July 25, 2016

For today's lecture, we let V be a finite-dimensional vector space over **R**, with positivedefinite inner product. Let Φ be a root system in V, and let $W = W(\Phi) = \langle s_{\alpha} \mid \alpha \in \Phi \rangle$. Fix a simple system Δ in Φ .

Definition 81. Let $\alpha \in \Phi$ and $w \in W$. The hyperplane H_{α} is called a *wall* of a chamber wC if $\alpha \in w\Delta$.

Notation 82. For $\lambda \in V$ and $\varepsilon > 0$, denote by $B(\lambda, \varepsilon)$ the ε -ball centered at λ :

$$B(\lambda,\varepsilon) = \{\lambda + \mu \mid \mu \in V, \ \|\mu\| < \varepsilon\}.$$

Lemma 83. Let $\lambda \in V$ and $\varepsilon > 0$. If w is an orthogonal transformation of V, then $wB(\lambda, \varepsilon) = B(w\lambda, \varepsilon)$.

Proof.

$$wB(\lambda,\varepsilon) = \{w(\lambda+\mu) \mid \mu \in V, \ \|\mu\| < \varepsilon\}$$

= $\{w\lambda + w\mu \mid \mu \in V, \ \|w\mu\| < \varepsilon\}$
= $\{w\lambda + \mu \mid \mu \in V, \ \|\mu\| < \varepsilon\}$
= $B(w\lambda,\varepsilon).$

Lemma 84. Let $\alpha \in \Phi$ and $\lambda \in H_{\alpha}^+$. Then there exists $\varepsilon > 0$ such that $B(\lambda, \varepsilon) \subset H_{\alpha}^+$. *Proof.* Since $\lambda \in H_{\alpha}^+$, we have $(\lambda, \alpha) > 0$. Set

$$\varepsilon = \frac{(\lambda, \alpha)}{2 \|\alpha\|}.$$

Then for $\mu \in V$ with $\|\mu\| < \varepsilon$, we have

$$\begin{aligned} (\lambda + \mu, \alpha) &= (\lambda, \alpha) + (\mu, \alpha) \\ &\geq (\lambda, \alpha) - |(\mu, \alpha)| \\ &\geq (\lambda, \alpha) - \|\mu\| \|\alpha\| \\ &> (\lambda, \alpha) - \varepsilon \|\alpha\| \\ &= \frac{(\lambda, \alpha)}{2} \\ &> 0. \end{aligned}$$

Thus $\lambda + \mu \in H_{\alpha}^+$. This implies $B(\lambda, \varepsilon) \subset H_{\alpha}^+$.

Lemma 85. Let $\alpha \in \Phi$ and $\lambda, \mu \in H^+_{\alpha}$. Then for $0 \le t \le 1$, $t\lambda + (1-t)\mu \in H^+_{\alpha}$.

Proof. We have

$$(t\lambda + (1-t)\mu, \alpha) = t(\lambda, \alpha) + (1-t)(\mu, \alpha) > 0.$$

Proposition 86. For $\alpha \in \Phi$ and $w \in W$, the following are equivalent:

- (i) H_{α} is a wall of wC,
- (ii) there exist $\lambda \in H_{\alpha}$ and $\varepsilon > 0$ such that $H_{\alpha} \cap B(\lambda, \varepsilon) \subset wD$.

Proof. First we prove the assertion for w = 1. Suppose H_{α} is a wall of C. Then $\alpha \in \Delta$. Then by Lemma 34,

$$s_{\alpha}(\Pi \setminus \{\alpha\}) = \Pi \setminus \{\alpha\}.$$
(103)

