Exercise 12. Let $n \geq 2$ be an integer, and let $\mathcal{S}_{n}$ denote the symmetric group of degree $n$. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ denote the standard basis of $\mathbf{R}^{n}$. For each $\sigma \in \mathcal{S}_{n}$, we define $g_{\sigma} \in O\left(\mathbf{R}^{n}\right)$ by setting

$$
g_{\sigma}\left(\sum_{i=1}^{n} c_{i} \varepsilon_{i}\right)=\sum_{i=1}^{n} c_{i} \varepsilon_{\sigma(i)},
$$

and set $G_{n}=\left\{g_{\sigma} \mid \sigma \in \mathcal{S}_{n}\right\}$. Show that $\left\{s_{\varepsilon_{i}-\varepsilon_{j}} \mid 1 \leq i<j \leq n\right\}$ is precisely the set of reflections in $G_{n}$. In other words, for $\sigma \in \mathcal{S}_{n}$, show that $g_{\sigma}$ is a reflection if and only if $\sigma$ is a transposition.

Proof. We saw earlier that $g_{\sigma}$ is a reflection if $\sigma$ is a transposition. (See p. 11 of our lecture note.) Next assume $g_{\sigma}$ is a reflection. Then $g_{\sigma}^{2}=1$. Since the mapping $\mathcal{S}_{n} \rightarrow G_{n}$ defined by $\sigma \mapsto g_{\sigma}$ is an isomorphism, we have

$$
\sigma^{2}=1
$$

Therefore there exist $2 m$ integers $1 \leq k_{1}, \ldots, k_{2 m} \leq n$ such that

$$
\sigma=\left(k_{1} k_{2}\right)\left(k_{3} k_{4}\right) \cdots\left(k_{2 m-1} k_{2 m}\right) .
$$

Without loss of generality, we may assume $k_{i}=i$ for $1 \leq i \leq 2 m$, so that

$$
\sigma=(12)(34) \cdots(2 m-12 m) .
$$

We need to show that $m=1$. We give two independent proofs of this.
(1) Since $g_{\sigma}$ is a reflection, there exists a nonzero vector $\alpha \in \mathbf{R}^{n}$ such that $g_{\sigma}=s_{\alpha}$. For any $1 \leq i \leq m$,

$$
s_{\alpha}\left(\varepsilon_{2 i-1}\right)=\varepsilon_{2 i-1}-\frac{2\left(\varepsilon_{2 i-1}, \alpha\right)}{(\alpha, \alpha)} \alpha
$$

Also since $\sigma=(12)(34) \cdots(2 m-12 m)$,

$$
g_{\sigma}\left(\varepsilon_{2 i-1}\right)=\varepsilon_{2 i} .
$$

Therefore we get

$$
\alpha \in \mathbf{R}\left(\varepsilon_{2 i-1}-\varepsilon_{2 i}\right) .
$$

Since $i$ was arbitrary, this holds for every $1 \leq i \leq m$. But since $\alpha$ is nonzero and $\varepsilon_{2 i-1}-\varepsilon_{2 i}$ $(1 \leq i \leq m)$ are linearly independent, $m$ must be equal to 1 .
(2) For $1 \leq i \leq m$, by the definition of $g_{\sigma}$, we have

$$
g_{\sigma}\left(\varepsilon_{2 i-1}-\varepsilon_{2 i}\right)=\varepsilon_{2 i}-\varepsilon_{2 i-1}=-\left(\varepsilon_{2 i-1}-\varepsilon_{2 i}\right) .
$$

Since $\varepsilon_{2 i-1}-\varepsilon_{2 i}(1 \leq i \leq m)$ are linearly independent, $g_{\sigma}$ has an eigenvalue -1 with multiplicity at least $m$. On the other hand, since $g_{\sigma}$ is a reflection, $g_{\sigma}$ has an eigenvalue -1 with multiplicity exactly 1 . This proves $m=1$ as desired.

Exercise 13. With reference to Exercise 12, set $\Phi=\left\{ \pm\left(\varepsilon_{i}-\varepsilon_{j}\right) \mid 1 \leq i<j \leq n\right\}$ is a root system, with a positive system $\Pi=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i<j \leq n\right\}$. For $w \in W(\Phi)$, setting $n(w)=\left|\Pi \cap w^{-1}(-\Pi)\right|$, show that

$$
n\left(g_{\sigma}\right)=|\{(i, j) \mid i, j \in\{1,2, \ldots, n\}, i<j, \sigma(i)>\sigma(j)\}| \quad\left(\sigma \in \mathcal{S}_{n}\right)
$$

Proof. Fix $\sigma \in \mathcal{S}_{n}$. By definition, we have

$$
\begin{aligned}
g_{\sigma} \Pi & =\left\{g_{\sigma}\left(\varepsilon_{i}-\varepsilon_{j}\right) \mid 1 \leq i<j \leq n\right\} \\
& =\left\{\varepsilon_{\sigma(i)}-\varepsilon_{\sigma(j)} \mid 1 \leq i<j \leq n\right\}
\end{aligned}
$$

Since $\varepsilon_{\sigma(i)}-\varepsilon_{\sigma(j)} \in-\Pi$ if and only if $\sigma(i)>\sigma(j)$,

$$
g_{\sigma} \Pi \cap(-\Pi)=\left\{\varepsilon_{\sigma(i)}-\varepsilon_{\sigma(j)} \mid 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\right\}
$$

Therefore

$$
\begin{aligned}
n\left(g_{\sigma}\right) & =\left|\Pi \cap g_{\sigma}^{-1}(-\Pi)\right| \\
& =\left|g_{\sigma} \Pi \cap(-\Pi)\right| \\
& =\left|\left\{\varepsilon_{\sigma(i)}-\varepsilon_{\sigma(j)} \mid 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\right\}\right| \\
& =|\{(i, j) \mid 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\}|
\end{aligned}
$$

The result follows.

