
Exercise 12. Let n ≥ 2 be an integer, and let Sn denote the symmetric group of degree n.
Let ε1, . . . , εn denote the standard basis of Rn. For each σ ∈ Sn, we define gσ ∈ O(Rn)
by setting

gσ(
n∑

i=1

ciεi) =
n∑

i=1

ciεσ(i),

and set Gn = {gσ | σ ∈ Sn}. Show that {sεi−εj | 1 ≤ i < j ≤ n} is precisely the set of
reflections in Gn. In other words, for σ ∈ Sn, show that gσ is a reflection if and only if σ is
a transposition.

Proof. We saw earlier that gσ is a reflection if σ is a transposition. (See p. 11 of our lecture
note.) Next assume gσ is a reflection. Then g2σ = 1. Since the mapping Sn → Gn defined
by σ 7→ gσ is an isomorphism, we have

σ2 = 1.

Therefore there exist 2m integers 1 ≤ k1, . . . , k2m ≤ n such that

σ = (k1 k2)(k3 k4) · · · (k2m−1 k2m).

Without loss of generality, we may assume ki = i for 1 ≤ i ≤ 2m, so that

σ = (1 2)(3 4) · · · (2m− 1 2m).

We need to show that m = 1. We give two independent proofs of this.
(1) Since gσ is a reflection, there exists a nonzero vector α ∈ Rn such that gσ = sα. For

any 1 ≤ i ≤ m,

sα(ε2i−1) = ε2i−1 −
2(ε2i−1, α)

(α, α)
α

Also since σ = (1 2)(3 4) · · · (2m− 1 2m),

gσ(ε2i−1) = ε2i.

Therefore we get
α ∈ R(ε2i−1 − ε2i).

Since i was arbitrary, this holds for every 1 ≤ i ≤ m. But since α is nonzero and ε2i−1−ε2i
(1 ≤ i ≤ m) are linearly independent, m must be equal to 1.

(2) For 1 ≤ i ≤ m, by the definition of gσ, we have

gσ(ε2i−1 − ε2i) = ε2i − ε2i−1 = −(ε2i−1 − ε2i).

Since ε2i−1 − ε2i (1 ≤ i ≤ m) are linearly independent, gσ has an eigenvalue −1 with
multiplicity at least m. On the other hand, since gσ is a reflection, gσ has an eigenvalue −1
with multiplicity exactly 1. This proves m = 1 as desired.
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Exercise 13. With reference to Exercise 12, set Φ = {±(εi − εj) | 1 ≤ i < j ≤ n} is a
root system, with a positive system Π = {εi− εj | 1 ≤ i < j ≤ n}. For w ∈ W (Φ), setting
n(w) = |Π ∩ w−1(−Π)|, show that

n(gσ) = |{(i, j) | i, j ∈ {1, 2, . . . , n}, i < j, σ(i) > σ(j)}| (σ ∈ Sn).

Proof. Fix σ ∈ Sn. By definition, we have

gσΠ = {gσ(εi − εj) | 1 ≤ i < j ≤ n}
= {εσ(i) − εσ(j) | 1 ≤ i < j ≤ n}.

Since εσ(i) − εσ(j) ∈ −Π if and only if σ(i) > σ(j),

gσΠ ∩ (−Π) = {εσ(i) − εσ(j) | 1 ≤ i < j ≤ n, σ(i) > σ(j)}.

Therefore

n(gσ) = |Π ∩ g−1
σ (−Π)|

= |gσΠ ∩ (−Π)|
= |{εσ(i) − εσ(j) | 1 ≤ i < j ≤ n, σ(i) > σ(j)}|
= |{(i, j) | 1 ≤ i < j ≤ n, σ(i) > σ(j)}|.

The result follows.

2


