April 11, 2016

We assume the reader is familiar with linear algebra, for example, finite-dimensional real vector spaces, the standard inner product, subspaces, direct sums, the matrix representation of a linear transformation.

Let $\alpha \in \mathbf{R}^{2}$ be a nonzero vector. The set of vectors orthogonal to α form a line L, and $\mathbf{R}^{2}=\mathbf{R} \alpha \oplus L$ holds. Given $\lambda \in \mathbf{R}^{2}$ can be expressed as

$$
\begin{equation*}
\lambda=c \alpha+\mu \quad \text { for some } c \in \mathbf{R} \text { and } \mu \in L \tag{1}
\end{equation*}
$$

Since $(\mu, \alpha)=0$, we have

$$
\begin{align*}
c & =\frac{(c \alpha+\mu, \alpha)}{(\alpha, \alpha)} \\
& =\frac{(\lambda, \alpha)}{(\alpha, \alpha)} \tag{1}
\end{align*}
$$

The reflection of λ with respect to the line L is obtained by negating the $\langle\alpha\rangle$-component of λ in (1), that is,

$$
\begin{aligned}
-c \alpha+\mu & =\lambda-2 c \alpha \\
& =\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha .
\end{aligned}
$$

Let $s_{\alpha}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ denote the mapping defined by the above formula, that is,

$$
\begin{equation*}
s_{\alpha}(\lambda)=\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad\left(\lambda \in \mathbf{R}^{2}\right) . \tag{2}
\end{equation*}
$$

It is clear that s_{α} is a linear transformation of \mathbf{R}^{2}. This means that there exists a 2×2 matrix S_{α} such that

$$
\begin{equation*}
s_{\alpha}(\lambda)=S_{\alpha} \lambda \quad\left(\lambda \in \mathbf{R}^{2}\right) . \tag{3}
\end{equation*}
$$

To find S_{α}, recall that L is the line orthogonal to α. Let

$$
\mu=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

be a vector of length 1 in L. The vector

$$
\nu=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

is orthogonal to μ, hence in $\mathbf{R} \alpha$. This implies that

$$
\begin{aligned}
& s_{\alpha}(\mu)=\mu, \\
& s_{\alpha}(\nu)=-\nu .
\end{aligned}
$$

Thus

$$
S_{\alpha}\left[\begin{array}{ll}
\mu & \nu
\end{array}\right]=\left[\begin{array}{ll}
\mu & -\nu
\end{array}\right],
$$

which implies

$$
\begin{aligned}
S_{\alpha} & =\left[\begin{array}{ll}
\mu & -\nu
\end{array}\right]\left[\begin{array}{ll}
\mu & \nu
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \theta-\sin 2 \theta & 2 \sin \theta \cos \theta \\
2 \sin \theta \cos \theta & -\left(\cos ^{2} \theta-\sin ^{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right] .
\end{aligned}
$$

This is the matrix representation of a reflection on the plane \mathbf{R}^{2}.
We next consider the composition of two reflections. Let s_{α} and S_{α} be as before, and let s_{β} be another reflection, with matrix representation

$$
S_{\beta}=\left[\begin{array}{cc}
\cos 2 \varphi & \sin 2 \varphi \\
\sin 2 \varphi & -\cos 2 \varphi
\end{array}\right] .
$$

Then

$$
\begin{aligned}
S_{\alpha} S_{\beta} & =\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right]\left[\begin{array}{cc}
\cos 2 \varphi & \sin 2 \varphi \\
\sin 2 \varphi & -\cos 2 \varphi
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos 2(\theta-\varphi) & -\sin 2(\theta-\varphi) \\
\sin 2(\theta-\varphi) & \cos 2(\theta-\varphi)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos 2(\theta-\varphi) & \cos \left(2(\theta-\varphi)+\frac{\pi}{2}\right) \\
\sin 2(\theta-\varphi) & \sin \left(2(\theta-\varphi)+\frac{\pi}{2}\right)
\end{array}\right] .
\end{aligned}
$$

This matrix maps the standard basis vector

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\cos 0 \\
\sin 0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\cos \frac{\pi}{2} \\
\sin \frac{\pi}{2}
\end{array}\right]
$$

to

$$
\left[\begin{array}{c}
\cos 2(\theta-\varphi) \\
\sin 2(\theta-\varphi)
\end{array}\right],\left[\begin{array}{c}
\cos \left(2(\theta-\varphi)+\frac{\pi}{2}\right) \\
\sin \left(2(\theta-\varphi)+\frac{\pi}{2}\right)
\end{array}\right],
$$

meaning that both vectors are rotated $2(\theta-\varphi)$. Therefore, the product of two reflection is a rotation.

We are interested in the case where the resulting rotation is of finite order, that is, $2(\theta-\varphi)$ is a rational multiple of 2π. For brevity, write $s=s_{\alpha}, t=s_{\beta}$ and id $=1$. In this
case, there exists a positive integer m such that $(s t)^{m}=1$. We may assume $s \neq t$, so that st $\neq 1$. We may choose minimal such m, so that

$$
s t,(s t)^{2}, \ldots,(s t)^{m-1} \neq 1
$$

Writing $r=s t$, this implies

$$
\begin{equation*}
1, r, r^{2}, \ldots, r^{m-1} \text { are pairwise distinct. } \tag{4}
\end{equation*}
$$

We aim to determine the set $\langle s, t\rangle$ of all linear transformations expressible as a product of s, t. We have already seen that this set contains at least m distinct elements (4). Since $s^{2}=t^{2}=1$, possible product of s, t are one of the following four forms:

$$
\begin{align*}
& s t s t \cdots s t, \tag{5}\\
& s t s t \cdots s t s, \tag{6}\\
& t s t s \cdots t s, \tag{7}\\
& t s t s \cdots t s t \tag{8}
\end{align*}
$$

Products of the form (5) are precisely described in (4). Products of the form (6) are

$$
\begin{equation*}
s, r s, r^{2} s, \ldots, r^{m-1} s, \tag{9}
\end{equation*}
$$

and these are distinct by (4). Since $t s=t^{-1} s^{-1}=(s t)^{-1}=r^{-1}$, products of the form (7) are nothing but those in (4). Finally, since $r t=s$, products of the form (8) are then those in (9). Therefore, $\langle s, t\rangle$ consists of $2 m$ elements described in (4) and (9). To show that these $2 m$ elements are distinct, it suffices to show that there is no common element in (4) and (9), which follows immediately from the fact that $\operatorname{det} r=1$ and $\operatorname{det} s=-1$.

It is important to note that this last part of reasoning, except the distinctness, follows only from the transformation rule

$$
\begin{equation*}
s^{2}=t^{2}=1, \quad(s t)^{m}=1 \tag{10}
\end{equation*}
$$

Setting $r=s t$, we have $r^{m}=1$ and srs $=r^{-1}$. Written in terms of r and s, we can also say that the determination of all elements in $\langle s, t\rangle$ follows only from the transformation rule

$$
\begin{equation*}
s^{2}=r^{m}=1, \quad s r=r^{-1} s \tag{11}
\end{equation*}
$$

Indeed, one can always rewrite $s r$ to $r^{m-1} s$, so every element in $\langle s, r\rangle$ is of the form $r^{k} s^{j}$ with $0 \leq k<m$ and $j \in\{0,1\}$.

In the next lecture, we will discuss a rigorous way of dealing with words in formal symbol subject to relations such as (10) and (11). In addition to this formal aspect, we will discuss explicit realizations of these symbols as linear transformation.

Definition 1. A linear transformation $s: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is called a reflection if there exists a nonzero vector α such that $s(\alpha)=-\alpha$ and $s(h)=h$ for all $h \in(\mathbf{R} \alpha)^{\perp}$.

Note that, since $\mathbf{R}^{n}=\mathbf{R} \alpha \oplus(\mathbf{R} \alpha)^{\perp}$, the linear transformation is determined uniquely by the conditions $s(\alpha)=-\alpha$ and $s(h)=h$ for all $h \in(\mathbf{R} \alpha)^{\perp}$, so we denote this reflection by s_{α}. Moreover, any nonzero scalar multiple of α defines the same reflection, that is, $s_{\alpha}=s_{c \alpha}$ for any $c \in \mathbf{R}$ with $c \neq 0$.

Lemma 2. Let $s: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a reflection. Then the matrix representation S of s is diagonalizable by an orthogonal matrix:

$$
P^{-1} S P=\left[\begin{array}{cccc}
-1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

for some orthogonal matrix P. Conversely, if the matrix representation of s is of this form for some orthogonal matrix P, then s is a reflection.

Proof. Let $s=s_{\alpha}$. We may assume without loss of generality $(\alpha, \alpha)=1$. Let $\beta_{2}, \ldots, \beta_{n}$ be an orthonormal basis of $(\mathbf{R} \alpha)^{\perp}$. Then $\alpha, \beta_{2}, \ldots, \beta_{n}$ is an orthonormal basis of \mathbf{R}^{n}. Let

$$
P=\left[\begin{array}{llll}
\alpha & \beta_{2} & \cdots & \beta_{n}
\end{array}\right] .
$$

Then P is an orthogonal matrix, and

$$
S P=P\left[\begin{array}{llll}
-1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

To prove the converse, let α be the first column of P. Then clearly $s(\alpha)=-\alpha$ and $s(h)=h$ for any $h \in(\mathbf{R} \alpha)^{\perp}$. Thus $s=s_{\alpha}$.

April 18, 2016

Lemma 2 shows that S itself is also an orthogonal matrix. It is well known that this is equivalent to s being an orthogonal transformation, that is,

$$
\begin{equation*}
(s(\lambda), s(\mu))=(\lambda, \mu) \quad\left(\lambda, \mu \in \mathbf{R}^{n}\right) \tag{12}
\end{equation*}
$$

This can be directly verified as follows. First, let $s=s_{\alpha}$ with $\alpha \neq 0$ and set

$$
\pi(\lambda)=\lambda-\frac{(\lambda, \alpha)}{(\alpha, \alpha)} \alpha
$$

Then $(\pi(\lambda), \alpha)=0$, so

$$
\lambda=\frac{(\lambda, \alpha)}{(\alpha, \alpha)} \alpha+\pi(\lambda)
$$

is the representation of λ as an element of $\mathbf{R} \alpha \oplus(\mathbf{R} \alpha)^{\perp}$. By the definition of a reflection, we obtain

$$
\begin{aligned}
s_{\alpha}(\lambda) & =-\frac{(\lambda, \alpha)}{(\alpha, \alpha)} \alpha+\pi(\lambda) \\
& =\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha .
\end{aligned}
$$

Note that this is a direct generalization of our formula (2) originally established in \mathbf{R}^{2} only. Now

$$
\begin{aligned}
\left(s_{\alpha}(\lambda), s_{\alpha}(\mu)\right) & =\left(\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha, \mu-\frac{2(\mu, \alpha)}{(\alpha, \alpha)} \alpha\right) \\
& =(\lambda, \mu)-\left(\lambda, \frac{2(\mu, \alpha)}{(\alpha, \alpha)} \alpha\right)-\left(\mu, \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha\right)+\left(\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha, \frac{2(\mu, \alpha)}{(\alpha, \alpha)} \alpha\right) \\
& =(\lambda, \mu)-\frac{2(\mu, \alpha)}{(\alpha, \alpha)}(\lambda, \alpha)-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)}(\mu, \alpha)+\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \frac{2(\mu, \alpha)}{(\alpha, \alpha)}(\alpha, \alpha) \\
& =(\lambda, \mu)-\frac{2(\lambda, \alpha)(\mu, \alpha)}{(\alpha, \alpha)}-\frac{2(\lambda, \alpha)(\mu, \alpha)}{(\alpha, \alpha)}+\frac{4(\lambda, \alpha)(\mu, \alpha)}{(\alpha, \alpha)} \\
& =(\lambda, \mu) .
\end{aligned}
$$

Therefore, s_{α} is an orthogonal transformation.
For a real vector space V with an inner product, the set of orthogonal transformation is denoted by $O(V)$. Thus, every reflection in V is an element of $O(V)$. It is necessary to consider a more general vector space V than just \mathbf{R}^{n}, since we sometimes need to consider linear transformation defined on a subspace of \mathbf{R}^{n}.

