July 25, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Let Φ be a root system in V, and let $W=W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle$. Fix a simple system Δ in Φ.

Definition 81. Let $\alpha \in \Phi$ and $w \in W$. The hyperplane H_{α} is called a wall of a chamber $w C$ if $\alpha \in w \Delta$.

Notation 82. For $\lambda \in V$ and $\varepsilon>0$, denote by $B(\lambda, \varepsilon)$ the ε-ball centered at λ :

$$
B(\lambda, \varepsilon)=\{\lambda+\mu \mid \mu \in V,\|\mu\|<\varepsilon\} .
$$

Lemma 83. Let $\lambda \in V$ and $\varepsilon>0$. If w is an orthogonal transformation of V, then $w B(\lambda, \varepsilon)=B(w \lambda, \varepsilon)$.

Proof.

$$
\begin{aligned}
w B(\lambda, \varepsilon) & =\{w(\lambda+\mu) \mid \mu \in V,\|\mu\|<\varepsilon\} \\
& =\{w \lambda+w \mu \mid \mu \in V,\|w \mu\|<\varepsilon\} \\
& =\{w \lambda+\mu \mid \mu \in V,\|\mu\|<\varepsilon\} \\
& =B(w \lambda, \varepsilon) .
\end{aligned}
$$

Lemma 84. Let $\alpha \in \Phi$ and $\lambda \in H_{\alpha}^{+}$. Then there exists $\varepsilon>0$ such that $B(\lambda, \varepsilon) \subset H_{\alpha}^{+}$.
Proof. Since $\lambda \in H_{\alpha}^{+}$, we have $(\lambda, \alpha)>0$. Set

$$
\varepsilon=\frac{(\lambda, \alpha)}{2\|\alpha\|}
$$

Then for $\mu \in V$ with $\|\mu\|<\varepsilon$, we have

$$
\begin{aligned}
(\lambda+\mu, \alpha) & =(\lambda, \alpha)+(\mu, \alpha) \\
& \geq(\lambda, \alpha)-|(\mu, \alpha)| \\
& \geq(\lambda, \alpha)-\|\mu\|\|\alpha\| \\
& >(\lambda, \alpha)-\varepsilon\|\alpha\| \\
& =\frac{(\lambda, \alpha)}{2} \\
& >0 .
\end{aligned}
$$

Thus $\lambda+\mu \in H_{\alpha}^{+}$. This implies $B(\lambda, \varepsilon) \subset H_{\alpha}^{+}$.
Lemma 85. Let $\alpha \in \Phi$ and $\lambda, \mu \in H_{\alpha}^{+}$. Then for $0 \leq t \leq 1, t \lambda+(1-t) \mu \in H_{\alpha}^{+}$.

Proof. We have

$$
(t \lambda+(1-t) \mu, \alpha)=t(\lambda, \alpha)+(1-t)(\mu, \alpha)>0 .
$$

Proposition 86. For $\alpha \in \Phi$ and $w \in W$, the following are equivalent:
(i) H_{α} is a wall of $w C$,
(ii) there exist $\lambda \in H_{\alpha}$ and $\varepsilon>0$ such that $H_{\alpha} \cap B(\lambda, \varepsilon) \subset w D$.

Proof. First we prove the assertion for $w=1$. Suppose H_{α} is a wall of C. Then $\alpha \in \Delta$. Then by Lemma 34,

$$
\begin{equation*}
s_{\alpha}(\Pi \backslash\{\alpha\})=\Pi \backslash\{\alpha\} . \tag{103}
\end{equation*}
$$

Let

$$
C^{\prime}=\bigcap_{\beta \in \Pi \backslash\{\alpha\}} H_{\beta}^{+} .
$$

Then $C \subset C^{\prime}$, and

$$
\begin{align*}
s_{\alpha} C & =\bigcap_{\beta \in \Pi} s_{\alpha} H_{\beta}^{+} \\
& =\bigcap_{\beta \in \Pi} H_{s_{\alpha} \beta}^{+} \tag{97}\\
& \subset \bigcap_{\beta \in \Pi \backslash\{\alpha\}} H_{s_{\alpha} \beta}^{+} \\
& =\bigcap_{\beta \in s_{\alpha}(\Pi \backslash\{\alpha\})} H_{\beta}^{+} \\
& =\bigcap_{\beta \in \Pi \backslash\{\alpha\}} H_{\beta}^{+} \tag{103}\\
& =C^{\prime} .
\end{align*}
$$

