June 27, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Let Φ be a root system in V with simple system Δ. and let $W=W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle$. Let $\Pi=\Phi \cap \mathbf{R}_{\geq 0} \Delta$ be the unique positive system in Φ containing Δ.

Lemma 1. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $t s_{\alpha} t^{-1}=s_{t \alpha}$.
Theorem 2. $W=\left\langle s_{\alpha} \mid \alpha \in \Delta\right\rangle$.
Definition 3. For $w \in W$, we define the length of w, denoted $\ell(w)$, to be

$$
\ell(w)=\min \left\{r \in \mathbf{Z} \mid r \geq 0, \exists \alpha_{1}, \ldots, \alpha_{r} \in \Delta, w=s_{\alpha_{1}} \cdots s_{\alpha_{r}}\right\} .
$$

By convention, $\ell(1)=0$.
Lemma 4. For $w \in W$ and $\alpha \in \Delta$, the following statements hold:
(i) $w \alpha>0 \Longrightarrow \ell\left(w s_{\alpha}\right)=\ell(w)+1$.
(ii) $w \alpha<0 \Longrightarrow \ell\left(w s_{\alpha}\right)=\ell(w)-1$.

Theorem 5. Let $\alpha_{1}, \ldots, \alpha_{r} \in \Delta$ and $w=s_{1} \cdots s_{r} \in W$, where $s_{i}=s_{\alpha_{i}}$ for $1 \leq i \leq r$. If $\ell(w)<r$, then there exist i, j with $1 \leq i<j \leq r$ such that

$$
w=s_{1} \cdots s_{i-1} s_{i+1} \cdots s_{j-1} s_{j+1} \cdots s_{r} .
$$

Notation 6. For $w \in W$, we write

$$
n(w)=\left|\Pi \cap w^{-1}(-\Pi)\right| .
$$

Corollary 7. If $w \in W$, then $n(w)=\ell(w)$.
Theorem 8. The group $W(\Phi)$ acts simply transitively on $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$.

Notation 9. Let $S=\left\{s_{\alpha} \mid \alpha \in \Delta\right\}$. For $I \subset S$, we define

$$
\begin{aligned}
W_{I} & =\langle I\rangle, \\
\Delta_{I} & =\left\{\alpha \in \Delta \mid s_{\alpha} \in I\right\}, \\
V_{I} & =\mathbf{R} \Delta_{I}, \\
\Phi_{I} & =\Phi \cap V_{I}, \\
\Pi_{I} & =\Pi \cap V_{I} .
\end{aligned}
$$

Proposition 10. Let $I \subset S$.
(i) Φ_{I} is a root system with simple system Δ_{I}.
(ii) Π_{I} is the unique positive system of Φ_{I} containing the simple system Δ_{I}.
(iii) $W\left(\Phi_{I}\right)=W_{I}$.
(iv) Let ℓ be the length function of W with respect to Δ. Then the restriction of ℓ to W_{I} coincides with the length function ℓ_{I} of W_{I} with respect to the simple system Δ_{I}.

