July 11, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R} , with positivedefinite inner product.

Definition 1. Let Φ be a nonempty finite set of nonzero vectors in V. We say that Φ is a *root system* if

- (R1) $\Phi \cap \mathbf{R}\alpha = \{\alpha, -\alpha\}$ for all $\alpha \in \Phi$,
- (R2) $s_{\alpha}\Phi = \Phi$ for all $\alpha \in \Phi$.

Lemma 2. Let G be a finite group acting transitively on a set Ω . Let G_{α} denote the stabilizer of α in G, that is,

$$G_{\alpha} = \{ g \in G \mid g.\alpha = \alpha \}.$$

Then the following are equivalent:

- (i) G acts simply transitively on Ω ,
- (ii) for every $\alpha \in \Omega$, $G_{\alpha} = \{1\}$,
- (iii) for some $\alpha \in \Omega$, $G_{\alpha} = \{1\}$,
- (iv) $|G| = |\Omega|$.

Let Φ be a root system in V, and let $W = W(\Phi) = \langle s_{\alpha} \mid \alpha \in \Phi \rangle$. Recall that $\mathcal{S}(\Phi)$ denotes the set of simple systems in Φ . Fix $\Delta \in \mathcal{S}(\Phi)$, and define

$$C = \{\lambda \in V \mid (\lambda, \alpha) > 0 \; (\forall \alpha \in \Delta)\},\$$
$$D = \{\lambda \in V \mid (\lambda, \alpha) \ge 0 \; (\forall \alpha \in \Delta)\}.$$

Notation 3. For a subset U of V, define

$$\operatorname{Stab}_W(U) = \{ w \in W \mid w\lambda = \lambda \; (\forall \lambda \in U) \}.$$

Lemma 4. (i) If $\lambda \in D$, then

$$\operatorname{Stab}_W(\{\lambda\}) = \langle s_\alpha \mid \alpha \in \Delta, \ s_\alpha \lambda = \lambda \rangle.$$

- (ii) If $\lambda, \mu \in D$, $w \in W$ and $w\lambda = \mu$, then $\lambda = \mu$.
- (iii) If $\lambda \in C$, then $\operatorname{Stab}_W(\{\lambda\}) = \{1\}$.
- (iv) If $\lambda \in V$, then

$$\operatorname{Stab}_W(\{\lambda\}) = \langle s_\alpha \mid \alpha \in \Phi, \ s_\alpha \lambda = \lambda \rangle.$$

Theorem 5. For each $\lambda \in V$, $|W\lambda \cap D| = 1$.