Let us recall how the transformation rule (10) was used to derive every word in $\langle s, t\rangle$ is one of the $2 m$ possible forms. We now formalize this by ignoring the fact that s, t are reflections. Instead we only assume $s^{2}=t^{2}=1$. In order to facilitate this, we consider
a set of formal symbols X and consider the set of all words of length n. This is the set of sequence of length n, so it can be regarded as the cartesian product

$$
X^{n}=\underbrace{X \times X \times \cdots \times X}_{n} .
$$

Then we can form a disjoint union

$$
X^{*}=\bigcup_{n=0}^{\infty} X^{n}
$$

where X^{0} consists of a single element called the empty word, denoted by 1 .
A word $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$ is said to be reduced if $x_{i} \neq x_{i+1}$ for $1 \leq i<n$. By definition, the word 1 of length 0 is reduced, and every word of length 1 is reduced. For brevity, we write $x=x_{1} x_{2} \cdots x_{n} \in X^{n}$ instead of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$. We denote the set of all reduced words by $F(X)$.

We can define a binary operation $\mu: F(X) \times F(X) \rightarrow F(X)$ as follows.

$$
\begin{equation*}
\mu(1, x)=\mu(x, 1)=x \quad(x \in F(X)), \tag{13}
\end{equation*}
$$

and for $x=x_{1} \cdots x_{m} \in X^{m} \cap F(X)$ and $y=y_{1} \cdots y_{n} \in X^{n} \cap F(X)$ with $m, n \geq 1$, we define

$$
\mu(x, y)= \begin{cases}x_{1} \cdots x_{m} y_{1} \cdots y_{n} \in X^{m+n} & \text { if } x_{m} \neq y_{1} \tag{14}\\ \mu\left(x_{1} \cdots x_{m-1}, y_{2} \cdots y_{n}\right) & \text { otherwise }\end{cases}
$$

This is a recursive definition. Note that if $x_{m} \neq y_{1}$, then $x_{1} \cdots x_{m} y_{1} \cdots y_{n}$ is a reduced word. Note also that there is no guarantee that $x_{1} \cdots x_{m-1} y_{2} \cdots y_{n}$ is a reduced word. If it is not, then $x_{m-1}=y_{2}$, so we define this to be $\mu\left(x_{1} \cdots x_{m-2}, y_{3} \cdots y_{n}\right)$. Since the length is finite, we eventually reach the case where the last symbol of x is different from the first symbol of y, or one of x, y is 1 .

Definition 3. A set G with binary operation $\mu: G \times G \rightarrow G$ is said to be a group if
(i) μ is associative, that is, $\mu(\mu(a, b), c)=\mu(a, \mu(b, c))$ for all $a, b, c \in G$,
(ii) there exists an element $1 \in G$ such that $\mu(1, a)=\mu(a, 1)=a$ for all $a \in G$,
(iii) for each $a \in G$, there exists an element $a^{\prime} \in G$ such that $\mu\left(a, a^{\prime}\right)=\mu\left(a^{\prime}, a\right)=1$.

The element 1 is called the identity of G, and a^{\prime} is called the inverse of a.
Theorem 4. The set of reduced words $F(X)$ forms a group under the binary operation μ defined by (13)-(14).

Proof. Clearly, the empty word 1 is the identity in $F(X)$, i.e.,

$$
\begin{equation*}
\mu(1, a)=\mu(a, 1)=a \quad(a \in F(X)) \tag{15}
\end{equation*}
$$

Next we prove associativity (i), by a series of steps.
Step 1.

$$
\begin{equation*}
\mu(\mu(a, x), \mu(x, b))=\mu(a, b) \quad(a, b \in F(X), x \in X) . \tag{16}
\end{equation*}
$$

Indeed, denote by a_{-1} the last entry of a, and by b_{1} the first entry of b. Write

$$
\begin{aligned}
a=a^{\prime} x & \text { if } a_{-1}=x, \\
b=x b^{\prime} & \text { if } b_{1}=x .
\end{aligned}
$$

Since

$$
\begin{array}{rr}
a x \in F(X) & \text { if } a_{-1} \neq x, \\
x b \in F(X) & \text { if } b_{1} \neq x,
\end{array}
$$

we have

$$
\begin{aligned}
& \mu(\mu(a, x), \mu(x, b))= \begin{cases}\mu\left(a^{\prime}, b^{\prime}\right) & \text { if } a_{-1}=x, b_{1}=x \\
\mu\left(a^{\prime}, x b\right) & \text { if } a_{-1}=x, b_{1} \neq x \\
\mu\left(a x, b^{\prime}\right) & \text { if } a_{-1} \neq x, b_{1}=x \\
\mu(a x, x b) & \text { if } a_{-1} \neq x, b_{1} \neq x\end{cases} \\
&=\mu(a, b) .
\end{aligned}
$$

Step 2.

$$
\begin{equation*}
\mu(x, \mu(x, c))=c \quad(c \in F(X), x \in X) \tag{17}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
\mu(x, \mu(x, c)) & =\mu(\mu(1, x), \mu(x, c)) \tag{13}\\
& =\mu(1, c) \tag{16}\\
& =c
\end{align*}
$$

(by (13)).

Step 3.

$$
\begin{equation*}
\mu(x, \mu(b, c))=\mu(\mu(x, b), c) \quad(b, c \in F(X), x \in X) \tag{18}
\end{equation*}
$$

Assume $b \in X^{m}$. We prove (18) by induction on m. If $m=0$, then $b=1$, so

$$
\begin{align*}
\mu(x, \mu(b, c)) & =\mu(x, \mu(1, c)) \\
& =\mu(x, c) \tag{15}\\
& =\mu(\mu(x, 1), c) \\
& =\mu(\mu(x, b), c) .
\end{align*}
$$

$$
=\mu(x, c)
$$

$$
=\mu(\mu(x, 1), c)
$$

Next assume $m>0$. If $b=x b^{\prime}$, then

$$
\mu(x, \mu(b, c))=\mu\left(x, \mu\left(\mu\left(x, b^{\prime}\right), c\right)\right)
$$

$$
=\mu\left(x, \mu\left(x, \mu\left(b^{\prime}, c\right)\right)\right) \quad \text { (by induction) }
$$

$$
\begin{align*}
& =\mu\left(b^{\prime}, c\right) \tag{17}\\
& =\mu(\mu(x, b), c) .
\end{align*}
$$

If $b=b^{\prime} y$ and $c=y c^{\prime}$ for some $b^{\prime}, c^{\prime} \in F(X)$ and $y \in X$, then

$$
\begin{aligned}
\mu(x, \mu(b, c)) & =\mu\left(x, \mu\left(b^{\prime}, c^{\prime}\right)\right) & & \text { (by (14)) } \\
& =\mu\left(\mu\left(x, b^{\prime}\right), c^{\prime}\right) & & \text { (by induction) } \\
& =\mu\left(\mu\left(\mu\left(x, b^{\prime}\right), y\right), \mu\left(y, c^{\prime}\right)\right) & & \text { (by (16)) } \\
& =\mu\left(\mu\left(\mu\left(x, b^{\prime}\right), y\right), c\right) & & \\
& =\mu\left(\mu\left(x, \mu\left(b^{\prime}, y\right)\right), c\right) & & \text { (by induction) } \\
& =\mu(\mu(x, b), c) . & &
\end{aligned}
$$

Finally, if $b_{1} \neq x$ and $b_{-1} \neq c_{1}$, then $\mu(x, b)=x b$ and $\mu(b, c)=b c$, and $x b c \in F(X)$. Thus

$$
\begin{aligned}
\mu(x, \mu(b, c)) & =\mu(x, b c) \\
& =x b c \\
& =\mu(x b, c) \\
& =\mu(\mu(x, b), c) .
\end{aligned}
$$

This completes the proof of (18).
Now we prove

$$
\begin{equation*}
\mu(a, \mu(b, c))=\mu(\mu(a, b), c) \quad(a, b, c \in F(X)) . \tag{19}
\end{equation*}
$$

by induction on n, where $a \in X^{n}$. The cases $n=0$ is trivial because of (15). Assume $a=a^{\prime} x$, where $a^{\prime} \in F(X)$ and $x \in X$. Then

$$
\begin{aligned}
\mu(a, \mu(b, c)) & =\mu\left(\mu\left(a^{\prime}, x\right), \mu(b, c)\right) & & \\
& =\mu\left(a^{\prime}, \mu(x, \mu(b, c))\right) & & \text { (by induction) } \\
& =\mu\left(a^{\prime}, \mu(\mu(x, b), c)\right) & & \text { (by (18)) } \\
& =\mu\left(\mu\left(a^{\prime}, \mu(x, b)\right), c\right) & & \text { (by induction) } \\
& =\mu\left(\mu\left(\mu\left(a^{\prime}, x\right), b\right), c\right) & & \text { (by induction) } \\
& =\mu(\mu(a, b), c) . & &
\end{aligned}
$$

Therefore, we have proved associativity.
If $a=x_{1} \cdots x_{n} \in F(X) \cap X^{n}$, then the reversed word $a^{\prime}=x_{n} \cdots x_{1} \in F(X) \cap X^{n}$ is the inverse of a.

We call $F(X)$ the free group generated by the set of involutions X. From now on, we omit μ to denote the binary operation in $F(X)$ by juxtaposition. So we write $a b$ instead of $\mu(a, b)$ for $a, b \in F(X)$. Also, for $a=x_{1} \cdots x_{n} \in F(X) \cap X^{n}$, its inverse $x_{n} \cdots x_{1}$ will be denoted by a^{-1}.

Let s and t be the linear transformation of \mathbf{R}^{2} represented by the matrices

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \text { and }\left[\begin{array}{cc}
\cos \frac{2 \pi}{m} & \sin \frac{2 \pi}{m} \\
\sin \frac{2 \pi}{m} & -\cos \frac{2 \pi}{m}
\end{array}\right],
$$

respectively. Let $G=\langle s, t\rangle$ be the set of all linear transformation expressible as a product of s and t. We know

$$
G=\left\{(s t)^{j} \mid 0 \leq j<m\right\} \cup\left\{(s t)^{j} s \mid 0 \leq j<m\right\} .
$$

and $|G|=2 \mathrm{~m}$. The product of linear transformations defines a binary operation on G, and G forms a group under this operation. This group is called the dihedral group of order $2 m$. In order to connect the dihedral group with a free group, we make a definition.

Definition 5. Let G_{1} and G_{2} be groups. A mapping $f: G_{1} \rightarrow G_{2}$ is called a homomorphism if

$$
\begin{equation*}
f(a b)=f(a) f(b) \quad\left(\forall a, b \in G_{1}\right) \tag{20}
\end{equation*}
$$

where the product $a b$ is computed under the binary operation in G_{1}, the product $f(a) f(b)$ is computed under the binary operation in G_{2}. A bijective homomorphism is called an isomorphism. The groups G_{1} and G_{2} are said to be isomorphic if there exists an isomorphism from G_{1} to G_{2}.

Let $X=\{x, y\}$ be a set of two distinct formal symbols. Clearly, there is a homomor$\operatorname{phism} f: F(X) \rightarrow G$ with $f(x)=s$ and $f(y)=t$, where $G=\langle s, t\rangle$ is the dihedral group of order $2 m$ defined above. Note that $f\left((x y)^{m}\right)=(s t)^{m}=1$, but $(x y)^{m} \in F(X)$ is not the identity. This suggests introducing another transformation rule $(x y)^{m}=1$, in addition to $x^{2}=y^{2}=1$ as we adopted when constructing the group $F(X)$. We do this by introducing an equivalence relation on $F(X)$. Let $a, b \in F(X)$. If there exists $c \in F(X)$ such that $a=b c^{-1}(x y)^{m} c$, then $f(a)=f(b)$ holds. So we write $a \sim b$ if there is a finite sequence $a=a_{0}, a_{1}, \ldots, a_{n}=b \in F(X)$ such that for each $i \in\{1,2, \ldots, n\}, a_{i}$ is obtained by multiplying a_{i-1} by an element of the form $c^{-1}(x y)^{m} c$ for some $c \in F(X)$. Then \sim is an equivalence relation, since $a=b c^{-1}(x y)^{m} c$ implies $b=a(x c)^{-1}(x y)^{m}(x c)$. Clearly, $a \sim b$ implies $f(a)=f(b)$. In other words, f induces a mapping from the set of equivalence classes to G. In fact, the set of equivalence classes forms a group under the binary operation inherited from $F(X)$. We can now make this more precise.

