July 4, 2016

For today's lecture, we let V be a finite-dimensional vector space over **R**, with positivedefinite inner product. Let Φ be a root system in V with simple system Δ , and let $W = W(\Phi) = \langle s_{\alpha} \mid \alpha \in \Phi \rangle$. Let $\Pi = \Phi \cap \mathbf{R}_{\geq 0} \Delta$ be the unique positive system in Φ containing Δ .

Recall Notation 56 and Proposition 67:

$$\sum_{I \subsetneq S} \frac{(-1)^{|I|}}{W_I(t)} = \frac{t^{|\Pi|} - (-1)^{|S|}}{W(t)}.$$
(92)

Continuing Example 16 with n = 4, write $W = G_4$, $s_i = s_{\varepsilon_i - \varepsilon_{i+1}}$ for i = 1, 2, 3, so that $S = \{s_1, s_2, s_3\}$. Then

$$W_{\emptyset}(t) = 1,$$

$$W_{\{s_i\}}(t) = t + 1,$$

$$W_{\{s_1, s_2\}}(t) = (t + 1)(t^2 + t + 1).$$

If we compute $W_I(t)$ for all $I \subsetneq S$, then (92) can be used to determine W(t) and, in particular, |W|.

Define

$$C = \{ \lambda \in V \mid (\lambda, \alpha) > 0 \; (\forall \alpha \in \Delta) \}, \\ D = \{ \lambda \in V \mid (\lambda, \alpha) \ge 0 \; (\forall \alpha \in \Delta) \}.$$

Lemma 68. For each $\lambda \in V$, there exist $w \in W$ such that $w\lambda \in D$. Moreover, in this case, $w\lambda - \lambda \in \mathbf{R}_{>0}\Delta$.

Proof. Let $\lambda \in V$. Define a partial order on the set $W\lambda = \{w\lambda \mid w \in W\}$ by setting

$$\mu \preceq \mu' \iff \mu' - \mu \in \mathbf{R}_{\geq 0} \Delta \quad (\mu, \mu' \in W \lambda)$$

Since $W\lambda$ is finite, so is its subset

$$M = \{ \mu \in W\lambda \mid \mu \ge \lambda \}.$$

The set M is non-empty since $\lambda \in M$. Thus, there exists a maximal element μ in M. Since $\mu = w\lambda$ for some $w \in W$ and $\mu - \lambda \in \mathbf{R}_{\geq 0}\Delta$, it remains to show $\mu \in D$.

Suppose, to the contrary, $\mu \notin D$. Then there exists $\alpha \in \Delta$ such that $(\mu, \alpha) < 0$. By the definition of a reflection, we have $s_{\alpha}\mu - \mu \in \mathbf{R}_{>0}\alpha$, so

$$s_{\alpha}\mu - \lambda = (s_{\alpha}\mu - \mu) + (\mu - \lambda)$$

$$\in \mathbf{R}_{>0}\alpha + \mathbf{R}_{\geq 0}\Delta$$

$$\subset \mathbf{R}_{>0}\Delta \setminus \{0\}.$$

This implies $s_{\alpha}\mu \ge \lambda$ and $s_{\alpha}\mu \ne \lambda$. Moreover, $s_{\alpha}\mu = s_{\alpha}w\lambda \in W\lambda$. Therefore, $s_{\alpha}\mu \in M$, and this contradicts maximality of μ in M.

Notation 69. For a subset U of V, define

$$\operatorname{Stab}_W(U) = \{ w \in W \mid w\lambda = \lambda \; (\forall \lambda \in U) \}.$$

Lemma 70. (i) If $\lambda \in D$, then

$$\operatorname{Stab}_W(\{\lambda\}) = \langle s_\alpha \mid \alpha \in \Delta, \ s_\alpha \lambda = \lambda \rangle.$$

- (ii) If $\lambda, \mu \in D$, $w \in W$ and $w\lambda = \mu$, then $\lambda = \mu$.
- (iii) If $\lambda \in C$, then $\operatorname{Stab}_W(\{\lambda\}) = \{1\}$.
- (iv) If $\lambda \in V$, then

$$\operatorname{Stab}_W(\{\lambda\}) = \langle s_\alpha \mid \alpha \in \Phi, \ s_\alpha \lambda = \lambda \rangle.$$