Let

$$C' = \bigcap_{\beta \in \Pi \setminus \{\alpha\}} H_{\beta}^+.$$

Then $C \subset C'$, and

$$s_{\alpha}C = \bigcap_{\beta \in \Pi} s_{\alpha}H_{\beta}^{+}$$

$$= \bigcap_{\beta \in \Pi} H_{s_{\alpha}\beta}^{+} \qquad (by (97))$$

$$\subset \bigcap_{\beta \in \Pi \setminus \{\alpha\}} H_{\beta}^{+}$$

$$= \bigcap_{\beta \in \Pi \setminus \{\alpha\}} H_{\beta}^{+} \qquad (by (103))$$

$$= C'.$$

Thus

$$C \cup s_{\alpha}C \subset C'. \tag{104}$$

Let $\lambda_1 \in C$. Then $s_{\alpha}\lambda_1 \in s_{\alpha}C$. Set $\lambda = \frac{1}{2}(\lambda_1 + s_{\alpha}\lambda_1)$. Then $(\lambda, \alpha) = 0$, so $\lambda \in H_{\alpha}$. Since $\lambda_1, s_{\alpha}\lambda_1 \in C'$ by (104), Lemma 85 implies $\lambda \in C'$. Then by Lemma 84, for each $\beta \in \Pi \setminus \{\alpha\}$, there exists $\varepsilon_{\beta} > 0$ such that $B(\lambda, \varepsilon_{\beta}) \subset H_{\beta}^+$. Setting

$$\varepsilon = \min\{\varepsilon_{\beta} \mid \beta \in \Pi \setminus \{\alpha\}\},\$$

we obtain $B(\lambda, \varepsilon) \subset C'$. Thus

$$H_{\alpha} \cap B(\lambda, \varepsilon) \subset H_{\alpha} \cap C'$$

$$= H_{\alpha} \cap \left(\bigcap_{\beta \in \Pi \setminus \{\alpha\}} H_{\beta}^{+}\right)$$
$$\subset (H_{\alpha}^{+} \cup H_{\alpha}) \cap \left(\bigcap_{\beta \in \Pi \setminus \{\alpha\}} (H_{\beta}^{+} \cup H_{\beta})\right)$$
$$= D.$$

Conversely, suppose there exist $\lambda \in H_{\alpha}$ and $\varepsilon > 0$ such that $H_{\alpha} \cap B(\lambda, \varepsilon) \subset D$. Since $s_{\alpha}\lambda = \lambda$, we have $s_{\alpha}B(\lambda, \varepsilon) = B(\lambda, \varepsilon)$ by Lemma 83. This, together with $s_{\alpha}H_{\alpha} = H_{\alpha}$ implies

$$H_{\alpha} \cap B(\lambda, \varepsilon) \subset s_{\alpha} D.$$

$$H_{\alpha} \cap B(\lambda, \varepsilon) \subset D \cap s_{\alpha} D.$$
(105)

Thus

We aim to show $\alpha \in \Delta$. Suppose, by way of contradiction, $\alpha \notin \Delta$. Then $n(s_{\alpha}) > 1$, so $\Pi \cap s_{\alpha}(-\Pi) \supsetneq \{\alpha\}$. This implies that there exists $\beta \in \Pi \setminus \{\alpha\}$ such that $s_{\alpha}\beta \in -\Pi$. Thus $-s_{\alpha}\beta \in \Pi$, and hence

$$D \subset H^+_{-s_{\alpha}\beta} \cup H_{-s_{\alpha}\beta}$$
$$= H^-_{s_{\alpha}\beta} \cup H_{s_{\alpha}\beta}.$$
 (106)

Also, since $\beta \in \Pi$, we have

$$s_{\alpha}D \subset s_{\alpha}(H_{\beta}^{+} \cup H_{\beta})$$

= $H_{s_{\alpha}\beta}^{+} \cup H_{s_{\alpha}\beta}$ (by (96),(97)). (107)

Thus, combining (105)–(107), we find

$$H_{\alpha} \cap B(\lambda, \varepsilon) \subset H_{s_{\alpha}\beta}.$$
(108)