May 2, 2016

Definition 6. Let X be a set of formal symbols, and let $F(X)$ be the free group generated by the set of involutions X. Let $R \subset F(X)$. Let N be the subgroup generated by the set

$$
\begin{equation*}
\left\{c^{-1} r^{ \pm 1} c \mid c \in F(X), r \in R\right\} . \tag{21}
\end{equation*}
$$

In other words, N is the set of elements of $F(X)$ expressible as a product of elements in the set (21). The set

$$
F(X) / N=\{a N \mid a \in F(X)\}
$$

where $a N=\{a b \mid b \in N\}$ for $a \in F(X)$, forms a group under the binary operation

$$
\begin{aligned}
F(X) / N \times F(X) / N & \rightarrow F(X) / N \\
(a N, b N) & \mapsto a b N
\end{aligned}
$$

and it is called the group with presentation $\langle X \mid R\rangle$.
In view of Definition 6, we show that the dihedral group G of order $2 m$ is isomorphic to the the group with presentation $\left\langle x, y \mid(x y)^{m}\right\rangle$. Indeed, we have seen that there is a homomorphism $f: F(X) \rightarrow G$ with $f(x)=s$ and $f(y)=t$. In our case, $R=\left\{(x y)^{m}\right\}$ which is mapped to 1 under f. So f is constant on each equivalence class, and hence f induces a mapping $\bar{f}: F(X) / N \rightarrow G$ defined by $\bar{f}(a N)=f(a)(a \in F(X))$. This mapping \bar{f} is a homomorphism since

$$
\begin{aligned}
\bar{f}((a N)(b N)) & =\bar{f}(a b N) \\
& =f(a b) \\
& =f(a) f(b) \\
& =\bar{f}(a N) \bar{f}(b N) .
\end{aligned}
$$

Moreover, it is clear that both f and \bar{f} are surjective, since $G=\langle s, t\rangle=\langle f(x), f(y)\rangle$. The most important part of the proof is injectivity of \bar{f}. The argument on the transformation rule defined by $(x y)^{m}$ shows

$$
F(X) / N=\left\{(x y)^{j} N \mid 0 \leq j<m\right\} \cup\left\{(x y)^{j} x N \mid 0 \leq j<m\right\} .
$$

In particular, $|F(X) / N| \leq 2 m=|G|$. Since \bar{f} is surjective, equality and injectivity of \bar{f} are forced.

Definition 7. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. The set $O(V)$ of orthogonal linear transformations of V forms a group under composition. We call $O(V)$ the orthogonal group of V.

Definition 8. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. A subgroup W of the group $O(V)$ is said to be a finite reflection group if
(i) $W \neq\left\{\mathrm{id}_{V}\right\}$,
(ii) W is finite,
(iii) W is generated by a set of reflections.

For example, the dihedral group G of order $2 m$ is a finite reflection group, since $G \subset$ $O\left(\mathbf{R}^{2}\right),|G|=2 m$ is neither 1 nor infinite, and G is generated by two reflections. We have seen that G has presentation $\left\langle s, t \mid(s t)^{m}\right\rangle$. One of the goal of these lectures is to show that every finite reflection group has presentation $\left\langle s_{1}, \ldots, s_{n} \mid R\right\rangle$, where $R \subset F\left(\left\{s_{1}, \ldots, s_{n}\right\}\right)$ is of the form $\left\{\left(s_{i} s_{j}\right)^{m_{i j}} \mid 1 \leq i, j \leq n\right\}$.

Let $n \geq 2$ be an integer, and let \mathcal{S}_{n} denote the symmetric group of degree n. In other words, \mathcal{S}_{n} consists of all permutations of the set $\{1,2, \ldots, n\}$. Since permutations are bijections from $\{1,2, \ldots, n\}$ to itself, \mathcal{S}_{n} forms a group under composition. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ denote the standard basis of \mathbf{R}^{n}. For each $\sigma \in \mathcal{S}_{n}$, we define $g_{\sigma} \in O\left(\mathbf{R}^{n}\right)$ by setting

$$
g_{\sigma}\left(\sum_{i=1}^{n} c_{i} \varepsilon_{i}\right)=\sum_{i=1}^{n} c_{i} \varepsilon_{\sigma(i)},
$$

and set

$$
G_{n}=\left\{g_{\sigma} \mid \sigma \in \mathcal{S}_{n}\right\} .
$$

It is easy to verify that G_{n} is a subgroup of $O(V)$ and, the mapping $\mathcal{S}_{n} \rightarrow G_{n}$ defined by $\sigma \mapsto g_{\sigma}$ is an isomorphism. We claim that g_{σ} is a reflection if σ is a transposition; more precisely,

$$
\begin{equation*}
g_{\sigma}=s_{\varepsilon_{i}-\varepsilon_{j}} \quad \text { if } \sigma=(i j) \tag{22}
\end{equation*}
$$

Indeed, for $k \in\{1,2, \ldots, n\}$,

$$
\begin{aligned}
s_{\varepsilon_{i}-\varepsilon_{j}}\left(\varepsilon_{k}\right) & =\varepsilon_{k}-\frac{2\left(\varepsilon_{k}, \varepsilon_{i}-\varepsilon_{j}\right)}{\left(\varepsilon_{i}-\varepsilon_{j}, \varepsilon_{i}-\varepsilon_{j}\right)}\left(\varepsilon_{i}-\varepsilon_{j}\right) \\
& =\varepsilon_{k}-\left(\varepsilon_{k}, \varepsilon_{i}-\varepsilon_{j}\right)\left(\varepsilon_{i}-\varepsilon_{j}\right) \\
& = \begin{cases}\varepsilon_{i}-\left(\varepsilon_{i}-\varepsilon_{j}\right) & \text { if } k=i, \\
\varepsilon_{j}+\left(\varepsilon_{i}-\varepsilon_{j}\right) & \text { if } k=j, \\
\varepsilon_{k} & \text { otherwise }\end{cases} \\
& = \begin{cases}\varepsilon_{j} & \text { if } k=i, \\
\varepsilon_{i} & \text { if } k=j, \\
\varepsilon_{k} & \text { otherwise }\end{cases} \\
& =\varepsilon_{\sigma(k)} \\
& =g_{\sigma}\left(\varepsilon_{k}\right) .
\end{aligned}
$$

It is well known that \mathcal{S}_{n} is generated by its set of transposition. Via the isomorphism $\sigma \mapsto g_{\sigma}$, we see that G_{n} is generated by the set of reflections

$$
\left\{s_{\varepsilon_{i}-\varepsilon_{j}} \mid 1 \leq i<j \leq n\right\} .
$$

Therefore, G_{n} is a finite reflection group.
Observe that G_{3} has order 6 , and we know another finite reflection group of order 6 , namely, the dihedral group of order 6 . Although $G_{3} \subset O\left(\mathbf{R}^{3}\right)$ while the dihedral group is a subgroup of $O\left(\mathbf{R}^{2}\right)$, these two groups are isomorphic. In order to see their connection, we make a definition.
Definition 9. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. Let $W \subset O(V)$ be a finite reflection group. We say that W is not essential if there exists a nonzero vector $\lambda \in V$ such that $t \lambda=\lambda$ for all $t \in W$. Otherwise, we say that W is essential.

For example, the dihedral group G of order $2 m \geq 6$ is essential. Indeed, G contains a rotation t whose matrix representation is

$$
\left[\begin{array}{cc}
\cos \frac{2 \pi}{m} & -\sin \frac{2 \pi}{m} \tag{23}\\
\sin \frac{2 \pi}{m} & \cos \frac{2 \pi}{m}
\end{array}\right] .
$$

There exists no nonzero vector $\lambda \in V$ such that $t \lambda=\lambda$ since the matrix (23) does not have 1 as an eigenvalue:

$$
\left|\begin{array}{cc}
\cos \frac{2 \pi}{m}-1 & -\sin \frac{2 \pi}{m} \\
\sin \frac{2 \pi}{m} & \cos \frac{2 \pi}{m}-1
\end{array}\right|=2\left(1-\cos \frac{2 \pi}{m}\right) \neq 0 .
$$

On the other hand, the group G_{n} which is isomorphic to \mathcal{S}_{n} is not essential. Indeed, the vector $\lambda=\sum_{i=1}^{n} \varepsilon_{i}$ is fixed by every $t \in G_{n}$. In order to find connections between the dihedral group of order 6 and the group G_{3}, we need a method to produce an essential finite reflection group from non-essential one.

Given a finite reflection group $W \subset O(V)$, let

$$
U=\{\lambda \in V \mid \forall t \in W, t \lambda=\lambda\} .
$$

It is easy to see that U is a subspace of V. Let U^{\prime} be the orthogonal complement of U in V. Since $t U=U$ for all $t \in W$, we have $t U^{\prime}=U^{\prime}$ for all $t \in W$. This allows to construct the restriction homomorphism $W \rightarrow O\left(U^{\prime}\right)$ defined by $\left.t \mapsto t\right|_{U^{\prime}}$.
Exercise 10. Show that the above restriction homomorphism is injective, and the image $\left.W\right|_{U^{\prime}}$ is an essential finite reflection group in $O\left(U^{\prime}\right)$.

For the group G_{3}, we have

$$
\begin{aligned}
U & =\mathbf{R}\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right), \\
U^{\prime} & =\mathbf{R}\left(\varepsilon_{1}-\varepsilon_{2}\right)+\mathbf{R}\left(\varepsilon_{2}-\varepsilon_{3}\right) \\
& =\mathbf{R} \eta_{1}+\mathbf{R} \eta_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \eta_{1}=\frac{1}{\sqrt{2}}\left(\varepsilon_{1}-\varepsilon_{2}\right), \\
& \eta_{2}=\frac{1}{\sqrt{6}}\left(\varepsilon_{1}+\varepsilon_{2}-2 \varepsilon_{3}\right)
\end{aligned}
$$

is an orthonormal basis of U^{\prime}.

Exercise 11. Compute the matrix representations of $g_{(12)}$ and $g_{(23)}$ with respect to the basis $\left\{\eta_{1}, \eta_{2}\right\}$. Show that they are reflections whose lines of symmetry form an angle $\pi / 3$.

As a consequence of Exercise 10, we see that the group G_{3}, restricted to the subspace U^{\prime} so that it becomes essential, is nothing but the dihedral group of order 6 .

May 9, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Recall that for $0 \neq \alpha \in V, s_{\alpha} \in O(V)$ denotes the reflection

$$
\begin{equation*}
s_{\alpha}(\lambda)=\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad(\lambda \in V) . \tag{24}
\end{equation*}
$$

Lemma 12. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $t s_{\alpha} t^{-1}=s_{t \alpha}$.
Proof. For $\lambda \in V$, we have

$$
\begin{align*}
t s_{\alpha}(\lambda) & =t\left(\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha\right) \tag{24}\\
& =t \lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} t \alpha \\
& =t \lambda-\frac{2(t \lambda, t \alpha)}{(t \alpha, t \alpha)} t \alpha \\
& =s_{t \alpha}(t \lambda) .
\end{align*}
$$

This implies $t s_{\alpha}=s_{t \alpha} t$, and the result follows.
For example, if s_{α} is a reflection in a dihedral group G, and $t \in G$ is a rotation, then s_{α} and t are not necessarily commutative, but rotating before reflecting can be compensated by reflecting with respect to another line afterwards.

