July 4, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Let Φ be a root system in V with simple system Δ, and let $W=$ $W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle$. Let $\Pi=\Phi \cap \mathbf{R}_{\geq 0} \Delta$ be the unique positive system in Φ containing Δ.

Recall Notation 56 and Proposition 67:

$$
\begin{equation*}
\sum_{I \varsubsetneqq S} \frac{(-1)^{|I|}}{W_{I}(t)}=\frac{t^{|\Pi|}-(-1)^{|S|}}{W(t)} \tag{92}
\end{equation*}
$$

Continuing Example 16 with $n=4$, write $W=G_{4}, s_{i}=s_{\varepsilon_{i}-\varepsilon_{i+1}}$ for $i=1,2,3$, so that $S=\left\{s_{1}, s_{2}, s_{3}\right\}$. Then

$$
\begin{aligned}
W_{\emptyset}(t) & =1 \\
W_{\left\{s_{i}\right\}}(t) & =t+1, \\
W_{\left\{s_{1}, s_{2}\right\}}(t) & =(t+1)\left(t^{2}+t+1\right) .
\end{aligned}
$$

If we compute $W_{I}(t)$ for all $I \varsubsetneqq S$, then (92) can be used to determine $W(t)$ and, in particular, $|W|$.

Define

$$
\begin{aligned}
& C=\{\lambda \in V \mid(\lambda, \alpha)>0(\forall \alpha \in \Delta)\}, \\
& D=\{\lambda \in V \mid(\lambda, \alpha) \geq 0(\forall \alpha \in \Delta)\} .
\end{aligned}
$$

Lemma 68. For each $\lambda \in V$, there exist $w \in W$ such that $w \lambda \in D$. Moreover, in this case, $w \lambda-\lambda \in \mathbf{R}_{\geq 0} \Delta$.
Proof. Let $\lambda \in V$. Define a partial order on the set $W \lambda=\{w \lambda \mid w \in W\}$ by setting

$$
\mu \preceq \mu^{\prime} \Longleftrightarrow \mu^{\prime}-\mu \in \mathbf{R}_{\geq 0} \Delta \quad\left(\mu, \mu^{\prime} \in W \lambda\right)
$$

Since $W \lambda$ is finite, so is its subset

$$
M=\{\mu \in W \lambda \mid \mu \geq \lambda\}
$$

The set M is non-empty since $\lambda \in M$. Thus, there exists a maximal element μ in M. Since $\mu=w \lambda$ for some $w \in W$ and $\mu-\lambda \in \mathbf{R}_{\geq 0} \Delta$, it remains to show $\mu \in D$.

Suppose, to the contrary, $\mu \notin D$. Then there exists $\alpha \in \Delta$ such that $(\mu, \alpha)<0$. By the definition of a reflection, we have $s_{\alpha} \mu-\mu \in \mathbf{R}_{>0} \alpha$, so

$$
\begin{aligned}
s_{\alpha} \mu-\lambda & =\left(s_{\alpha} \mu-\mu\right)+(\mu-\lambda) \\
& \in \mathbf{R}_{>0} \alpha+\mathbf{R}_{\geq 0} \Delta \\
& \subset \mathbf{R}_{\geq 0} \Delta \backslash\{0\} .
\end{aligned}
$$

This implies $s_{\alpha} \mu \geq \lambda$ and $s_{\alpha} \mu \neq \lambda$. Moreover, $s_{\alpha} \mu=s_{\alpha} w \lambda \in W \lambda$. Therefore, $s_{\alpha} \mu \in M$, and this contradicts maximality of μ in M.

Notation 69. For a subset U of V, define

$$
\operatorname{Stab}_{W}(U)=\{w \in W \mid w \lambda=\lambda(\forall \lambda \in U)\} .
$$

Lemma 70. (i) If $\lambda \in D$, then

$$
\operatorname{Stab}_{W}(\{\lambda\})=\left\langle s_{\alpha} \mid \alpha \in \Delta, s_{\alpha} \lambda=\lambda\right\rangle .
$$

(ii) If $\lambda, \mu \in D, w \in W$ and $w \lambda=\mu$, then $\lambda=\mu$.
(iii) If $\lambda \in C$, then $\operatorname{Stab}_{W}(\{\lambda\})=\{1\}$.
(iv) If $\lambda \in V$, then

$$
\operatorname{Stab}_{W}(\{\lambda\})=\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \lambda=\lambda\right\rangle
$$

