July 11, 2016

For today's lecture, we let V be a finite-dimensional vector space over **R**, with positivedefinite inner product. Let Φ be a root system in V with simple system Δ , and let $W = W(\Phi) = \langle s_{\alpha} \mid \alpha \in \Phi \rangle$.

Notation 72. Let $\alpha \in \Phi$. We define

$$H_{\alpha} = \{\lambda \in V \mid (\alpha, \lambda) = 0\},\$$

$$H_{\alpha}^{+} = \{\lambda \in V \mid (\alpha, \lambda) > 0\},\$$

$$H_{\alpha}^{-} = \{\lambda \in V \mid (\alpha, \lambda) < 0\},\$$

so that $V = H_{\alpha}^+ \cup H_{\alpha} \cup H_{\alpha}^-$ (disjoint).

Recall

$$C = \bigcap_{\alpha \in \Delta} H_{\alpha}^{+},$$
$$D = \bigcap_{\alpha \in \Delta} (H_{\alpha}^{+} \cup H_{\alpha}).$$

Lemma 73. For $w \in W$ and $\alpha \in \Phi$,

$$wH_{\alpha} = H_{w\alpha},\tag{96}$$

$$wH_{\alpha}^{\pm} = H_{w\alpha}^{\pm}.$$
(97)

In particular,

$$s_{\alpha}H_{\alpha}^{\pm} = H_{\alpha}^{\mp},\tag{98}$$

$$\bigcup_{\alpha \in \Phi} H_{\alpha} = w \bigcup_{\alpha \in \Phi} H_{\alpha}.$$
(99)

Proof. Observe

$$wH_{\alpha} = \{w\lambda \mid \lambda \in V, \ (\alpha, \lambda) = 0\}$$
$$= \{\mu \mid \mu \in V, \ (w\alpha, \mu) = 0\}$$
$$= H_{w\alpha}.$$

This proves (96). Replacing "=" by ">" or "<", we obtain (97). Moreover, (97) implies

$$s_{\alpha}H_{\alpha}^{\pm} = H_{s_{\alpha}\alpha}^{\pm}$$
$$= H_{-\alpha}^{\pm}$$
$$= H_{\alpha}^{\mp},$$

while (96) implies

$$w\bigcup_{\alpha\in\Phi}H_{\alpha}=\bigcup_{\alpha\in\Phi}wH_{\alpha}$$

$$= \bigcup_{\alpha \in \Phi} H_{w\alpha}$$
$$= \bigcup_{\alpha \in w\Phi} H_{\alpha}$$
$$= \bigcup_{\alpha \in \Phi} H_{\alpha}.$$

Lemma 74. If U is a linear subspace of V such that $\Phi \cap U \neq \emptyset$, then $\Phi \cap U$ is a root system.

Proof. Clearly, $\Phi \cap U$ satisfies (R1) of Definition 14. As for (R2), let $\alpha, \beta \in \Phi \cap U$. Then $s_{\alpha}\beta \in \Phi \cap (\mathbf{R}\alpha + \mathbf{R}\beta) \subset \Phi \cap U$. Thus $s_{\alpha}(\Phi \cap U) \subset \Phi \cap U$. This implies $s_{\alpha}(\Phi \cap U) = \Phi \cap U$.

Lemma 75. If U is a linear subspace of V, then

$$\operatorname{Stab}_{W}(U) = \begin{cases} W(\Phi \cap U^{\perp}) & \text{if } \Phi \cap U^{\perp} \neq \emptyset, \\ \{1\} & \text{otherwise.} \end{cases}$$

Proof. We prove the assertion by induction on dim U. The assertion is trivial if dim U = 0. If dim U = 1, then write $U = \mathbf{R}\lambda$. We have

$$\begin{aligned} \operatorname{Stab}_{W}(U) &= \operatorname{Stab}_{W}(\{\lambda\}) \\ &= \langle s_{\alpha} \mid \alpha \in \Phi, \ s_{\alpha}\lambda = \lambda \rangle & \text{(by Lemma 70(iv))} \\ &= \langle s_{\alpha} \mid \alpha \in \Phi, \ (\alpha, \lambda) = 0 \rangle \\ &= \langle s_{\alpha} \mid \alpha \in \Phi \cap (\mathbf{R}\lambda)^{\perp} \rangle \\ &= \begin{cases} W(\Phi \cap U^{\perp}) & \text{if } \Phi \cap U^{\perp} \neq \emptyset, \\ \{1\} & \text{otherwise,} \end{cases} \end{aligned}$$

since $\Phi \cap U^{\perp}$ is a root system by Lemma 74 as long as it is nonempty.

Now assume dim $U \ge 2$. Then there exist nonzero subspaces U_1, U_2 of U such that $U = U_1 \oplus U_2$. Then

$$U_{1}^{\perp} \cap U_{2}^{\perp} = (U_{1} \oplus U_{2})^{\perp} = U^{\perp}.$$
(100)

Since $\dim U_1, \dim U_2 < \dim U$, the inductive hypothesis implies

$$\operatorname{Stab}_{W}(U_{i}) = \begin{cases} W(\Phi \cap U_{i}^{\perp}) & \text{if } \Phi \cap U_{i}^{\perp} \neq \emptyset, \\ \{1\} & \text{otherwise} \end{cases}$$

for i=1,2. Suppose first that $\Phi\cap U_1^\perp=\emptyset.$ Then $\Phi\cap U^\perp=\emptyset$, and

$$\operatorname{Stab}_W(U) \subset \operatorname{Stab}_W(U_1)$$

= {1}.