Proposition 13. Let $W \subset O(V)$ be a finite reflection group, and let $0 \neq \alpha \in V$. If $w, s_{\alpha} \in W$, then $s_{w \alpha} \in W$.

Proof. By Lemma 12, we have $s_{w \alpha}=w s_{\alpha} w^{-1} \in W$.
Definition 14. Let Φ be a nonempty finite set of nonzero vectors in V. We say that Φ is a root system if
(R1) $\Phi \cap \mathbf{R} \alpha=\{\alpha,-\alpha\}$ for all $\alpha \in \Phi$,
(R2) $s_{\alpha} \Phi=\Phi$ for all $\alpha \in \Phi$.
Proposition 15. Let Φ be a root system in V. Then the subgroup

$$
W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle
$$

of $O(V)$ is a finite reflection group. Moreover, $W(\Phi)$ is essential if and only if Φ spans V. Conversely, for every finite reflection group $W \subset O(V)$, there exists a root system $\Phi \subset V$ such that $W=W(\Phi)$.

Proof. Since $\Phi \neq \emptyset$, the group $W(\Phi)$ contains at least one reflection. In particular, $W(\Phi) \neq\left\{\mathrm{id}_{V}\right\}$. By construction, W is generated by reflections. In order to show that W is finite, let U be the subspace of V spanned by Φ. Since $U^{\perp} \subset(\mathbf{R} \alpha)^{\perp}$ for all $\alpha \in \Phi$, we have $s_{\alpha}(\lambda)=\lambda$ for all $\alpha \in \Phi$ and $\lambda \in U^{\perp}$. This implies that

$$
\begin{equation*}
\left.w\right|_{U^{\perp}}=\mathrm{id}_{U^{\perp}} \quad(w \in W) . \tag{25}
\end{equation*}
$$

In particular, W leaves U^{\perp} invariant. Since $W \subset O(V), W$ also leaves U invariant. We can form the restriction homomorphism $W \rightarrow O(U)$ which is injective. Indeed, if an element $w \in W$ is in the kernel of the restriction homomorphism, then $\left.w\right|_{U}=\operatorname{id}_{U}$. Together with (25), we see $w=\mathrm{id}_{V}$. By (R2), W permutes the finite set Φ, hence there is a homomorphism f from W to the symmetric group on Φ. An element $w \in \operatorname{Ker} f$ fixes every element of Φ, in particular, a basis of U. This implies that w is in the kernel of the restriction homomorphism, and hence $w=\mathrm{id}_{V}$. We have shown that f is an injection from W to the symmetric group of Φ which is finite. Therefore W is finite. This completes the proof of the first part.

Moreover, $W(\Phi)$ is not essential if and only if there exists a nonzero vector $\lambda \in V$ such that $t \lambda=\lambda$ for all $t \in W(\Phi)$. Since $W(\Phi)$ is generated by $\left\{s_{\alpha} \mid \alpha \in \Phi\right\}$,

$$
\begin{aligned}
t \lambda=\lambda(\forall t \in W(\Phi)) & \Longleftrightarrow s_{\alpha} \lambda=\lambda(\forall \alpha \in \Phi) \\
& \Longleftrightarrow(\lambda, \alpha)=0(\forall \alpha \in \Phi) \\
& \Longleftrightarrow \lambda \in U^{\perp} .
\end{aligned}
$$

Thus, $W(\Phi)$ is not essential if and only if $U^{\perp} \neq 0$, or equivalently, Φ does not span V.
Conversely, let $W \subset O(V)$ be a finite reflection group, and let S be the set of all reflections of W. By Definition 8(iii), W is generated by S. Define

$$
\begin{equation*}
\Phi=\left\{\alpha \in V \mid s_{\alpha} \in S,\|\alpha\|=1\right\} . \tag{26}
\end{equation*}
$$

Observe

$$
\begin{equation*}
S=\left\{s_{\alpha} \mid \alpha \in \Phi\right\} . \tag{27}
\end{equation*}
$$

We claim that Φ is a root system. First, since $W \neq\left\{\operatorname{id}_{V}\right\}$, we have $\Phi \neq \emptyset$. Let $\alpha \in \Phi$. Since $s_{\alpha}=s_{-\alpha}$ and $\|\alpha\|=\|-\alpha\|$, we see that Φ satisfies (R1). For $\beta \in \Phi$, we have $\left\|s_{\alpha}(\beta)\right\|=\|\beta\|=1$, and $s_{s_{\alpha}(\beta)} \in W$ by Proposition 13, since $s_{\alpha}, s_{\beta} \in W$. This implies $s_{\alpha}(\beta) \in \Phi$, and hence $s_{\alpha}(\Phi)=\Phi$. Therefore, Φ is a root system. It remains to show that $W=W(\Phi)$. But this follows immediately from (27) since $W=\langle S\rangle$.
Example 16. We have seen that the group G_{n} generated by reflections

$$
\begin{equation*}
\left\{s_{\varepsilon_{i}-\varepsilon_{j}} \mid 1 \leq i<j \leq n\right\} \tag{28}
\end{equation*}
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ is the standard basis of \mathbf{R}^{n}, is a finite reflection group which is abstractly isomorphic to the symmetric group of degree n. The set

$$
\begin{equation*}
\Phi=\left\{ \pm\left(\varepsilon_{i}-\varepsilon_{j}\right) \mid 1 \leq i<j \leq n\right\} \tag{29}
\end{equation*}
$$

is a root system. Indeed, Φ clearly satisfies (R1). It is also clear that $g_{\sigma} \Phi=\Phi$ for all $\sigma \in \mathcal{S}_{n}$, so in particular, (R2) holds.

Exercise 17. Show that (28) is precisely the set of reflections in G_{n}. In other words, show that g_{σ} is a reflection if and only if σ is a transposition.

Definition 18. A total ordering of V is a transitive relation on V (denoted $<$) satisfying the following axioms.
(i) For each pair $\lambda, \mu \in V$, exactly one of $\lambda<\mu, \lambda=\mu, \mu<\lambda$ holds.
(ii) For all $\lambda, \mu, \nu \in V, \mu<\nu$ implies $\lambda+\mu<\lambda+\nu$.
(iii) Let $\mu<\nu$ and $c \in \mathbf{R}$. If $c>0$ then $c \mu<c \nu$, and if $c<0$ then $c \nu<c \mu$.

For convenience, we write $\lambda>\mu$ if $\mu<\lambda$. By (ii), $\lambda>0$ implies $0>-\lambda$. Thus

$$
\begin{equation*}
V=V_{+} \cup\{0\} \cup V_{-} \quad \text { (disjoint) }, \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
& V_{+}=\{\lambda \in V \mid \lambda>0\} \tag{31}\\
& V_{-}=\{\lambda \in V \mid \lambda<0\} . \tag{32}
\end{align*}
$$

We say that $\lambda \in V_{+}$is positive, and $\lambda \in V_{-}$is negative.
Example 19. Let $\lambda_{1}, \ldots, \lambda_{n}$ be a basis of V. Define the lexicographic ordering of V with respect to $\lambda_{1}, \ldots, \lambda_{n}$ by

$$
\sum_{i=1}^{n} a_{i} \lambda_{i}<\sum_{i=1}^{n} b_{i} \lambda_{i} \Longleftrightarrow \exists k \in\{1,2, \ldots, n\}, a_{1}=b_{1}, \ldots, a_{k-1}=b_{k-1}, a_{k}<b_{k}
$$

Clearly, this is a total ordering of V. Note that $\lambda_{i}>0$ for all $i \in\{1, \ldots, n\}$. For $n=2$, we have

$$
V_{+}=\left\{c_{1} \lambda_{1}+c_{2} \lambda_{2} \mid c_{1}>0, c_{2} \in \mathbf{R}\right\} \cup\left\{c_{2} \lambda_{2} \mid c_{2}>0\right\} .
$$

Lemma 20. Let $<$ be a total ordering of V, and let $\lambda, \mu \in V$.
(i) If $\lambda, \mu>0$, then $\lambda+\mu>0$.
(ii) If $\lambda>0, c \in \mathbf{R}$ and $c>0$, then $c \lambda>0$.
(iii) If $\lambda>0, c \in \mathbf{R}$ and $c<0$, then $c \lambda<0$. In particular, $-\lambda<0$.

Proof. (i) By Definition 18(ii), we have $\lambda+\mu>\lambda>0$.
(ii) By Definition 18(iii), we have $c \lambda>c \cdot 0=0$.
(iii) By Definition 18(iii), we have $c \lambda<c \cdot 0=0$. Taking $c=-1$ gives the second statement.

Definition 21. Let Φ be a root system in V. A subset Π of Φ is called a positive system if there exists a total ordering $<$ of V such that

$$
\begin{equation*}
\Pi=\{\alpha \in \Phi \mid \alpha>0\} . \tag{33}
\end{equation*}
$$

Since a total ordering of V always exists by Example 19, and every total ordering of V defines a positive system of a root system Φ in V, according to Definition 21, there are many positive systems in Φ.

Example 22. Continuing Example 16, let $<$ be the total ordering defined by the basis $\varepsilon_{1}, \ldots, \varepsilon_{n}$. Then $\varepsilon_{i}>\varepsilon_{j}$ if $i<j$. Thus, according to (33),

$$
\Pi=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i<j \leq n\right\} .
$$

Lemma 23. If Π is a positive system in a root system Φ, then $\Phi=\Pi \cup(-\Pi)$ (disjoint), where

$$
\begin{equation*}
-\Pi=\{-\alpha \mid \alpha \in \Pi\} \tag{34}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
-\Pi=\{\alpha \in \Phi \mid \alpha<0\} . \tag{35}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\Pi \cap(-\Pi) & =\emptyset
\end{aligned} \begin{array}{ll}
\text { (by Lemma 20(iii)), } \\
\Pi \subset \Phi & \\
-\Pi \subset \Phi & \\
\text { (by Definition 21), } \\
\text { (by Definition 14(R1)). }
\end{array}
$$

Thus, it remains to show $\Phi \subset \Pi \cup(-\Pi)$. Suppose $\alpha \in \Phi \backslash \Pi$. Then

$$
\begin{aligned}
\alpha \notin \Pi & \Longrightarrow \alpha \ngtr 0 & & \text { (by (33)) } \\
& \Longrightarrow \alpha<0 & & \text { (since } 0 \notin \Phi) \\
& \Longrightarrow 0<-\alpha & & \text { (by Definition 18(ii) } \\
& \Longrightarrow-\alpha \in \Pi & & \text { (by (33)) } \\
& \Longrightarrow \alpha \in-\Pi & & \text { (by (34)). }
\end{aligned}
$$

This proves $\Phi \backslash \Pi \subset(-\Pi)$, proving $\Phi \subset \Pi \cup(-\Pi)$.
Since $\Phi=\Pi \cup(-\Pi)$ (disjoint) and $0 \notin \Phi$, (33) implies (35).
Definition 24. Let Π be a positive system in a root system Φ. We call $-\Pi$ defined by (34) the negative system in Φ with respect to Π.

Definition 25. Let Δ be a subset of a root system Φ. We call Δ a simple system if Δ is a basis of the subspace spanned by Φ, and if moreover each $\alpha \in \Phi$ is a linear combination of Δ with coefficients all of the same sign (all nonnegative or all nonpositive). In other words,

$$
\begin{equation*}
\Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta, \tag{36}
\end{equation*}
$$

where

$$
\mathbf{R}_{\geq 0} \Delta=\left\{\sum_{\alpha \in \Delta} c_{\alpha} \alpha \mid c_{\alpha} \geq 0(\alpha \in \Delta)\right\}
$$

If Δ is a simple system, we call its elements simple roots.