Proof. First we prove, for $w \in W$,

$$
\begin{align*}
\lambda, \mu \in D, w \lambda & =\mu \Longrightarrow \lambda=\mu, w \in\left\langle s_{\alpha} \mid \alpha \in \Delta, s_{\alpha} \lambda=\lambda\right\rangle, \tag{93}\\
\lambda \in C, \mu \in D, w \lambda & =\mu \tag{94}
\end{align*}
$$

by induction on $n(w)=|w \Pi \cap(-\Pi)|$. If $n(w)=0$, then $\ell(w)=0$ by Corollary 49, hence $w=1$. Then (93) holds. Suppose $n(w)>0$. Then there exists $\beta \in \Pi$ such that $w \beta \in-\Pi$. Since $\Pi \subset \mathbf{R}_{\geq 0} \Delta$, this implies $w \mathbf{R}_{\geq 0} \Delta \cap \mathbf{R}_{\leq 0} \Delta \neq \emptyset$, which in turn implies $w \Delta \cap(-\Pi) \neq \emptyset$. Suppose $w \gamma \in-\Pi$, where $\gamma \in \Delta$. Then by Lemma 47,

$$
\begin{array}{rlr}
\ell\left(w s_{\gamma}\right) & =\ell(w)-1 \\
& =n(w)-1 \quad \quad \text { (by Corollary 49) } \\
& <n(w) . \tag{95}
\end{array}
$$

Since $\mu \in D$ and $-w \gamma \in \Pi \subset \mathbf{R}_{\geq 0} \Delta$, we have

$$
\begin{aligned}
0 & \leq(\mu,-w \gamma) \\
& =-\left(w^{-1} \mu, \gamma\right) \\
& =-(\lambda, \gamma) .
\end{aligned}
$$

If $\lambda \in C$, this is impossible. This implies that (94) holds. If $\lambda \in D$, then this forces $(\lambda, \gamma)=0$, implying $s_{\gamma} \in \operatorname{Stab}_{W}(\{\lambda\})$. Now, we have $w s_{\gamma} \lambda=\mu$ and (95), so we can apply inductive hypothesis to conclude $\lambda=\mu$ and

$$
w s_{\gamma} \in\left\langle s_{\alpha} \mid \alpha \in \Delta, s_{\alpha} \lambda=\lambda\right\rangle .
$$

Thus (93) holds.
Now (ii) follows from (93), while (i) and (iii) follow from (93) and (94), respectively, by setting $\lambda=\mu$.

Finally we prove (iv). Let $\lambda \in V$. Clearly,

$$
\operatorname{Stab}_{W}(\{\lambda\}) \supset\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \lambda=\lambda\right\rangle .
$$

To prove the reverse containment, observe that, by Lemma 68, there exists $z \in W$ such that $z \lambda \in D$. Then

$$
\begin{array}{rlr}
\operatorname{Stab}_{W}(\{\lambda\}) & =\{w \in W \mid w \lambda=\lambda\} \\
& =\left\{w \in W \mid z w z^{-1} z \lambda=z \lambda\right\} \\
& =\left\{z^{-1} x z \in W \mid x z \lambda=z \lambda\right\} \\
& =z^{-1} \operatorname{Stab}_{W}(\{z \lambda\}) z & \\
& =z^{-1}\left\langle s_{\beta} \mid \beta \in \Delta, s_{\beta} z \lambda=z \lambda\right\rangle z & \quad \text { (by (i)) } \\
& =\left\langle z^{-1} s_{\beta} z \mid \beta \in \Delta, z^{-1} s_{\beta} z \lambda=\lambda\right\rangle & \\
& =\left\langle s_{z^{-1}} \mid \beta \in \Delta, s_{z^{-1} \beta} \lambda=\lambda\right\rangle & \text { (by Lem } \\
& \subset\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \lambda=\lambda\right\rangle . &
\end{array}
$$

$$
=\left\langle s_{z^{-1} \beta} \mid \beta \in \Delta, s_{z^{-1} \beta} \lambda=\lambda\right\rangle \quad \text { (by Lemma 12) }
$$

The following property of the set D is referred to as D being a fundamental domain for the action of W on V.

Theorem 71. For each $\lambda \in V,|W \lambda \cap D|=1$.
Proof. By Lemma 68, we have $W \lambda \cap D \neq \emptyset$. Suppose $\mu, \mu^{\prime} \in W \lambda \cap D$. Then Lemma 70(ii) implies $\mu=\mu^{\prime}$.

