prime}\right\} \\
& =S^{\prime} .
\end{aligned}
$$

If we denote by the length function with respect to Δ and Δ^{\prime} by ℓ_{Δ} and $\ell_{\Delta^{\prime}}$, respectively, then $\ell_{\Delta}(w)=\ell_{\Delta^{\prime}}\left(z w z^{-1}\right)$ for all $w \in W$. Thus

$$
\sum_{w \in W} t^{\ell_{\Delta}(w)}=\sum_{w \in W} t^{\ell_{\Delta^{\prime}}\left(z w z^{-1}\right)}=\sum_{w \in W} t^{\ell_{\Delta^{\prime}}(w)} .
$$

Lemma 65. For $I \subset S$,

$$
W(t)=W^{I}(t) W_{I}(t)
$$

Proof. By Lemma 62,

$$
\begin{aligned}
W(t) & =\sum_{w \in W} t^{\ell(w)} \\
& =\sum_{(u, v) \in W^{I} \times W_{I}} t^{\ell(\phi(u, v))} \\
& =\sum_{u \in W^{I}} \sum_{v \in W_{I}} t^{\ell(u)+\ell(v)} \\
& =\sum_{u \in W^{I}} t^{\ell(u)} \sum_{v \in W_{I}} t^{\ell(v)} \\
& =W^{I}(t) W_{I}(t) .
\end{aligned}
$$

Lemma 66. Let Π be the unique positive system containing Δ. For $w \in W$, set

$$
K(w)=\{s \in S \mid \ell(w s)>\ell(w)\} .
$$

Then the following are equivalent:
(i) $K(w)=\emptyset$,
(ii) $w \Pi=-\Pi$,
(iii) $\ell(w)=|\Pi|$.

Moreover, there exists a unique $w \in W$ satisfying these conditions.
Proof. Equivalence of (ii) and (iii) follows from Corollary 49.

$$
\text { (i) } \begin{aligned}
& \Longleftrightarrow \ell(w s)<\ell(w) \quad(\forall s \in S) \\
& \Longleftrightarrow w \Delta \subset-\Pi \\
& \Longleftrightarrow w \Pi \subset-\Pi \\
& \Longleftrightarrow \text { (ii). }
\end{aligned}
$$

The uniqueness of w follows from Theorem 55.
Proposition 67. Then

$$
\sum_{I \subset S}(-1)^{|I|} \frac{W(t)}{W_{I}(t)}=\sum_{I \subset S}(-1)^{|I|} W^{I}(t)=t^{|\Pi|}
$$

Proof. The first equality follows immediately from Lemma 65. For $I \subset S$, we have

$$
w \in W^{I} \Longleftrightarrow K(w) \supset I .
$$

Thus

$$
\begin{aligned}
\sum_{I \subset S}(-1)^{|I|} W^{I}(t) & =\sum_{I \subset S}(-1)^{|I|} \sum_{w \in W^{I}} t^{\ell(w)} \\
& =\sum_{w \in W} \sum_{I \subset S}(-1)^{|I|} t^{\ell(w)} \\
& =\sum_{w \in W} \sum_{I \subset K(w)}(-1)^{|I|} t^{\ell(w)} \\
& =\sum_{w \in W} t^{\ell(w)} \sum_{i=0}^{|K(w)|} \sum_{\substack{I \subset K(w) \\
|I|=i}}(-1)^{i} \\
& =\sum_{w \in W} t^{\ell(w)} \sum_{i=0}^{|K(w)|}(-1)^{i}\binom{|K(w)|}{i} \\
& =\sum_{\substack{w \in W}} t^{\ell(w)}+\sum_{w \in W} t^{\ell(w)}(1+(-1))^{|K(w)|} \\
& =\sum_{\substack{w \in W}} t^{\ell(w) \mid=0} \left\lvert\, \begin{array}{l}
|K(w)| \geq 1
\end{array}\right. \\
& =t^{K(w)}
\end{aligned}
$$

by Lemma 66.