Since $\beta \neq \pm \alpha$, we have $s_{\alpha}\beta \neq \pm \alpha$. Thus $H_{s_{\alpha}\beta} \neq H_{\alpha}$, which implies that there exists $\mu \in H_{\alpha} \setminus H_{s_{\alpha}\beta}$. We may assume $\|\mu\| < \varepsilon$. Then

$$\lambda + \mu \in B(\lambda, \varepsilon) \cap H_{\alpha}$$

$$\subset H_{s_{\alpha}\beta} \qquad (by (108)). \qquad (109)$$

Since

$$\begin{split} \lambda &\in B(\lambda, \varepsilon) \cap H_{\alpha} \\ &\subset H_{s_{\alpha}\beta} \end{split} \tag{by (108)}, \end{split}$$

while $\mu \notin H_{s_{\alpha}\beta}$, we obtain $\lambda + \mu \notin H_{s_{\alpha}\beta}$. This contradicts (109).

We have shown that the assertion holds for w = 1. We next consider the general case. Let $\alpha \in \Phi$ and $w \in W$. Then

$$\begin{array}{l} \text{(i)} \iff \alpha \in w\Delta \\ \iff w^{-1}\alpha \in \Delta \\ \iff H_{w^{-1}\alpha} \text{ is a wall of } C \\ \iff \exists \lambda \in H_{w^{-1}\alpha}, \ \exists \varepsilon > 0, \ H_{w^{-1}\alpha} \cap B(\lambda, \varepsilon) \subset D \\ \iff \exists \lambda \in w^{-1}H_{\alpha}, \ \exists \varepsilon > 0, \ w^{-1}H_{\alpha} \cap B(\lambda, \varepsilon) \subset D \\ \iff \exists \lambda \in w^{-1}H_{\alpha}, \ \exists \varepsilon > 0, \ w^{-1}H_{\alpha} \cap w^{-1}B(w\lambda, \varepsilon) \subset D \\ \iff \exists \mu \in H_{\alpha}, \ \exists \varepsilon > 0, \ H_{\alpha} \cap B(\mu, \varepsilon) \subset wD \\ \iff \text{(ii)}. \end{array}$$

Proposition 87. If $s \in W$ is a reflection, then there exists $\alpha \in \Phi$ such that $s = s_{\alpha}$.

Proof. Since s is a reflection, s fixes a hyperplane H. Let $H^{\perp} = \mathbf{R}\beta$, where $0 \neq \beta \in V$. Then $s = s_{\beta}$. Since $s \in \operatorname{Stab}_W(H)$, we have

$$\{1\} \neq \operatorname{Stab}_W(H) = \langle s_\alpha \mid \alpha \in \Phi, \ s_\alpha \in \operatorname{Stab}_W(H) \rangle$$
 (by Proposition 76).

This implies that there exists $\alpha \in \Phi$ such that $s_{\alpha} \in \operatorname{Stab}_{W}(H)$. The latter implies $s_{\alpha} = s_{\beta} = s$.

Note that Proposition 15 implies that the mapping which sends a root system to a reflection group is a surjection, the following proposition implies that it is essentially an injection.

Proposition 88. If Φ and Φ' are root systems in V such that $W(\Phi) = W(\Phi')$, then

$$\{H_{\alpha} \mid \alpha \in \Phi\} = \{H_{\alpha'} \mid \alpha' \in \Phi'\},\$$

or equivalently,

$$\{\mathbf{R}\alpha \mid \alpha \in \Phi\} = \{\mathbf{R}\alpha' \mid \alpha' \in \Phi'\}.$$

Proof. If $\alpha \in \Phi$, then s_{α} is a reflection in $W(\Phi) = W(\Phi')$. By Proposition 87, there exists $\alpha' \in \Phi'$ such that $s_{\alpha} = s_{\alpha'}$. This implies $H_{\alpha} = H_{\alpha'}$. Therefore, we have shown

$$\{H_{\alpha} \mid \alpha \in \Phi\} \subset \{H_{\alpha'} \mid \alpha' \in \Phi'\}.$$

The reverse containment can be shown in a similar manner.

 \square