June 27, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R} , with positivedefinite inner product. Let Φ be a root system in V with simple system Δ . and let $W = W(\Phi) = \langle s_{\alpha} \mid \alpha \in \Phi \rangle$. Let $\Pi = \Phi \cap \mathbf{R}_{\geq 0} \Delta$ be the unique positive system in Φ containing Δ .

Lemma 1. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $ts_{\alpha}t^{-1} = s_{t\alpha}$.

Theorem 2. $W = \langle s_{\alpha} \mid \alpha \in \Delta \rangle$.

Definition 3. For $w \in W$, we define the *length* of w, denoted $\ell(w)$, to be

$$\ell(w) = \min\{r \in \mathbf{Z} \mid r \ge 0, \exists \alpha_1, \dots, \alpha_r \in \Delta, w = s_{\alpha_1} \cdots s_{\alpha_r}\}.$$

By convention, $\ell(1) = 0$.

Lemma 4. For $w \in W$ and $\alpha \in \Delta$, the following statements hold:

- (i) $w\alpha > 0 \implies \ell(ws_{\alpha}) = \ell(w) + 1.$
- (ii) $w\alpha < 0 \implies \ell(ws_{\alpha}) = \ell(w) 1.$

Theorem 5. Let $\alpha_1, \ldots, \alpha_r \in \Delta$ and $w = s_1 \cdots s_r \in W$, where $s_i = s_{\alpha_i}$ for $1 \le i \le r$. If $\ell(w) < r$, then there exist i, j with $1 \le i < j \le r$ such that

$$w = s_1 \cdots s_{i-1} s_{i+1} \cdots s_{j-1} s_{j+1} \cdots s_r.$$

Notation 6. For $w \in W$, we write

$$n(w) = |\Pi \cap w^{-1}(-\Pi)|.$$

Corollary 7. If $w \in W$, then $n(w) = \ell(w)$.

Theorem 8. The group $W(\Phi)$ acts simply transitively on $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$.

Notation 9. Let $S = \{s_{\alpha} \mid \alpha \in \Delta\}$. For $I \subset S$, we define

$$W_{I} = \langle I \rangle,$$

$$\Delta_{I} = \{ \alpha \in \Delta \mid s_{\alpha} \in I \},$$

$$V_{I} = \mathbf{R}\Delta_{I},$$

$$\Phi_{I} = \Phi \cap V_{I},$$

$$\Pi_{I} = \Pi \cap V_{I}.$$

Proposition 10. Let $I \subset S$.

- (i) Φ_I is a root system with simple system Δ_I .
- (ii) Π_I is the unique positive system of Φ_I containing the simple system Δ_I .
- (iii) $W(\Phi_I) = W_I$.
- (iv) Let ℓ be the length function of W with respect to Δ . Then the restriction of ℓ to W_I coincides with the length function ℓ_I of W_I with respect to the simple system Δ_I .