Thus

$$
\begin{equation*}
C \cup s_{\alpha} C \subset C^{\prime} \tag{104}
\end{equation*}
$$

Let $\lambda_{1} \in C$. Then $s_{\alpha} \lambda_{1} \in s_{\alpha} C$. Set $\lambda=\frac{1}{2}\left(\lambda_{1}+s_{\alpha} \lambda_{1}\right)$. Then $(\lambda, \alpha)=0$, so $\lambda \in H_{\alpha}$. Since $\lambda_{1}, s_{\alpha} \lambda_{1} \in C^{\prime}$ by (104), Lemma 85 implies $\lambda \in C^{\prime}$. Then by Lemma 84 , for each $\beta \in \Pi \backslash\{\alpha\}$, there exists $\varepsilon_{\beta}>0$ such that $B\left(\lambda, \varepsilon_{\beta}\right) \subset H_{\beta}^{+}$. Setting

$$
\varepsilon=\min \left\{\varepsilon_{\beta} \mid \beta \in \Pi \backslash\{\alpha\}\right\}
$$

we obtain $B(\lambda, \varepsilon) \subset C^{\prime}$. Thus

$$
H_{\alpha} \cap B(\lambda, \varepsilon) \subset H_{\alpha} \cap C^{\prime}
$$

$$
\begin{aligned}
& =H_{\alpha} \cap\left(\bigcap_{\beta \in \Pi \backslash\{\alpha\}} H_{\beta}^{+}\right) \\
& \subset\left(H_{\alpha}^{+} \cup H_{\alpha}\right) \cap\left(\bigcap_{\beta \in \Pi \backslash\{\alpha\}}\left(H_{\beta}^{+} \cup H_{\beta}\right)\right) \\
& =D .
\end{aligned}
$$

Conversely, suppose there exist $\lambda \in H_{\alpha}$ and $\varepsilon>0$ such that $H_{\alpha} \cap B(\lambda, \varepsilon) \subset D$. Since $s_{\alpha} \lambda=\lambda$, we have $s_{\alpha} B(\lambda, \varepsilon)=B(\lambda, \varepsilon)$ by Lemma 83. This, together with $s_{\alpha} H_{\alpha}=H_{\alpha}$ implies

$$
H_{\alpha} \cap B(\lambda, \varepsilon) \subset s_{\alpha} D .
$$

Thus

$$
\begin{equation*}
H_{\alpha} \cap B(\lambda, \varepsilon) \subset D \cap s_{\alpha} D . \tag{105}
\end{equation*}
$$

We aim to show $\alpha \in \Delta$. Suppose, by way of contradiction, $\alpha \notin \Delta$. Then $n\left(s_{\alpha}\right)>1$, so $\Pi \cap s_{\alpha}(-\Pi) \supsetneqq\{\alpha\}$. This implies that there exists $\beta \in \Pi \backslash\{\alpha\}$ such that $s_{\alpha} \beta \in-\Pi$. Thus $-s_{\alpha} \beta \in \Pi$, and hence

$$
\begin{align*}
D & \subset H_{-s_{\alpha} \beta}^{+} \cup H_{-s_{\alpha} \beta} \\
& =H_{s_{\alpha} \beta}^{-} \cup H_{s_{\alpha} \beta} . \tag{106}
\end{align*}
$$

Also, since $\beta \in \Pi$, we have

$$
\begin{align*}
s_{\alpha} D & \subset s_{\alpha}\left(H_{\beta}^{+} \cup H_{\beta}\right) \\
& =H_{s_{\alpha} \beta}^{+} \cup H_{s_{\alpha} \beta} \tag{107}
\end{align*}
$$

Thus, combining (105)-(107), we find

$$
\begin{equation*}
H_{\alpha} \cap B(\lambda, \varepsilon) \subset H_{s_{\alpha} \beta} . \tag{108}
\end{equation*}
$$

Since $\beta \neq \pm \alpha$, we have $s_{\alpha} \beta \neq \pm \alpha$. Thus $H_{s_{\alpha} \beta} \neq H_{\alpha}$, which implies that there exists $\mu \in H_{\alpha} \backslash H_{s_{\alpha} \beta}$. We may assume $\|\mu\|<\varepsilon$. Then

$$
\begin{align*}
\lambda+\mu & \in B(\lambda, \varepsilon) \cap H_{\alpha} \\
& \subset H_{s_{\alpha} \beta} \tag{109}
\end{align*} \quad \text { (by (108)). }
$$