Example 26. Continuing Example 22,

$$
\begin{equation*}
\Delta=\left\{\varepsilon_{i}-\varepsilon_{i+1} \mid 1 \leq i<n\right\} \tag{37}
\end{equation*}
$$

is a simple system. Indeed, for $\varepsilon_{i}-\varepsilon_{j} \in \Phi$, we have

$$
\varepsilon_{i}-\varepsilon_{j}= \begin{cases}\sum_{k=i}^{j-1}\left(\varepsilon_{k}-\varepsilon_{k+1}\right) \in \mathbf{R}_{\geq 0} \Delta & \text { if } i<j \\ \sum_{k=j}^{i-1}\left(-\left(\varepsilon_{j}-\varepsilon_{j+1}\right)\right) \in \mathbf{R}_{\leq 0} \Delta & \text { otherwise }\end{cases}
$$

May 16, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product.

Recall that a total ordering $<$ of V partitions V into three parts

$$
V=V_{+} \cup\{0\} \cup\left(-V_{+}\right),
$$

such that

$$
\begin{align*}
V_{+}+V_{+} & \subset V_{+} \tag{38}\\
\mathbf{R}_{\geq 0} V_{+} & \subset V_{+} \cup\{0\} . \tag{39}
\end{align*}
$$

Lemma 27. Let Δ be a finite set of nonzero vectors in V_{+}. If $(\alpha, \beta) \leq 0$ for any distinct $\alpha, \beta \in \Delta$, then Δ consists of linearly independent vectors.

Proof. Let

$$
\begin{equation*}
\sum_{\alpha \in \Delta} a_{\alpha} \alpha=0, \tag{40}
\end{equation*}
$$

and define

$$
\sigma=\sum_{\substack{\alpha \in \Delta \\ a_{\alpha}>0}} a_{\alpha} \alpha .
$$

Then

$$
\begin{aligned}
0 & \leq(\sigma, \sigma) \\
& =\left(\sum_{\substack{\alpha \in \Delta \\
a_{\alpha}>0}} a_{\alpha} \alpha, \sum_{\alpha \in \Delta} a_{\alpha} \alpha-\sum_{\substack{\beta \in \Delta \\
a_{\beta}<0}} a_{\beta} \beta\right) \\
& =\left(\sum_{\substack{\alpha \in \Delta \\
a_{\alpha}>0}} a_{\alpha} \alpha,-\sum_{\substack{\beta \in \Delta \\
a_{\beta}<0}} a_{\beta} \beta\right) \\
& =-\sum_{\substack{\alpha \in \Delta \\
a_{\alpha}>0}} \sum_{\substack{\beta \in \Delta \\
a_{\beta}<0}} a_{\alpha} a_{\beta}(\alpha, \beta) \\
& \leq 0 .
\end{aligned}
$$

This forces $\sigma=0$, so there is no $\alpha \in \Delta$ with $a_{\alpha}>0$. Similarly, we can show that there is no $\alpha \in \Delta$ with $a_{\alpha}<0$. Therefore, $a_{\alpha}=0$ for all $\alpha \in \Delta$.

Lemma 28. Let $\Delta \subset V_{+}$be a subset, and let $\alpha, \beta \in \Delta$ be linearly independent. If $\alpha \in \mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0} \Delta$, then $\alpha \in \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\})$.

Proof. Since

$$
\alpha \in \mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0} \Delta
$$

$$
\begin{aligned}
& =\mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0} \alpha+\mathbf{R}_{\geq 0} \beta+\mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha, \beta\}) \\
& =\mathbf{R}_{\geq 0} \alpha+\mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha, \beta\}) \\
& \subset \mathbf{R}_{\geq 0} \alpha+V_{+} \cap \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\}),
\end{aligned}
$$

there exists $a \in \mathbf{R}_{\geq 0}$ such that

$$
\begin{equation*}
\alpha \in a \alpha+V_{+} \cap \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\}) \tag{41}
\end{equation*}
$$

Thus

$$
\begin{align*}
& (1-a) \alpha \in V_{+} \tag{42}\\
& (1-a) \alpha \in \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\}) . \tag{43}
\end{align*}
$$

By (42), we have $1-a>0$. The result then follows from (43).
For a root system Φ in V, we denote by $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$, the set of positive systems and that of simple systems, respectively, in Φ. More specifically,

$$
\begin{aligned}
& \mathcal{P}(\Phi)=\{\{\alpha \in \Phi \mid \alpha>0\} \mid ">" \text { is a total ordering of } V\} \\
& \mathcal{S}(\Phi)=\left\{\Delta \subset \Phi \mid \Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta, \Delta \text { is linearly independent }\right\} .
\end{aligned}
$$

It is clear that $\mathcal{P}(\Phi)$ is non-empty, since V can be given a total ordering. We show that $\mathcal{S}(\Phi)$ is non-empty by establishing a bijection between $\mathcal{S}(\Phi)$ and $\mathcal{P}(\Phi)$, which is defined by

$$
\begin{align*}
\pi: \mathcal{S}(\Phi) & \rightarrow \mathcal{P}(\Phi) \\
\Delta & \mapsto \Phi \cap \mathbf{R}_{\geq 0} \Delta . \tag{44}
\end{align*}
$$

Lemma 29. Let Φ be a root system in V. If Δ is a simple system contained in a positive system Π, then
(i) $\Pi=\Phi \cap \mathbf{R}_{\geq 0} \Delta$,
(ii) $\Delta=\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\}$.

Proof. (i) Since Δ is a simple system, we have

$$
\begin{equation*}
\Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta . \tag{45}
\end{equation*}
$$

Since $\Delta \subset \Pi \subset V_{+}$for some total ordering of V, we have

$$
\begin{align*}
& \mathbf{R}_{\geq 0} \Delta \subset V_{+} \cup\{0\}, \tag{46}\\
& \mathbf{R}_{\leq 0} \Delta \subset V_{-} \cup\{0\} . \tag{47}
\end{align*}
$$

Thus

$$
\begin{align*}
\Pi & =\Phi \cap V_{+} \\
& =\Phi \cap\left(\mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta\right) \cap V_{+} \tag{45}
\end{align*}
$$

$$
\begin{aligned}
& =\Phi \cap \mathbf{R}_{\geq 0} \Delta \cap V_{+} \\
& =\Phi \cap\left(\mathbf{R}_{\geq 0} \Delta \backslash\{0\}\right) \\
& =\Phi \cap \mathbf{R}_{\geq 0} \Delta
\end{aligned}
$$

(ii) If $\alpha \in \Pi \backslash \Delta$, then $\Delta \subset \Pi \backslash\{\alpha\}$, so $\mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\}) \supset \mathbf{R}_{\geq 0} \Delta \ni \alpha$. This proves

$$
\Delta \supset\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\}
$$

Conversely, suppose $\alpha \in \Pi$ and $\alpha \in \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})$. Then there exists $\beta \in \Pi \backslash\{\alpha\}$ such that

$$
\begin{aligned}
\alpha & \in \mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha, \beta\}) \\
& \subset \mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0} \Pi \\
& =\mathbf{R}_{>0} \beta+\mathbf{R}_{\geq 0} \Delta
\end{aligned}
$$

Since $\beta \in \Pi \backslash\{\alpha\} \subset \mathbf{R}_{\geq 0} \Delta \backslash \mathbf{R}_{\geq 0} \alpha$, there exists $\delta \in \Delta \backslash\{\alpha\}$ such that

$$
\beta \in \mathbf{R}_{>0} \delta+\mathbf{R}_{\geq 0} \Delta
$$

Thus $\alpha \in \mathbf{R}_{>0} \delta+\mathbf{R}_{\geq 0} \Delta$, and hence $\{\alpha\} \cup \Delta$ is linearly dependent. This implies $\alpha \notin \Delta$.
Recall that for $0 \neq \alpha \in V, s_{\alpha} \in O(V)$ denotes the reflection

$$
\begin{equation*}
s_{\alpha}(\lambda)=\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha \quad(\lambda \in V) . \tag{48}
\end{equation*}
$$

Theorem 30. Let Φ be a root system in V. Then the mapping $\pi: \mathcal{S}(\Phi) \rightarrow \mathcal{P}(\Phi)$ defined by (44) is a bijection whose inverse is given by

$$
\begin{align*}
\pi^{-1}: \mathcal{P}(\Phi) & \rightarrow \mathcal{S}(\Phi) \\
\Pi & \mapsto\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\} . \tag{49}
\end{align*}
$$

Moreover,

(i) for every simple system Δ in $\Phi, \pi(\Delta)$ is the unique positive system containing Δ,
(ii) for every positive system Π in $\Phi, \pi^{-1}(\Pi)$ is the unique simple system contained in Π.

Proof. If $\Delta \in \mathcal{S}(\Phi)$, then Δ is a basis of the subspace spanned by Φ, so there exists a basis $\tilde{\Delta}$ of V containing Δ. By Example 19, there exists a total ordering $<$ of V such that $\alpha>0$ for all $\alpha \in \tilde{\Delta}$. Then

$$
\begin{aligned}
\pi(\Delta) & =\Phi \cap \mathbf{R}_{\geq 0} \Delta \\
& =\Phi \cap\left(\mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta\right) \cap V_{+} \\
& =\Phi \cap V_{+}
\end{aligned}
$$

is a positive system containing Δ.

Next we show that π is injective. Suppose $\Delta, \Delta^{\prime} \in \mathcal{S}(\Phi)$ and $\pi(\Delta)=\pi\left(\Delta^{\prime}\right)$. Then both Δ and Δ^{\prime} are simple system contained in $\Pi=\pi(\Delta)$. By Lemma 29(ii), we have

$$
\Delta=\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\}=\Delta^{\prime}
$$

Therefore, π is injective. Note that this shows

$$
\begin{equation*}
\pi^{-1}(\Pi) \subset\left\{\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\}\right\} \tag{50}
\end{equation*}
$$

Next we show that π is surjective. Suppose $\Pi \in \mathcal{P}(\Phi)$. Define \mathcal{D} by

$$
\begin{equation*}
\mathcal{D}=\left\{\Delta \subset \Pi \mid \Pi \subset \mathbf{R}_{\geq 0} \Delta\right\} \tag{51}
\end{equation*}
$$

Since Φ is a finite set, so are Π and \mathcal{D}. Since $\Pi \in \mathcal{D}, \mathcal{D}$ is non-empty. Thus, there exists a minimal member Δ of \mathcal{D}. This means

$$
\begin{align*}
& \Pi \subset \mathbf{R}_{\geq 0} \Delta \tag{52}\\
& \forall \alpha \in \Delta, \Pi \not \subset \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\}) . \tag{53}
\end{align*}
$$

Since Π is a positive system, there exists a total ordering of V such that $\Pi=\Phi \cap V_{+}$. In particular, $\Delta \subset V_{+}$. We claim

$$
\begin{equation*}
(\alpha, \beta) \leq 0 \text { for all pairs } \alpha \neq \beta \text { in } \Delta . \tag{54}
\end{equation*}
$$

Indeed, suppose, to the contrary, $(\alpha, \beta)>0$ for some distinct $\alpha, \beta \in \Delta$. Since $\pm s_{\alpha}(\beta) \in$ $\Phi=\Pi \cup(-\Pi)$, in view of (48), we may assume without loss of generality $\alpha \in \mathbf{R}_{>0} \beta+$ $\mathbf{R}_{\geq 0} \Delta$. Then by Lemma 28 , we obtain $\alpha \in \mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\})$. Now

$$
\begin{aligned}
\mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\}) & =\mathbf{R}_{\geq 0} \alpha+\mathbf{R}_{\geq 0}(\Delta \backslash\{\alpha\}) \\
& =\mathbf{R}_{\geq 0} \Delta \\
& \supset \Pi
\end{aligned}
$$

contradicting (53). This proves (54). Now, by Lemma 27, Δ consists of linearly independent vectors. We have shown that Δ is a simple system, and by construction, $\Delta \subset \Pi$. Lemma 29(i) then implies $\Pi=\pi(\Delta)$. Therefore, π is surjective. This also implies that equality holds in (50), which shows that the inverse π^{-1} is given by (49).

Finally, (i) follows from Lemma 29(i), while (ii) follows from Lemma 29(ii).

