Exercise 12. Let $n \ge 2$ be an integer, and let S_n denote the symmetric group of degree n. Let $\varepsilon_1, \ldots, \varepsilon_n$ denote the standard basis of \mathbb{R}^n . For each $\sigma \in S_n$, we define $g_{\sigma} \in O(\mathbb{R}^n)$ by setting

$$g_{\sigma}(\sum_{i=1}^{n} c_i \varepsilon_i) = \sum_{i=1}^{n} c_i \varepsilon_{\sigma(i)},$$

and set $G_n = \{g_{\sigma} \mid \sigma \in S_n\}$. Show that $\{s_{\varepsilon_i - \varepsilon_j} \mid 1 \leq i < j \leq n\}$ is precisely the set of reflections in G_n . In other words, for $\sigma \in S_n$, show that g_{σ} is a reflection if and only if σ is a transposition.

Proof. We saw earlier that g_{σ} is a reflection if σ is a transposition. (See p. 11 of our lecture note.) Next assume g_{σ} is a reflection. Then $g_{\sigma}^2 = 1$. Since the mapping $S_n \to G_n$ defined by $\sigma \mapsto g_{\sigma}$ is an isomorphism, we have

$$\sigma^2 = 1.$$

Therefore there exist 2m integers $1 \le k_1, \ldots, k_{2m} \le n$ such that

$$\sigma = (k_1 \ k_2)(k_3 \ k_4) \cdots (k_{2m-1} \ k_{2m}).$$

Without loss of generality, we may assume $k_i = i$ for $1 \le i \le 2m$, so that

$$\sigma = (1\ 2)(3\ 4)\cdots(2m-1\ 2m).$$

We need to show that m = 1. We give two independent proofs of this.

(1) Since g_{σ} is a reflection, there exists a nonzero vector $\alpha \in \mathbb{R}^n$ such that $g_{\sigma} = s_{\alpha}$. For any $1 \leq i \leq m$,

$$s_{\alpha}(\varepsilon_{2i-1}) = \varepsilon_{2i-1} - \frac{2(\varepsilon_{2i-1}, \alpha)}{(\alpha, \alpha)} \alpha$$

Also since $\sigma = (1 \ 2)(3 \ 4) \cdots (2m - 1 \ 2m)$,

$$g_{\sigma}(\varepsilon_{2i-1}) = \varepsilon_{2i}.$$

Therefore we get

$$\alpha \in \mathbf{R}(\varepsilon_{2i-1} - \varepsilon_{2i}).$$

Since *i* was arbitrary, this holds for every $1 \le i \le m$. But since α is nonzero and $\varepsilon_{2i-1} - \varepsilon_{2i}$ $(1 \le i \le m)$ are linearly independent, *m* must be equal to 1.

(2) For $1 \le i \le m$, by the definition of g_{σ} , we have

$$g_{\sigma}(\varepsilon_{2i-1}-\varepsilon_{2i})=\varepsilon_{2i}-\varepsilon_{2i-1}=-(\varepsilon_{2i-1}-\varepsilon_{2i}).$$

Since $\varepsilon_{2i-1} - \varepsilon_{2i}$ $(1 \le i \le m)$ are linearly independent, g_{σ} has an eigenvalue -1 with multiplicity at least m. On the other hand, since g_{σ} is a reflection, g_{σ} has an eigenvalue -1 with multiplicity exactly 1. This proves m = 1 as desired.

Exercise 13. With reference to Exercise 12, set $\Phi = \{\pm(\varepsilon_i - \varepsilon_j) \mid 1 \le i < j \le n\}$ is a root system, with a positive system $\Pi = \{\varepsilon_i - \varepsilon_j \mid 1 \le i < j \le n\}$. For $w \in W(\Phi)$, setting $n(w) = |\Pi \cap w^{-1}(-\Pi)|$, show that

$$n(g_{\sigma}) = |\{(i,j) \mid i, j \in \{1, 2, \dots, n\}, i < j, \sigma(i) > \sigma(j)\}| \qquad (\sigma \in \mathcal{S}_n).$$

Proof. Fix $\sigma \in S_n$. By definition, we have

$$g_{\sigma}\Pi = \{g_{\sigma}(\varepsilon_i - \varepsilon_j) \mid 1 \le i < j \le n\} \\ = \{\varepsilon_{\sigma(i)} - \varepsilon_{\sigma(j)} \mid 1 \le i < j \le n\}.$$

Since $\varepsilon_{\sigma(i)} - \varepsilon_{\sigma(j)} \in -\Pi$ if and only if $\sigma(i) > \sigma(j)$,

$$g_{\sigma} \Pi \cap (-\Pi) = \{ \varepsilon_{\sigma(i)} - \varepsilon_{\sigma(j)} \mid 1 \le i < j \le n, \sigma(i) > \sigma(j) \}.$$

Therefore

$$n(g_{\sigma}) = |\Pi \cap g_{\sigma}^{-1}(-\Pi)|$$

= $|g_{\sigma}\Pi \cap (-\Pi)|$
= $|\{\varepsilon_{\sigma(i)} - \varepsilon_{\sigma(j)} \mid 1 \le i < j \le n, \sigma(i) > \sigma(j)\}|$
= $|\{(i, j) \mid 1 \le i < j \le n, \sigma(i) > \sigma(j)\}|.$

The result follows.