July 25, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Let Φ be a root system in V, and let $W=W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle$. Fix a simple system Δ in Φ, and let Π be the unique positive system containing Δ.
Lemma 1. If $\alpha \in \Delta$, then $s_{\alpha}(\Pi \backslash\{\alpha\})=\Pi \backslash\{\alpha\}$.
Define

$$
\begin{aligned}
& C=\{\lambda \in V \mid(\lambda, \alpha)>0(\forall \alpha \in \Delta)\} \\
& D=\{\lambda \in V \mid(\lambda, \alpha) \geq 0(\forall \alpha \in \Delta)\} .
\end{aligned}
$$

For $\alpha \in \Phi$, we define

$$
\begin{aligned}
H_{\alpha} & =\{\lambda \in V \mid(\alpha, \lambda)=0\}, \\
H_{\alpha}^{+} & =\{\lambda \in V \mid(\alpha, \lambda)>0\}, \\
H_{\alpha}^{-} & =\{\lambda \in V \mid(\alpha, \lambda)<0\},
\end{aligned}
$$

so that $V=H_{\alpha}^{+} \cup H_{\alpha} \cup H_{\alpha}^{-}$(disjoint). Then

$$
\begin{aligned}
& C=\bigcap_{\alpha \in \Delta} H_{\alpha}^{+}, \\
& D=\bigcap_{\alpha \in \Delta}\left(H_{\alpha}^{+} \cup H_{\alpha}\right) .
\end{aligned}
$$

Lemma 2. For $w \in W$ and $\alpha \in \Phi$,

$$
\begin{align*}
w H_{\alpha} & =H_{w \alpha} \tag{1}\\
w H_{\alpha}^{ \pm} & =H_{w \alpha}^{ \pm} . \tag{2}
\end{align*}
$$

In particular,

$$
\begin{align*}
s_{\alpha} H_{\alpha}^{ \pm} & =H_{\alpha}^{\mp} \tag{3}\\
\bigcup_{\alpha \in \Phi} H_{\alpha} & =w \bigcup_{\alpha \in \Phi} H_{\alpha} \tag{4}
\end{align*}
$$

Definition 3. The members of the family

$$
\{w C \mid w \in W\}
$$

are called chambers.
Proposition 4. If U is a subset of V, then

$$
\operatorname{Stab}_{W}(U)=\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \in \operatorname{Stab}_{W}(U)\right\rangle .
$$

Proposition 5. Let Φ be a root system in V. Then the subgroup

$$
W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle
$$

of $O(V)$ is a finite reflection group. Moreover, $W(\Phi)$ is essential if and only if Φ spans V. Conversely, for every finite reflection group $W \subset O(V)$, there exists a root system $\Phi \subset V$ such that $W=W(\Phi)$.