May 30, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. We also let Φ be a root system in V. Recall that $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$ denote the set of positive systems and that of simple systems, respectively, in Φ. Define

$$
\begin{aligned}
\pi: \mathcal{S}(\Phi) & \rightarrow \mathcal{P}(\Phi) \\
\Delta & \mapsto \Phi \cap \mathbf{R}_{\geq 0} \Delta .
\end{aligned}
$$

Theorem 30 is proved in an awkward manner, in the sense that $\pi^{-1}(\Pi) \in \mathcal{S}(\Phi)$ for $\Pi \in$ $\mathcal{P}(\Phi)$ is not explicitly shown. Lemma 29 (ii) shows that the existence of a simple system in Π does imply $\pi^{-1}(\Pi) \in \mathcal{S}(\Phi)$, but showing the existence of a simple system in Π is a separate problem. Here is how one can show $\pi^{-1}(\Pi) \in \mathcal{S}(\Phi)$ directly. We need a lemma.

Lemma 31. Suppose that V is given a total ordering, let $A \subset V_{+}$be a subset, $\alpha_{1}, \ldots, \alpha_{n} \in$ V_{+}, and $\beta \in V_{+} \backslash \bigcup_{i=1}^{n} \mathbf{R} \alpha_{i}$. If

$$
\begin{align*}
\alpha_{i} & \in \mathbf{R}_{\geq 0}(A \cup\{\beta\}), \tag{55}\\
\beta & \in \mathbf{R}_{\geq 0}\left(A \cup\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right), \tag{56}
\end{align*}
$$

then $\alpha_{1}, \ldots, \alpha_{n}, \beta \in \mathbf{R}_{\geq 0} A$.
Proof. Let $\mathcal{A}=\mathbf{R}_{\geq 0} A, \mathcal{A}_{+}=\mathcal{A} \backslash\{0\}$. By the assumption, we have $\mathcal{A}_{+} \subset V_{+}$. Then it suffices to show

$$
\begin{equation*}
\beta \in \mathcal{A} \tag{57}
\end{equation*}
$$

only, since $\alpha_{i} \in \mathcal{A}$ follows immediately from (55) and (57).
By (55), there exist $b_{i} \in \mathbf{R}_{\geq 0}$ and $\lambda_{i} \in \mathcal{A}$ such that

$$
\begin{equation*}
\alpha_{i}=b_{i} \beta+\lambda_{i} . \tag{58}
\end{equation*}
$$

Since $\beta \notin \mathbf{R} \alpha_{i}$, we have $\lambda_{i} \neq 0$, i.e.,

$$
\begin{equation*}
\lambda_{i} \in \mathcal{A}_{+} . \tag{59}
\end{equation*}
$$

By (56), there exist $a_{1}, \ldots, a_{n} \in \mathbf{R}_{\geq 0}$ such that

$$
\begin{equation*}
\beta \in \sum_{i=1}^{n} a_{i} \alpha_{i}+\mathcal{A} . \tag{60}
\end{equation*}
$$

If $a_{i}=0$ for all i, then (57) holds, so we may assume $a_{i}>0$ for some i. Then (59) implies

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} \lambda_{i} \in \mathcal{A}_{+} \tag{61}
\end{equation*}
$$

By (58) and (60), we obtain

$$
\beta \in \sum_{i=1}^{n} a_{i}\left(b_{i} \beta+\lambda_{i}\right)+\mathcal{A}
$$

$$
\begin{align*}
& =\sum_{i=1}^{n} a_{i} b_{i} \beta+\sum_{i=1}^{n} a_{i} \lambda_{i}+\mathcal{A} \\
& \subset \sum_{i=1}^{n} a_{i} b_{i} \beta+\mathcal{A}_{+} \tag{61}\\
& =\sum_{i=1}^{n} a_{i} b_{i} \beta+V_{+} \cap \mathcal{A} .
\end{align*}
$$

This implies

$$
\begin{align*}
& \left(1-\sum_{i=1}^{n} a_{i} b_{i}\right) \beta \in V_{+}, \tag{62}\\
& \left(1-\sum_{i=1}^{n} a_{i} b_{i}\right) \beta \in \mathcal{A} \tag{63}
\end{align*}
$$

By (62), we have $1-\sum_{i=1}^{n} a_{i} b_{i}>0$. Then (57) follows from (63).
Proposition 32. Let $\Pi \in \mathcal{P}(\Phi)$, and set

$$
\Delta=\left\{\alpha \in \Pi \mid \alpha \notin \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})\right\}
$$

Then
(i) $(\alpha, \beta) \leq 0$ for all $\alpha \neq \beta$ in Δ,
(ii) Δ is a simple system in Φ.

Proof. (i) Suppose, to the contrary, $(\alpha, \beta)>0$ for some distinct $\alpha, \beta \in \Delta$. Since $\pm s_{\alpha}(\beta) \in$ $\Phi=\Pi \cup(-\Pi)$, in view of (48), we may assume without loss of generality $\alpha \in \mathbf{R}_{>0} \beta+$ $\mathbf{R}_{\geq 0} \Pi$. By Lemma 28, we obtain $\alpha \in \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})$, which contradicts $\alpha \in \Delta$.
(ii) By (i) and Lemma 27, Δ consists of linearly independent vectors. It remains to show $\Pi \subset \mathbf{R}_{\geq 0} \Delta$. We consider the set

$$
\mathcal{B}=\left\{B \subset \Pi \backslash \Delta \mid B \subset \mathbf{R}_{\geq 0}(\Pi \backslash B)\right\}
$$

For all $\alpha \in \Pi \backslash \Delta$, we have $\alpha \in \mathbf{R}_{\geq 0}(\Pi \backslash\{\alpha\})$. Thus $\{\alpha\} \in \mathcal{B}$, and hence $\mathcal{B} \neq \emptyset$.
Let $B=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a maximal member of \mathcal{B}. Suppose $B \subsetneq \Pi \backslash \Delta$. Then there exists $\beta \in \Pi \backslash(B \cup \Delta)$. Set $A=\Pi \backslash(B \cup\{\beta\})$. Then (55) holds since $B \in \mathcal{B}$, while (56) holds since $\beta \notin \Delta$. Lemma 31 then implies $\alpha_{1}, \ldots, \alpha_{n}, \beta \in \mathbf{R}_{\geq 0}(\Pi \backslash(B \cup\{\beta\})$. This implies $B \cup\{\beta\} \in \mathcal{B}$, contradicting maximality of B. Therefore, $B=\Pi \backslash \Delta$. This implies $\Pi \backslash \Delta \in \mathcal{B}$, which in turn implies $\Pi \backslash \Delta \subset \mathbf{R}_{\geq 0} \Delta$. Since $\Delta \subset \mathbf{R}_{\geq 0} \Delta$ holds trivially, we obtain $\Pi \subset \mathbf{R}_{\geq 0} \Delta$. This completes the proof of (ii).

Recall

$$
W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle .
$$

By Definition 14(R2), we have

$$
\begin{equation*}
w \Phi=\Phi \quad(w \in W(\Phi)) . \tag{64}
\end{equation*}
$$

Lemma 33. Let $w \in W(\Phi)$. Then
(i) $w \Delta \in \mathcal{S}(\Phi)$ and $\pi(w \Delta)=w \pi(\Delta)$ for all $\Delta \in \mathcal{S}(\Phi)$,
(ii) $w \Pi \in \mathcal{P}(\Phi)$ and $\pi^{-1}(w \Pi)=w \pi^{-1}(\Pi)$ for all $\Pi \in \mathcal{P}(\Phi)$.

Proof. (i) Clear from (64) and (44).
(ii) For $\Pi \in \mathcal{P}(\Phi)$, let $\Delta=\pi^{-1}(\Pi) \in \mathcal{S}(\Phi)$. Then $w \Pi=w \pi(\Delta)=\pi(w \Delta) \in$ $\pi(\mathcal{S}(\Phi))=\mathcal{P}(\Phi)$ by (i). Also, $\pi^{-1}(w \Pi)=w \Delta=w \pi^{-1}(\Pi)$.

Lemma 34. Let $\alpha \in \Delta \in \mathcal{S}(\Phi)$ and $\Pi=\pi(\Delta)$. Then $s_{\alpha}(\Pi \backslash\{\alpha\})=\Pi \backslash\{\alpha\}$.
Proof. Let $\beta \in \Pi \backslash\{\alpha\}$, and write $\beta=\sum_{\gamma \in \Delta} c_{\gamma} \gamma$. Then

$$
\begin{equation*}
\exists \gamma \in \Delta \backslash\{\alpha\}, c_{\gamma}>0 \tag{65}
\end{equation*}
$$

Set

$$
c=\frac{2(\beta, \alpha)}{(\alpha, \alpha)},
$$

so that

$$
\begin{aligned}
s_{\alpha} \beta & =\beta-c \alpha \\
& =\sum_{\gamma \in \Delta} c_{\gamma} \gamma-c \alpha \\
& =\sum_{\gamma \in \Delta \backslash\{\alpha\}} c_{\gamma} \gamma+\left(c_{\alpha}-c\right) \alpha .
\end{aligned}
$$

Since $s_{\alpha} \beta \in \Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta$, (65) implies $s_{\alpha} \beta \in \Phi \cap \mathbf{R}_{\geq 0} \Delta=\pi(\Delta)=\Pi$. Since $\beta \in \Pi \not \supset-\alpha$, we have $\beta \neq-\alpha=s_{\alpha} \alpha$. Thus $s_{\alpha} \beta \neq \alpha$. Therefore, $s_{\alpha} \beta \in \Pi \backslash\{\alpha\}$.

Definition 35. Let G be a group, and let Ω be a set. We say that G acts on Ω if there is a mapping

$$
\begin{aligned}
G \times \Omega & \rightarrow \Omega \\
(g, \alpha) & \mapsto g \cdot \alpha
\end{aligned} \quad(g \in G, \alpha \in \Omega)
$$

such that
(i) $1 . \alpha=\alpha$ for all $\alpha \in \Omega$,
(ii) $g .(h . \alpha)=(g h) . \alpha$ for all $g, h \in G$ and $\alpha \in \Omega$.

We say that G acts transitively on Ω, or the action of G is transitive, if

$$
\forall \alpha, \beta \in \Omega, \exists g \in G, g . \alpha=\beta
$$

Observe, by Lemma 23,

$$
\begin{equation*}
|\Pi|=\frac{1}{2}|\Phi| \quad(\Pi \in \mathcal{P}(\Phi)) \tag{66}
\end{equation*}
$$

Theorem 36. The group $W(\Phi)$ acts transitively on both $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$.
Proof. First we show that

$$
\begin{equation*}
\forall \Pi, \Pi^{\prime} \in \mathcal{P}(\Phi), \exists w \in W(\Phi), w \Pi=\Pi^{\prime} \tag{67}
\end{equation*}
$$

by induction on $r=\left|\Pi \cap\left(-\Pi^{\prime}\right)\right|$. If $r=0$, then $\Pi \subset \Pi^{\prime}$, and we obtain $\Pi=\Pi^{\prime}$ by (66).
If $r>0$, then $\Pi \neq \Pi^{\prime}$. Let $\Delta=\pi^{-1}(\Pi)$. Then $\Delta \neq \pi^{-1}\left(\Pi^{\prime}\right)$, so Δ is not contained in Π^{\prime} by Theorem $30(i i)$. This implies $\Delta \cap\left(-\Pi^{\prime}\right) \neq \emptyset$ since $\Phi=\Pi^{\prime} \cup\left(-\Pi^{\prime}\right)$. Choose $\alpha \in \Delta \cap\left(-\Pi^{\prime}\right)$. Then

$$
\begin{equation*}
-\alpha \notin-\Pi^{\prime} . \tag{68}
\end{equation*}
$$

Since

$$
\begin{aligned}
s_{\alpha} \Pi & =s_{\alpha}(\{\alpha\} \cup(\Pi \backslash\{\alpha\})) \\
& =\left\{s_{\alpha} \alpha\right\} \cup\left(s_{\alpha}(\Pi \backslash\{\alpha\})\right) \\
& =\{-\alpha\} \cup s_{\alpha}(\Pi \backslash\{\alpha\})
\end{aligned}
$$

$$
=\{-\alpha\} \cup(\Pi \backslash\{\alpha\}) \quad \text { (by Lemma 34), }
$$

we have

$$
\begin{align*}
\left|s_{\alpha} \Pi \cap\left(-\Pi^{\prime}\right)\right| & =\left|(\{-\alpha\} \cup(\Pi \backslash\{\alpha\})) \cap\left(-\Pi^{\prime}\right)\right| \\
& =\left|(\Pi \backslash\{\alpha\}) \cap\left(-\Pi^{\prime}\right)\right| \tag{68}\\
& =\left|\left(\Pi \cap\left(-\Pi^{\prime}\right)\right) \backslash\{\alpha\}\right| \\
& =r-1 .
\end{align*}
$$

Since $s_{\alpha} \Pi \in \mathcal{P}(\Phi)$ by Lemma 33(ii), the inductive hypothesis applied to the pair $s_{\alpha} \Pi, \Pi^{\prime}$ implies that there exists $w \in W(\Phi)$ such that $w s_{\alpha} \Pi=\Pi^{\prime}$. Therefore, we have proved (67), which implies that $W(\Phi)$ acts transitively on $\mathcal{P}(\Phi)$. The transitivity of $W(\Phi)$ on $\mathcal{S}(\Phi)$ now follows immediately from Lemma 33 using the fact that π is a bijection from $\mathcal{S}(\Phi)$ to $\mathcal{P}(\Phi)$.