Proof. First we prove, for $w \in W$,

$$\lambda, \mu \in D, \ w\lambda = \mu \implies \lambda = \mu, \ w \in \langle s_{\alpha} \mid \alpha \in \Delta, \ s_{\alpha}\lambda = \lambda \rangle, \tag{93}$$

$$\lambda \in C, \ \mu \in D, \ w\lambda = \mu \implies w = 1 \tag{94}$$

by induction on $n(w) = |w\Pi \cap (-\Pi)|$. If n(w) = 0, then $\ell(w) = 0$ by Corollary 49, hence w = 1. Then (93) holds. Suppose n(w) > 0. Then there exists $\beta \in \Pi$ such that $w\beta \in -\Pi$. Since $\Pi \subset \mathbf{R}_{\geq 0}\Delta$, this implies $w\mathbf{R}_{\geq 0}\Delta \cap \mathbf{R}_{\leq 0}\Delta \neq \emptyset$, which in turn implies $w\Delta \cap (-\Pi) \neq \emptyset$. Suppose $w\gamma \in -\Pi$, where $\gamma \in \Delta$. Then by Lemma 47,

$$\ell(ws_{\gamma}) = \ell(w) - 1$$

= $n(w) - 1$ (by Corollary 49)
< $n(w)$. (95)

Since $\mu \in D$ and $-w\gamma \in \Pi \subset \mathbf{R}_{\geq 0}\Delta$, we have

$$0 \le (\mu, -w\gamma)$$

= $-(w^{-1}\mu, \gamma)$
= $-(\lambda, \gamma).$

If $\lambda \in C$, this is impossible. This implies that (94) holds. If $\lambda \in D$, then this forces $(\lambda, \gamma) = 0$, implying $s_{\gamma} \in \text{Stab}_W(\{\lambda\})$. Now, we have $ws_{\gamma}\lambda = \mu$ and (95), so we can apply inductive hypothesis to conclude $\lambda = \mu$ and

$$ws_{\gamma} \in \langle s_{\alpha} \mid \alpha \in \Delta, \ s_{\alpha}\lambda = \lambda \rangle.$$

Thus (93) holds.

Now (ii) follows from (93), while (i) and (iii) follow from (93) and (94), respectively, by setting $\lambda = \mu$.

Finally we prove (iv). Let $\lambda \in V$. Clearly,

$$\operatorname{Stab}_W(\{\lambda\}) \supset \langle s_\alpha \mid \alpha \in \Phi, \ s_\alpha \lambda = \lambda \rangle.$$

To prove the reverse containment, observe that, by Lemma 68, there exists $z \in W$ such that $z\lambda \in D$. Then

$$\begin{aligned} \operatorname{Stab}_{W}(\{\lambda\}) &= \{w \in W \mid w\lambda = \lambda\} \\ &= \{w \in W \mid zwz^{-1}z\lambda = z\lambda\} \\ &= \{z^{-1}xz \in W \mid xz\lambda = z\lambda\} \\ &= z^{-1}\operatorname{Stab}_{W}(\{z\lambda\})z \\ &= z^{-1}\langle s_{\beta} \mid \beta \in \Delta, \ s_{\beta}z\lambda = z\lambda\rangle z \qquad \text{(by (i))} \\ &= \langle z^{-1}s_{\beta}z \mid \beta \in \Delta, \ z^{-1}s_{\beta}z\lambda = \lambda\rangle \\ &= \langle s_{z^{-1}\beta} \mid \beta \in \Delta, \ s_{z^{-1}\beta}\lambda = \lambda\rangle \\ &\subset \langle s_{\alpha} \mid \alpha \in \Phi, \ s_{\alpha}\lambda = \lambda\rangle. \end{aligned}$$

The following property of the set D is referred to as D being a *fundamental domain* for the action of W on V.

Theorem 71. For each $\lambda \in V$, $|W\lambda \cap D| = 1$.

Proof. By Lemma 68, we have $W\lambda \cap D \neq \emptyset$. Suppose $\mu, \mu' \in W\lambda \cap D$. Then Lemma 70(ii) implies $\mu = \mu'$.