Since

$$
\begin{aligned}
\lambda & \in B(\lambda, \varepsilon) \cap H_{\alpha} \\
& \subset H_{s_{\alpha} \beta}
\end{aligned} \quad \text { (by (108)), }, ~ l
$$

while $\mu \notin H_{s_{\alpha} \beta}$, we obtain $\lambda+\mu \notin H_{s_{\alpha} \beta}$. This contradicts (109).

We have shown that the assertion holds for $w=1$. We next consider the general case. Let $\alpha \in \Phi$ and $w \in W$. Then

$$
\text { (i) } \begin{array}{rlrl}
& \Longleftrightarrow \alpha \in w \Delta \\
& \Longleftrightarrow w^{-1} \alpha \in \Delta \\
& \Longleftrightarrow H_{w^{-1} \alpha} \text { is a wall of } C \\
& \Longleftrightarrow \exists \lambda \in H_{w^{-1} \alpha}, \exists \varepsilon>0, H_{w^{-1} \alpha} \cap B(\lambda, \varepsilon) \subset D & \\
& \Longleftrightarrow \exists \lambda \in w^{-1} H_{\alpha}, \exists \varepsilon>0, w^{-1} H_{\alpha} \cap B(\lambda, \varepsilon) \subset D & & \text { (by (96)) } \\
& \Longleftrightarrow \exists \lambda \in w^{-1} H_{\alpha}, \exists \varepsilon>0, w^{-1} H_{\alpha} \cap w^{-1} B(w \lambda, \varepsilon) \subset D & & \text { (by Lemma 83) } \\
& \Longleftrightarrow \exists \mu \in H_{\alpha}, \exists \varepsilon>0, H_{\alpha} \cap B(\mu, \varepsilon) \subset w D & \\
& \Longleftrightarrow \text { (ii). } &
\end{array}
$$

Proposition 87. If $s \in W$ is a reflection, then there exists $\alpha \in \Phi$ such that $s=s_{\alpha}$.
Proof. Since s is a reflection, s fixes a hyperplane H. Let $H^{\perp}=\mathbf{R} \beta$, where $0 \neq \beta \in V$. Then $s=s_{\beta}$. Since $s \in \operatorname{Stab}_{W}(H)$, we have

$$
\begin{aligned}
\{1\} & \neq \operatorname{Stab}_{W}(H) \\
& =\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \in \operatorname{Stab}_{W}(H)\right\rangle \quad \text { (by Proposition 76). }
\end{aligned}
$$

This implies that there exists $\alpha \in \Phi$ such that $s_{\alpha} \in \operatorname{Stab}_{W}(H)$. The latter implies $s_{\alpha}=$ $s_{\beta}=s$.

Note that Proposition 15 implies that the mapping which sends a root system to a reflection group is a surjection, the following proposition implies that it is essentially an injection.

Proposition 88. If Φ and Φ^{\prime} are root systems in V such that $W(\Phi)=W\left(\Phi^{\prime}\right)$, then

$$
\left\{H_{\alpha} \mid \alpha \in \Phi\right\}=\left\{H_{\alpha^{\prime}} \mid \alpha^{\prime} \in \Phi^{\prime}\right\}
$$

or equivalently,

$$
\{\mathbf{R} \alpha \mid \alpha \in \Phi\}=\left\{\mathbf{R} \alpha^{\prime} \mid \alpha^{\prime} \in \Phi^{\prime}\right\}
$$

Proof. If $\alpha \in \Phi$, then s_{α} is a reflection in $W(\Phi)=W\left(\Phi^{\prime}\right)$. By Proposition 87 , there exists $\alpha^{\prime} \in \Phi^{\prime}$ such that $s_{\alpha}=s_{\alpha^{\prime}}$. This implies $H_{\alpha}=H_{\alpha^{\prime}}$. Therefore, we have shown

$$
\left\{H_{\alpha} \mid \alpha \in \Phi\right\} \subset\left\{H_{\alpha^{\prime}} \mid \alpha^{\prime} \in \Phi^{\prime}\right\} .
$$

The reverse containment can be shown in a similar manner.