Definition 37. Let $\Delta \in \mathcal{S}(\Phi)$. For $\beta=\sum_{\alpha \in \Delta} c_{\alpha} \alpha \in \Phi$, the height of β relative to Δ, denoted $h t(\beta)$, is defined as

$$
\operatorname{ht}(\beta)=\sum_{\alpha \in \Delta} c_{\alpha} .
$$

Example 38. Continuing Example 26, let

$$
\Delta=\left\{\varepsilon_{i}-\varepsilon_{i+1} \mid 1 \leq i<n\right\} \in \mathcal{S}(\Phi),
$$

where

$$
\Phi=\left\{ \pm\left(\varepsilon_{i}-\varepsilon_{j}\right) \mid 1 \leq i<j \leq n\right\} .
$$

Then for $i<j$,

$$
\operatorname{ht}\left(\varepsilon_{i}-\varepsilon_{j}\right)=\operatorname{ht}\left(\sum_{k=i}^{j-1}\left(\varepsilon_{k}-\varepsilon_{k+1}\right)\right)=j-i .
$$

June 6, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. We also let Φ be a root system in V, and fix a simple system Δ in Φ. Let $\Pi=\Phi \cap \mathbf{R}_{\geq 0} \Delta$ be the unique positive system containing Δ. Recall

$$
W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle,
$$

which we denote by W for brevity.
Lemma 39. If $\beta \in \Pi \backslash \Delta$, then there exists $\alpha \in \Delta$ such that $s_{\alpha} \beta \in \Pi$ and $\operatorname{ht}(\beta)>\operatorname{ht}\left(s_{\alpha} \beta\right)$.
Proof. Write $\beta=\sum_{\alpha \in \Delta} c_{\alpha} \alpha$, where $c_{\alpha} \in \mathbf{R}_{\geq 0}$ for $\alpha \in \Delta$. Since

$$
\begin{aligned}
0 & <(\beta, \beta) \\
& =\sum_{\alpha \in \Delta} c_{\alpha}(\alpha, \beta),
\end{aligned}
$$

there exists $\alpha \in \Delta$ such that $c_{\alpha}(\alpha, \beta)>0$. In particular, as $c_{\alpha} \geq 0$, we have

$$
c=\frac{2(\alpha, \beta)}{(\alpha, \alpha)}>0 .
$$

Since

$$
\begin{aligned}
s_{\alpha} \beta & =\beta-c \alpha \\
& =\sum_{\gamma \in \Delta \backslash\{\alpha\}} c_{\gamma} \gamma+\left(c_{\alpha}-c\right) \alpha,
\end{aligned}
$$

we have $\operatorname{ht}\left(s_{\alpha} \beta\right)=\operatorname{ht}(\beta)-c<\operatorname{ht}(\beta)$. Since $\beta \in \Pi \backslash \Delta \subset \Pi \backslash\{\alpha\}$, Lemma 34 implies $s_{\alpha} \beta \in \Pi$.

Lemma 40. If $\beta \in \Phi$, then there exists a sequence $\alpha_{1}, \ldots, \alpha_{m}$ of elements in Δ such that $s_{\alpha_{1}} \cdots s_{\alpha_{m}} \beta \in \Delta$.

Proof. We first prove the assertion for $\beta \in \Pi$. Suppose there exists $\beta \in \Pi$ such that the assertion does not hold. Then clearly $\beta \notin \Delta$. We may assume that β has minimal height among such elements. By Lemma 39, there exists $\alpha \in \Delta$ such that $s_{\alpha} \beta \in \Pi$ and $\operatorname{ht}(\beta)>\operatorname{ht}\left(s_{\alpha} \beta\right)$. By the minimality of $\operatorname{ht}(\beta)$, there exists a sequence $\alpha_{1}, \ldots, \alpha_{m}$ of elements of Δ such that $s_{\alpha_{1}} \cdots s_{\alpha_{m}}\left(s_{\alpha} \beta\right) \in \Delta$. This is a contradiction.

If $\beta \in-\Pi$, then $-\beta \in \Pi$, so there exist $\alpha, \alpha_{1}, \ldots, \alpha_{m} \in \Delta$ such that

$$
\alpha=s_{\alpha_{1}} \cdots s_{\alpha_{m}}(-\beta) .
$$

Then

$$
s_{\alpha} s_{\alpha_{1}} \cdots s_{\alpha_{m}} \beta=-s_{\alpha} s_{\alpha_{1}} \cdots s_{\alpha_{m}}(-\beta)
$$

$$
\begin{aligned}
& =-s_{\alpha} \alpha \\
& =\alpha \\
& \in \Delta
\end{aligned}
$$

Theorem 41. If Δ is a simple system in a root system Φ, then $W=\left\langle s_{\alpha} \mid \alpha \in \Delta\right\rangle$.
Proof. Let $\beta \in \Phi$. By Lemma 40, there exist $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m} \in \Delta$ such that $s_{\alpha_{1}} \cdots s_{\alpha_{m}} \beta=$ α_{0}. Then

$$
\begin{aligned}
s_{\beta} & =s_{\left(s_{\alpha_{1}} \cdots s_{\alpha_{m}}\right)^{-1} \alpha_{0}} \\
& =\left(s_{\alpha_{1}} \cdots s_{\alpha_{m}}\right)^{-1} s_{\alpha_{0}} s_{\alpha_{1}} \cdots s_{\alpha_{m}} \quad \text { (by Lemma 12) } \\
& =s_{\alpha_{m}} \cdots s_{\alpha_{1}} s_{\alpha_{0}} s_{\alpha_{1}} \cdots s_{\alpha_{m}} \\
& \in\left\langle s_{\alpha} \mid \alpha \in \Delta\right\rangle .
\end{aligned}
$$

Definition 42. For $w \in W$, we define the length of w, denoted $\ell(w)$, to be

$$
\ell(w)=\min \left\{r \in \mathbf{Z} \mid r \geq 0, \exists \alpha_{1}, \ldots, \alpha_{r} \in \Delta, w=s_{\alpha_{1}} \cdots s_{\alpha_{r}}\right\} .
$$

By convention, $\ell(1)=0$.
Clearly, $\ell(w)=1$ if and only if $w=s_{\alpha}$ for some $\alpha \in \Delta$. It is also clear that $\ell(w)=$ $\ell\left(w^{-1}\right)$.

Lemma 43. For $w \in W, \operatorname{det}(w)=(-1)^{\ell(w)}$.
Proof. Since $\operatorname{det}\left(s_{\alpha}\right)=-1$ for all $\alpha \in \Phi$, the result follows immediately.
Lemma 44. For $w \in W$ and $\alpha \in \Delta, \ell\left(s_{\alpha} w\right)=\ell(w)+1$ or $\ell(w)-1$.
Proof. It is clear from the definition that $\ell\left(s_{\alpha} w\right) \leq \ell(w)+1$. Switching the role of w and $s_{\alpha} w$, we obtain $\ell\left(s_{\alpha} w\right) \geq \ell(w)-1$. Thus

$$
\ell\left(s_{\alpha} w\right) \in\{\ell(w)-1, \ell(w), \ell(w)+1\} .
$$

Since

$$
\begin{aligned}
(-1)^{\ell\left(s_{\alpha} w\right)} & =\operatorname{det}\left(s_{\alpha} w\right) & & \text { (by Lemma 43) } \\
& =-\operatorname{det} w & & \\
& =-(-1)^{\ell(w)} & & \text { (by Lemma 43). }
\end{aligned}
$$

This implies $\ell\left(s_{\alpha} w\right) \neq \ell(w)$.

Notation 45. For $w \in W$, we write

$$
n(w)=\left|\Pi \cap w^{-1}(-\Pi)\right| .
$$

Lemma 46. For $w \in W, n\left(w^{-1}\right)=n(w)$.
Proof.

$$
\begin{aligned}
n\left(w^{-1}\right) & =|\Pi \cap w(-\Pi)| \\
& =\left|w^{-1} \Pi \cap(-\Pi)\right| \\
& =\left|w^{-1}(-\Pi) \cap \Pi\right| \\
& =n(w) .
\end{aligned}
$$

Lemma 47. For $w \in W$ and $\alpha \in \Delta$, the following statements hold:
(i) $w \alpha>0 \Longrightarrow n\left(w s_{\alpha}\right)=n(w)+1$.
(ii) $w \alpha<0 \Longrightarrow n\left(w s_{\alpha}\right)=n(w)-1$.
(iii) $w^{-1} \alpha>0 \Longrightarrow n\left(s_{\alpha} w\right)=n(w)+1$.
(iv) $w^{-1} \alpha<0 \Longrightarrow n\left(s_{\alpha} w\right)=n(w)-1$.

Proof. (i) Since $w \alpha \in \Pi$, we have $\alpha \in w^{-1} \Pi$. Thus

$$
\begin{equation*}
\alpha \notin w^{-1}(-\Pi) \tag{69}
\end{equation*}
$$

and

$$
\begin{align*}
\alpha & =-s_{\alpha} \alpha \\
& \in-s_{\alpha} w^{-1} \Pi \\
& =s_{\alpha} w^{-1}(-\Pi) . \tag{70}
\end{align*}
$$

Thus

$$
\begin{array}{rlrl}
n\left(w s_{\alpha}\right) & =\left|\Pi \cap\left(w s_{\alpha}\right)^{-1}(-\Pi)\right| & \\
& =\left|\Pi \cap s_{\alpha} w^{-1}(-\Pi)\right| & & \\
& =\left|(\Pi \backslash\{\alpha\}) \cap s_{\alpha} w^{-1}(-\Pi)\right|+1 & & \\
& =\left|s_{\alpha}(\Pi \backslash\{\alpha\}) \cap s_{\alpha} w^{-1}(-\Pi)\right|+1 & & \text { (by Lemma 34) } \\
& =\left|(\Pi \backslash\{\alpha\}) \cap w^{-1}(-\Pi)\right|+1 & & \\
& =\left|\Pi \cap w^{-1}(-\Pi)\right|+1 & \text { (by (69)) } \\
& =n(w)+1 . &
\end{array}
$$

(ii) Since $w \alpha \in-\Pi$, we have

$$
\begin{equation*}
\alpha \in w^{-1}(-\Pi), \tag{71}
\end{equation*}
$$

and $\alpha \notin w^{-1} \Pi$, so

$$
\begin{align*}
\alpha & =-s_{\alpha} \alpha \\
& \notin-s_{\alpha} w^{-1} \Pi \\
& =s_{\alpha} w^{-1}(-\Pi) . \tag{72}
\end{align*}
$$

