July 4, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Let Φ be a root system in V with simple system Δ, and let $W=$ $W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle$. Let $\Pi=\Phi \cap \mathbf{R}_{\geq 0} \Delta$ be the unique positive system in Φ containing Δ.

Lemma 1. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $t s_{\alpha} t^{-1}=s_{t \alpha}$.
Theorem 2. $W=\left\langle s_{\alpha} \mid \alpha \in \Delta\right\rangle$.
Definition 3. For $w \in W$, we define the length of w, denoted $\ell(w)$, to be

$$
\ell(w)=\min \left\{r \in \mathbf{Z} \mid r \geq 0, \exists \alpha_{1}, \ldots, \alpha_{r} \in \Delta, w=s_{\alpha_{1}} \cdots s_{\alpha_{r}}\right\} .
$$

By convention, $\ell(1)=0$.
Lemma 4. For $w \in W$ and $\alpha \in \Delta$, the following statements hold:
(i) $w \alpha>0 \Longrightarrow \ell\left(w s_{\alpha}\right)=\ell(w)+1$.
(ii) $w \alpha<0 \Longrightarrow \ell\left(w s_{\alpha}\right)=\ell(w)-1$.

Notation 5. For $w \in W$, we write

$$
n(w)=\left|\Pi \cap w^{-1}(-\Pi)\right| .
$$

Corollary 6. If $w \in W$, then $n(w)=\ell(w)$.
Notation 7. Let $S=\left\{s_{\alpha} \mid \alpha \in \Delta\right\}$. For $I \subset S$, we define

$$
\begin{aligned}
W_{I} & =\langle I\rangle, \\
\Delta_{I} & =\left\{\alpha \in \Delta \mid s_{\alpha} \in I\right\}, \\
V_{I} & =\mathbf{R} \Delta_{I}, \\
\Phi_{I} & =\Phi \cap V_{I}, \\
\Pi_{I} & =\Pi \cap V_{I} .
\end{aligned}
$$

Proposition 8. Let $I \subset S$.
(i) Φ_{I} is a root system with simple system Δ_{I}.
(ii) Π_{I} is the unique positive system of Φ_{I} containing the simple system Δ_{I}.
(iii) $W\left(\Phi_{I}\right)=W_{I}$.
(iv) Let ℓ be the length function of W with respect to Δ. Then the restriction of ℓ to W_{I} coincides with the length function ℓ_{I} of W_{I} with respect to the simple system Δ_{I}.

Notation 9. Let t be an indeterminate over \mathbf{Q}, or in other words, consider the polynomial ring $\mathbf{Q}[t]$ (or its field of fractions $\mathbf{Q}(t)$). For a subset X of W, write

$$
X(t)=\sum_{w \in X} t^{\ell(w)} .
$$

Proposition 10. Then

$$
\sum_{I \subset S}(-1)^{|I|} \frac{W(t)}{W_{I}(t)}=t^{|\Pi|}
$$

Example 11. Let $n \geq 2$ be an integer, and let \mathcal{S}_{n} denote the symmetric group of degree n. In other words, \mathcal{S}_{n} consists of all permutations of the set $\{1,2, \ldots, n\}$. Since permutations are bijections from $\{1,2, \ldots, n\}$ to itself, \mathcal{S}_{n} forms a group under composition. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ denote the standard basis of \mathbf{R}^{n}. For each $\sigma \in \mathcal{S}_{n}$, we define $g_{\sigma} \in O\left(\mathbf{R}^{n}\right)$ by setting

$$
g_{\sigma}\left(\sum_{i=1}^{n} c_{i} \varepsilon_{i}\right)=\sum_{i=1}^{n} c_{i} \varepsilon_{\sigma(i)},
$$

and set

$$
G_{n}=\left\{g_{\sigma} \mid \sigma \in \mathcal{S}_{n}\right\} .
$$

It is easy to verify that G_{n} is a subgroup of $O(V)$ and, the mapping $\mathcal{S}_{n} \rightarrow G_{n}$ defined by $\sigma \mapsto g_{\sigma}$ is an isomorphism. It is well known that \mathcal{S}_{n} is generated by its set of transposition. Via the isomorphism $\sigma \mapsto g_{\sigma}$, we see that G_{n} is generated by the set of reflections

$$
\begin{equation*}
\left\{s_{\varepsilon_{i}-\varepsilon_{j}} \mid 1 \leq i<j \leq n\right\} . \tag{1}
\end{equation*}
$$

The set

$$
\Phi=\left\{ \pm\left(\varepsilon_{i}-\varepsilon_{j}\right) \mid 1 \leq i<j \leq n\right\}
$$

is a root system, with a positive system

$$
\begin{equation*}
\Pi=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i<j \leq n\right\}, \tag{2}
\end{equation*}
$$

and simple system

$$
\Delta=\left\{\varepsilon_{i}-\varepsilon_{i+1} \mid 1 \leq i<n\right\} .
$$

Exercise 12. Set $n=4$ in Example 11 and compute the polynomial $W(t)$ using Proposition 10.

