July 4, 2016

For today's lecture, we let V be a finite-dimensional vector space over **R**, with positivedefinite inner product. Let Φ be a root system in V with simple system Δ , and let $W = W(\Phi) = \langle s_{\alpha} \mid \alpha \in \Phi \rangle$. Let $\Pi = \Phi \cap \mathbf{R}_{\geq 0} \Delta$ be the unique positive system in Φ containing Δ .

Lemma 1. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $ts_{\alpha}t^{-1} = s_{t\alpha}$.

Theorem 2. $W = \langle s_{\alpha} \mid \alpha \in \Delta \rangle$.

Definition 3. For $w \in W$, we define the *length* of w, denoted $\ell(w)$, to be

$$\ell(w) = \min\{r \in \mathbf{Z} \mid r \ge 0, \exists \alpha_1, \dots, \alpha_r \in \Delta, w = s_{\alpha_1} \cdots s_{\alpha_r}\}.$$

By convention, $\ell(1) = 0$.

Lemma 4. For $w \in W$ and $\alpha \in \Delta$, the following statements hold:

- (i) $w\alpha > 0 \implies \ell(ws_{\alpha}) = \ell(w) + 1.$
- (ii) $w\alpha < 0 \implies \ell(ws_{\alpha}) = \ell(w) 1.$

Notation 5. For $w \in W$, we write

$$n(w) = |\Pi \cap w^{-1}(-\Pi)|.$$

Corollary 6. If $w \in W$, then $n(w) = \ell(w)$.

Notation 7. Let $S = \{s_{\alpha} \mid \alpha \in \Delta\}$. For $I \subset S$, we define

$$W_{I} = \langle I \rangle,$$

$$\Delta_{I} = \{ \alpha \in \Delta \mid s_{\alpha} \in I \},$$

$$V_{I} = \mathbf{R}\Delta_{I},$$

$$\Phi_{I} = \Phi \cap V_{I},$$

$$\Pi_{I} = \Pi \cap V_{I}.$$

Proposition 8. *Let* $I \subset S$ *.*

- (i) Φ_I is a root system with simple system Δ_I .
- (ii) Π_I is the unique positive system of Φ_I containing the simple system Δ_I .
- (iii) $W(\Phi_I) = W_I$.
- (iv) Let ℓ be the length function of W with respect to Δ . Then the restriction of ℓ to W_I coincides with the length function ℓ_I of W_I with respect to the simple system Δ_I .

Notation 9. Let t be an indeterminate over \mathbf{Q} , or in other words, consider the polynomial ring $\mathbf{Q}[t]$ (or its field of fractions $\mathbf{Q}(t)$). For a subset X of W, write

$$X(t) = \sum_{w \in X} t^{\ell(w)}.$$

Proposition 10. Then

$$\sum_{I \subset S} (-1)^{|I|} \frac{W(t)}{W_I(t)} = t^{|\Pi|}$$

Example 11. Let $n \ge 2$ be an integer, and let S_n denote the symmetric group of degree n. In other words, S_n consists of all permutations of the set $\{1, 2, \ldots, n\}$. Since permutations are bijections from $\{1, 2, \ldots, n\}$ to itself, S_n forms a group under composition. Let $\varepsilon_1, \ldots, \varepsilon_n$ denote the standard basis of \mathbf{R}^n . For each $\sigma \in S_n$, we define $g_{\sigma} \in O(\mathbf{R}^n)$ by setting

$$g_{\sigma}(\sum_{i=1}^{n} c_i \varepsilon_i) = \sum_{i=1}^{n} c_i \varepsilon_{\sigma(i)},$$

and set

$$G_n = \{g_\sigma \mid \sigma \in \mathcal{S}_n\}.$$

It is easy to verify that G_n is a subgroup of O(V) and, the mapping $S_n \to G_n$ defined by $\sigma \mapsto g_{\sigma}$ is an isomorphism. It is well known that S_n is generated by its set of transposition. Via the isomorphism $\sigma \mapsto g_{\sigma}$, we see that G_n is generated by the set of reflections

$$\{s_{\varepsilon_i - \varepsilon_j} \mid 1 \le i < j \le n\}.$$
(1)

The set

$$\Phi = \{ \pm (\varepsilon_i - \varepsilon_j) \mid 1 \le i < j \le n \}$$

is a root system, with a positive system

$$\Pi = \{ \varepsilon_i - \varepsilon_j \mid 1 \le i < j \le n \},\tag{2}$$

and simple system

$$\Delta = \{ \varepsilon_i - \varepsilon_{i+1} \mid 1 \le i < n \}.$$

Exercise 12. Set n = 4 in Example 11 and compute the polynomial W(t) using Proposition 10.