July 11, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product.

Definition 1. Let Φ be a nonempty finite set of nonzero vectors in V. We say that Φ is a root system if
(R1) $\Phi \cap \mathbf{R} \alpha=\{\alpha,-\alpha\}$ for all $\alpha \in \Phi$,
(R2) $s_{\alpha} \Phi=\Phi$ for all $\alpha \in \Phi$.
Lemma 2. Let G be a finite group acting transitively on a set Ω. Let G_{α} denote the stabilizer of α in G, that is,

$$
G_{\alpha}=\{g \in G \mid g \cdot \alpha=\alpha\}
$$

Then the following are equivalent:
(i) G acts simply transitively on Ω,
(ii) for every $\alpha \in \Omega, G_{\alpha}=\{1\}$,
(iii) for some $\alpha \in \Omega, G_{\alpha}=\{1\}$,
(iv) $|G|=|\Omega|$.

Let Φ be a root system in V, and let $W=W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle$. Recall that $\mathcal{S}(\Phi)$ denotes the set of simple systems in Φ. Fix $\Delta \in \mathcal{S}(\Phi)$, and define

$$
\begin{aligned}
& C=\{\lambda \in V \mid(\lambda, \alpha)>0(\forall \alpha \in \Delta)\}, \\
& D=\{\lambda \in V \mid(\lambda, \alpha) \geq 0(\forall \alpha \in \Delta)\} .
\end{aligned}
$$

Notation 3. For a subset U of V, define

$$
\operatorname{Stab}_{W}(U)=\{w \in W \mid w \lambda=\lambda(\forall \lambda \in U)\} .
$$

Lemma 4. (i) If $\lambda \in D$, then

$$
\operatorname{Stab}_{W}(\{\lambda\})=\left\langle s_{\alpha} \mid \alpha \in \Delta, s_{\alpha} \lambda=\lambda\right\rangle .
$$

(ii) If $\lambda, \mu \in D, w \in W$ and $w \lambda=\mu$, then $\lambda=\mu$.
(iii) If $\lambda \in C$, then $\operatorname{Stab}_{W}(\{\lambda\})=\{1\}$.
(iv) If $\lambda \in V$, then

$$
\operatorname{Stab}_{W}(\{\lambda\})=\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \lambda=\lambda\right\rangle .
$$

Theorem 5. For each $\lambda \in V,|W \lambda \cap D|=1$.