Next suppose that $\Phi \cap U_1^{\perp} \neq \emptyset$. Then

$$\begin{aligned} \operatorname{Stab}_{W}(U) &= \operatorname{Stab}_{W}(U_{1}) \cap \operatorname{Stab}_{W}(U_{2}) \\ &= W(\Phi \cap U_{1}^{\perp}) \cap \operatorname{Stab}_{W}(U_{2}) \\ &= \operatorname{Stab}_{W(\Phi \cap U_{1}^{\perp})}(U_{2}) \\ &= \begin{cases} W(\Phi \cap U_{1}^{\perp} \cap U_{2}^{\perp}) & \text{if } \Phi \cap U_{1}^{\perp} \cap U_{2}^{\perp} \neq \emptyset, \\ \{1\} & \text{otherwise} \end{cases} \\ &= \begin{cases} W(\Phi \cap U^{\perp}) & \text{if } \Phi \cap U^{\perp} \neq \emptyset, \\ \{1\} & \text{otherwise} \end{cases} \end{aligned}$$
(by (100)).

Proposition 76. If U is a subset of V, then

$$\operatorname{Stab}_W(U) = \langle s_\alpha \mid \alpha \in \Phi, \ s_\alpha \in \operatorname{Stab}_W(U) \rangle.$$

Proof. Replacing U by its span, we may assume without loss of generality U is a linear subspace of V. Then by Lemma 75, we have

$$\operatorname{Stab}_{W}(U) = \begin{cases} W(\Phi \cap U^{\perp}) & \text{if } \Phi \cap U^{\perp} \neq \emptyset, \\ \{1\} & \text{otherwise} \end{cases}$$
$$= \langle s_{\alpha} \mid \alpha \in \Phi \cap U^{\perp} \rangle$$
$$= \langle s_{\alpha} \mid \alpha \in \Phi, \forall \lambda \in U, \ (\alpha, \lambda) = 0 \rangle$$
$$= \langle s_{\alpha} \mid \alpha \in \Phi, \forall \lambda \in U, \ s_{\alpha} \lambda = \lambda \rangle$$
$$= \langle s_{\alpha} \mid \alpha \in \Phi, \ s_{\alpha} \in \operatorname{Stab}_{W}(U) \rangle.$$

Definition 77. The members of the family

$$\{wC \mid w \in W\}$$

are called chambers.

Lemma 78. Let $\Pi = \Phi \cap \mathbf{R}_{\geq 0} \Delta$ be the unique positive system containing Δ . Then

$$C = \bigcap_{\alpha \in \Pi} H_{\alpha}^{+}.$$
 (101)

In particular,

$$C \subset V \setminus \bigcup_{\beta \in \Phi} H_{\beta}.$$
 (102)

Proof. If $\lambda \in C$, then $(\lambda, \alpha) > 0$ for all $\alpha \in \Delta$. Since $\Phi \subset (\mathbf{R}_{\geq 0}\Delta) \cup (\mathbf{R}_{\leq 0}\Delta) \setminus \{0\}$, we see that $(\lambda, \beta) > 0$ for all $\beta \in \Pi$. This implies (101). Since $\Phi = \Pi \cup (-\Pi)$, we see that $(\lambda, \beta) \neq 0$ for all $\beta \in \Phi$. This implies $\lambda \notin \bigcup_{\beta \in \Phi} H_{\beta}$, proving (102).

Lemma 79. If $w \in W$ and $wC \cap C \neq \emptyset$, then w = 1. In particular, the group W acts simply transitively on the set of chambers.

Proof. Suppose $w \in W$ satisfies $wC \cap C \neq \emptyset$. Then there exists $\lambda, \mu \in C$ such that $w\lambda = \mu$. This implies $\{\lambda, \mu\} \subset W\lambda \cap C \subset W\lambda \cap D$. By Theorem 71, we conclude $\lambda = \mu$. This also implies $w \in \operatorname{Stab}_W(\{\lambda\})$, hence w = 1 by Lemma 70(iii). In particular, wC = C implies w = 1. This shows that W acts simply transitively on the set of chambers. \Box

Proposition 80.

$$V \setminus \bigcup_{lpha \in \Phi} H_{lpha} = \bigcup_{w \in W} wC$$
 (disjoint).

Proof. By Lemma 79, the chambers are disjoint from each other. Observe

$$wC \subset V \setminus w \bigcup_{\alpha \in \Phi} H_{\alpha}$$
 (by Lemma 78)
$$= V \setminus \bigcup_{\alpha \in \Phi} H_{\alpha}$$
 (by (99)).

Thus

$$V \setminus \bigcup_{\alpha \in \Phi} H_{\alpha} \supset \bigcup_{w \in W} wC$$
 (disjoint).

Conversely, let $\lambda \in V \setminus \bigcup_{\alpha \in \Phi} H_{\alpha}$. By Theorem 71, there exists $w \in W$ such that $w\lambda \in D$, or equivalently, $\lambda \in w^{-1}D$. We claim $\lambda \in w^{-1}C$. Indeed, if $\lambda \notin w^{-1}C$, then

$$w\lambda \in D \setminus C$$

$$= \{\mu \in V \mid (\mu, \alpha) \ge 0 \; (\forall \alpha \in \Delta), \; (\mu, \beta) \le 0 \; (\exists \beta \in \Delta)\}$$

$$\subset \{\mu \in V \mid (\mu, \beta) = 0 \; (\exists \beta \in \Delta)\}$$

$$= \bigcup_{\beta \in \Delta} H_{\beta}$$

$$\subset \bigcup_{\beta \in \Phi} H_{\beta}$$

$$= w \bigcup_{\beta \in \Phi} H_{\beta}$$
(by (99)).

This implies $\lambda \in \bigcup_{\beta \in \Phi} H_{\beta}$ which is absurd. This proves the claim, and hence

$$V \setminus \bigcup_{\alpha \in \Phi} H_{\alpha} \subset \bigcup_{w \in W} wC.$$