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For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product. Let � be a root system in V with simple system �, and let W =

W (�) = hs↵ | ↵ 2 �i.

Notation 72. Let ↵ 2 �. We define

H↵ = {� 2 V | (↵,�) = 0},
H+

↵ = {� 2 V | (↵,�) > 0},
H�

↵ = {� 2 V | (↵,�) < 0},

so that V = H+
↵ [H↵ [H�

↵ (disjoint).

Recall

C =

\

↵2�

H+
↵ ,

D =

\

↵2�

(H+
↵ [H↵).

Lemma 73. For w 2 W and ↵ 2 �,

wH↵ = Hw↵, (96)
wH±

↵ = H±
w↵. (97)

In particular,

s↵H
±
↵ = H⌥

↵ , (98)
[

↵2�

H↵ = w
[

↵2�

H↵. (99)

Proof. Observe

wH↵ = {w� | � 2 V, (↵,�) = 0}
= {µ | µ 2 V, (w↵, µ) = 0}
= Hw↵.

This proves (96). Replacing “=” by “>” or “<”, we obtain (97). Moreover, (97) implies

s↵H
±
↵ = H±

s↵↵

= H±
�↵

= H⌥
↵ ,

while (96) implies

w
[

↵2�

H↵ =

[

↵2�

wH↵
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=

[

↵2�

Hw↵

=

[

↵2w�

H↵

=

[

↵2�

H↵.

Lemma 74. If U is a linear subspace of V such that � \ U 6= ;, then � \ U is a root

system.

Proof. Clearly, � \ U satisfies (R1) of Definition 14. As for (R2), let ↵, � 2 � \ U .
Then s↵� 2 � \ (R↵ + R�) ⇢ � \ U . Thus s↵(� \ U) ⇢ � \ U . This implies
s↵(� \ U) = � \ U .

Lemma 75. If U is a linear subspace of V , then

StabW (U) =

(
W (� \ U?

) if � \ U? 6= ;,

{1} otherwise.

Proof. We prove the assertion by induction on dimU . The assertion is trivial if dimU = 0.
If dimU = 1, then write U = R�. We have

StabW (U) = StabW ({�})
= hs↵ | ↵ 2 �, s↵� = �i (by Lemma 70(iv))
= hs↵ | ↵ 2 �, (↵,�) = 0i
= hs↵ | ↵ 2 � \ (R�)?i

=

(
W (� \ U?

) if � \ U? 6= ;,
{1} otherwise,

since � \ U? is a root system by Lemma 74 as long as it is nonempty.
Now assume dimU � 2. Then there exist nonzero subspaces U1, U2 of U such that

U = U1 � U2. Then

U?
1 \ U?

2 = (U1 � U2)
?

= U?. (100)

Since dimU1, dimU2 < dimU , the inductive hypothesis implies

StabW (Ui) =

(
W (� \ U?

i ) if � \ U?
i 6= ;,

{1} otherwise
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for i = 1, 2. Suppose first that � \ U?
1 = ;. Then � \ U?

= ;, and

StabW (U) ⇢ StabW (U1)

= {1}.

Next suppose that � \ U?
1 6= ;. Then

StabW (U) = StabW (U1) \ StabW (U2)

= W (� \ U?
1 ) \ StabW (U2)

= StabW (�\U?
1 )(U2)

=

(
W (� \ U?

1 \ U?
2 ) if � \ U?

1 \ U?
2 6= ;,

{1} otherwise

=

(
W (� \ U?

) if � \ U? 6= ;,
{1} otherwise

(by (100)).

Proposition 76. If U is a subset of V , then

StabW (U) = hs↵ | ↵ 2 �, s↵ 2 StabW (U)i.

Proof. Replacing U by its span, we may assume without loss of generality U is a linear
subspace of V . Then by Lemma 75, we have

StabW (U) =

(
W (� \ U?

) if � \ U? 6= ;,
{1} otherwise

= hs↵ | ↵ 2 � \ U?i
= hs↵ | ↵ 2 �, 8� 2 U, (↵,�) = 0i
= hs↵ | ↵ 2 �, 8� 2 U, s↵� = �i
= hs↵ | ↵ 2 �, s↵ 2 StabW (U)i.

Definition 77. The members of the family

{wC | w 2 W}

are called chambers.

Lemma 78. Let ⇧ = � \R�0� be the unique positive system containing �. Then

C =

\

↵2⇧

H+
↵ . (101)

In particular,

C ⇢ V \
[

�2�

H�. (102)
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Proof. If � 2 C, then (�,↵) > 0 for all ↵ 2 �. Since � ⇢ (R�0�) [ (R0�) \ {0}, we
see that (�, �) > 0 for all � 2 ⇧. This implies (101). Since � = ⇧ [ (�⇧), we see that
(�, �) 6= 0 for all � 2 �. This implies � /2

S
�2� H� , proving (102).

Lemma 79. If w 2 W and wC \ C 6= ;, then w = 1. In particular, the group W acts

simply transitively on the set of chambers.

Proof. Suppose w 2 W satisfies wC \ C 6= ;. Then there exists �, µ 2 C such that
w� = µ. This implies {�, µ} ⇢ W�\C ⇢ W�\D. By Theorem 71, we conclude � = µ.
This also implies w 2 StabW ({�}), hence w = 1 by Lemma 70(iii). In particular, wC = C
implies w = 1. This shows that W acts simply transitively on the set of chambers.

Proposition 80.

V \
[

↵2�

H↵ =

[

w2W

wC (disjoint).

Proof. By Lemma 79, the chambers are disjoint from each other. Observe

wC ⇢ V \ w
[

↵2�

H↵ (by Lemma 78)

= V \
[

↵2�

H↵ (by (99)).

Thus
V \

[

↵2�

H↵ �
[

w2W

wC (disjoint).

Conversely, let � 2 V \
S

↵2� H↵. By Theorem 71, there exists w 2 W such that
w� 2 D, or equivalently, � 2 w�1D. We claim � 2 w�1C. Indeed, if � /2 w�1C, then

w� 2 D \ C
= {µ 2 V | (µ,↵) � 0 (8↵ 2 �), (µ, �)  0 (9� 2 �)}
⇢ {µ 2 V | (µ, �) = 0 (9� 2 �)}

=

[

�2�

H�

⇢
[

�2�

H�

= w
[

�2�

H� (by (99)).

This implies � 2
S

�2� H� which is absurd. This proves the claim, and hence

V \
[

↵2�

H↵ ⇢
[

w2W

wC.

51