Thus

$$
\begin{array}{rlrl}
n\left(w s_{\alpha}\right) & =\left|\Pi \cap\left(w s_{\alpha}\right)^{-1}(-\Pi)\right| & & \\
& =\left|\Pi \cap s_{\alpha} w^{-1}(-\Pi)\right| & & \\
& =\left|(\Pi \backslash\{\alpha\}) \cap s_{\alpha} w^{-1}(-\Pi)\right| & & \text { (by (72)) } \\
& =\left|s_{\alpha}(\Pi \backslash\{\alpha\}) \cap s_{\alpha} w^{-1}(-\Pi)\right| & & \text { (by Lemma 34) } \\
& =\left|(\Pi \backslash\{\alpha\}) \cap w^{-1}(-\Pi)\right| & & \\
& =\left|\Pi \cap w^{-1}(-\Pi)\right|-1 & \text { (by (71)) } \tag{71}\\
& =n(w)-1 . & &
\end{array}
$$

(iii) and (iv)

$$
\begin{align*}
& n\left(s_{\alpha} w\right)=n\left(\left(s_{\alpha} w\right)^{-1}\right) \tag{byLemma46}\\
& =n\left(w^{-1} s_{\alpha}\right) \\
& = \begin{cases}n\left(w^{-1}\right)+1 & \text { if } w^{-1} \alpha>0, \\
n\left(w^{-1}\right)-1 & \text { if } w^{-1} \alpha<0\end{cases} \\
& = \begin{cases}n(w)+1 & \text { if } w^{-1} \alpha>0, \\
n(w)-1 & \text { if } w^{-1} \alpha<0\end{cases} \\
& \text { (by Lemma 46). }
\end{align*}
$$

Theorem 48. Let Δ be a simple system in a root system Φ. Let $\alpha_{1}, \ldots, \alpha_{r} \in \Delta$ and $w=s_{1} \cdots s_{r} \in W$, where $s_{i}=s_{\alpha_{i}}$ for $1 \leq i \leq r$. If $n(w)<r$, then there exist i, j with $1 \leq i<j \leq r$ satisfying the following conditions:
(i) $\alpha_{i}=s_{i+1} \cdots s_{j-1} \alpha_{j}$,
(ii) $s_{i+1} s_{i+2} \cdots s_{j}=s_{i} s_{i+1} \cdots s_{j-1}$,
(iii) $w=s_{1} \cdots s_{i-1} s_{i+1} \cdots s_{j-1} s_{j+1} \cdots s_{r}$.

In particular, $n(w) \geq \ell(w)$.

Proof. (i) Setting $w=1$ in Lemma 47(i), we find $n\left(s_{\alpha}\right)=1$ for every $\alpha \in \Delta$. This implies that, if $r=1$, then $n(w)=1$. Therefore, we may assume $r \geq 2$.

We claim that there exists j with $2 \leq j \leq r$ such that $s_{1} \cdots s_{j-1} \alpha_{j}<0$. Suppose, to the contrary,

$$
\begin{equation*}
s_{1} \cdots s_{j-1} \alpha_{j}>0 \tag{73}
\end{equation*}
$$

for all j with $2 \leq j \leq r$. Since $\alpha_{1}>0$, (73) holds also for $j=1$. By Lemma 47(i), we obtain $n\left(s_{1} \cdots s_{j}\right)=n\left(s_{1} \cdots s_{j-1}\right)+1$ for $1 \leq j \leq r$. By using induction, we obtain $n(w)=r$, contrary to our hypothesis.

Since $\alpha_{j}>0$, there exists i with $1 \leq i<j$ such that

$$
\begin{aligned}
s_{i+1} \cdots s_{j-1} \alpha_{j} & >0, \\
s_{i} s_{i+1} \cdots s_{j-1} \alpha_{j} & <0 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
s_{i} s_{i+1} \cdots s_{j-1} \alpha_{j} & \in s_{i} \Pi \cap(-\Pi) \\
& =s_{\alpha_{i}}\left(\left(\Pi \backslash\left\{\alpha_{i}\right\}\right) \cup\left\{\alpha_{i}\right\}\right) \cap(-\Pi) \quad \text { (by Lemma 34) } \\
& =\left(\left(\Pi \backslash\left\{\alpha_{i}\right\}\right) \cup\left\{-\alpha_{i}\right\}\right) \cap(-\Pi) \quad \\
& =\left\{-\alpha_{i}\right\} \\
& =\left\{s_{i}\left(\alpha_{i}\right)\right\} .
\end{aligned}
$$

This implies $s_{i+1} \cdots s_{j-1} \alpha_{j}=\alpha_{i}$.
(ii)

$$
\begin{array}{rlrl}
s_{i+1} \cdots s_{j} & =s_{i+1} \cdots s_{j-1} s_{\alpha_{j}}\left(s_{i+1} \cdots s_{j-1}\right)^{-1}\left(s_{i+1} \cdots s_{j-1}\right) & & \\
& =s_{s_{i+1} \cdots s_{j-1} \alpha_{j}}\left(s_{i+1} \cdots s_{j-1}\right) & & \quad \text { (by Lemma 12) } \\
& =s_{\alpha_{i}}\left(s_{i+1} \cdots s_{j-1}\right) & & \tag{i}\\
& =s_{i} s_{i+1} \cdots s_{j-1} . & \text { (i)) }
\end{array}
$$

(iii)

$$
\begin{align*}
w & =s_{1} \cdots s_{r} \\
& =s_{1} \cdots s_{i-1}\left(s_{i} \cdots s_{j-1}\right) s_{j} \cdots s_{r} \\
& =s_{1} \cdots s_{i-1}\left(s_{i+1} \cdots s_{j}\right) s_{j} \cdots s_{r} \tag{ii}\\
& =s_{1} \cdots s_{i-1} s_{i+1} \cdots s_{j-1} s_{j+1} \cdots s_{r} .
\end{align*}
$$

In particular, $n(w)<r$ implies $r \neq \ell(w)$. Thus $n(w) \geq \ell(w)$.
Corollary 49. If $w \in W$, then $n(w)=\ell(w)$.
Proof. From the last part of Theorem 48, it suffices to prove

$$
\begin{equation*}
n(w) \leq \ell(w) \quad(w \in W) \tag{74}
\end{equation*}
$$

By the definition of $\ell(w)$, there exists $\alpha_{1}, \ldots, \alpha_{\ell(w)} \in \Delta$ such that $w=s_{\alpha_{1}} \cdots s_{\alpha_{\ell(w)}}$. We prove (74) by induction on $m=\ell(w)$. If $m=0$, then $w=1$, and $n(w)=0=\ell(w)$. Assume the result holds for up to $m-1$. Then

$$
\begin{align*}
n\left(s_{\alpha_{1}} \cdots s_{\alpha_{\ell(w)-1}}\right) & \leq \ell\left(s_{\alpha_{1}} \cdots s_{\alpha_{\ell(w)-1}}\right) \\
& \leq \ell(w)-1 . \tag{75}
\end{align*}
$$

$$
\begin{array}{rlrl}
n(w) & =n\left(\left(s_{\alpha_{1}} \cdots s_{\alpha_{\ell(w)-1}}\right) s_{\alpha_{\ell(w)}}\right) \\
& \leq n\left(s_{\alpha_{1}} \cdots s_{\alpha_{\ell(w)-1}}\right)+1 \\
& \leq \ell(w) \quad \text { (by Lemma 47(i),(ii)) } \\
\text { (by }(75)) .
\end{array}
$$

June 13, 2016

Lemma 50. With reference to Definition 6, if $a, b, x, y \in F(X)$ and $x N=y N$, then $a x b N=a y b N$.

Proof.

$$
\begin{aligned}
x N=y N & \Longrightarrow x^{-1} y \in N \\
& \Longrightarrow b^{-1} x^{-1} y b \in N \\
& \Longrightarrow x b N=y b N \\
& \Longrightarrow a x b N=a y b N .
\end{aligned}
$$

Lemma 51. With reference to Definition 6, suppose $t_{1}, \ldots, t_{r} \in X$. If there exist i, j with $1 \leq i<j \leq r$ such that

$$
t_{i} \cdots t_{j-1} t_{j} t_{j-1} \cdots t_{i+1} \in N
$$

then

$$
t_{1} \cdots t_{r} N=t_{1} \cdots \hat{t}_{i} \cdots \hat{t}_{j} \cdots t_{r} N
$$

where the hat denotes omission.
Proof. Setting $a=t_{1} \cdots t_{i}, b=t_{i+1} \cdots t_{r}, x=1$ and $y=t_{i} \cdots t_{j-1} t_{j} t_{j-1} \cdots t_{i+1}$ in Lemma 50 gives the result.

Theorem 52. Let Δ be a simple system in a root system Φ. For $\alpha, \beta \in \Delta$, let $m(\alpha, \beta)$ denote the order of $s_{\alpha} s_{\beta}$, that is, the least positive integer k such that $\left(s_{\alpha} s_{\beta}\right)^{k}=1$ holds. Then the group $W=W(\Phi)$ has presentation $\langle X \mid R\rangle$, where

$$
\begin{aligned}
X & =\left\{t_{\alpha} \mid \alpha \in \Delta\right\} \quad \text { (a set of formal symbols) }, \\
R & =\left\{\left(t_{\alpha} t_{\beta}\right)^{m(\alpha, \beta)} \mid \alpha, \beta \in \Delta, \alpha \neq \beta\right\} .
\end{aligned}
$$

Proof. As in Definition 6, let $F(X)$ denote the free group generated by the set of involutions X. Let N be the subgroup generated by the set

$$
\begin{equation*}
\left\{c^{-1} r^{ \pm 1} c \mid c \in F(X), r \in R\right\} \tag{76}
\end{equation*}
$$

We need to show that W is isomorphic to $F(X) / N$.
Clearly, there is a homomorphism from $F(X)$ to W mapping t_{α} to s_{α} for all $\alpha \in \Delta$. By Theorem 41, this homomorphism is surjective. Moreover, since the set (76) is mapped to 1 by this homomorphism, there exists a surjective homomorphism $f: F(X) / N \rightarrow W$ satisfying $f\left(t_{\alpha} N\right)=s_{\alpha}$ for all $\alpha \in \Delta$. We need to show that f is injective. This will follow if

$$
\begin{equation*}
t_{1}, \ldots, t_{r} \in T, f\left(t_{1} \cdots t_{r} N\right)=1 \Longrightarrow t_{1} \cdots t_{r} \in N \tag{77}
\end{equation*}
$$

We prove this by induction on r. First we note that r is even. Indeed, $f\left(t_{1} \cdots t_{r} N\right)=1$ implies

$$
\begin{equation*}
s_{1} \cdots s_{r}=1, \tag{78}
\end{equation*}
$$

where $s_{i}=f\left(t_{i} N\right) \in\left\{s_{\alpha} \mid \alpha \in \Delta\right\}$ is a reflection. Thus det $s_{i}=-1$, so $(-1)^{r}=1$. This implies that r is even. Clearly, (77) holds for $r=0$. Also, if $r=2$, then $s_{1} s_{2}=1$. This implies $s_{1}=s_{2}$, so $t_{1}=t_{2}$. Thus $t_{1} t_{2}=1 \in N$.

Now assume $r=2 q$, where $q \geq 2$. We first prove the special case where

$$
\begin{equation*}
t_{1}=t_{3}=\cdots=t_{2 q-1}, t_{2}=t_{4}=\cdots=t_{2 q} . \tag{79}
\end{equation*}
$$

In this case, let $t_{1}=t_{\alpha}$ and $t_{2}=t_{\beta}$. then (78) implies $\left(s_{\alpha} s_{\beta}\right)^{q}=1$, which in turn implies $m(\alpha, \beta) \mid q$. Thus

$$
t_{1} \cdots t_{2 q}=\left(\left(t_{\alpha} t_{\beta}\right)^{m(\alpha, \beta)}\right)^{q / m(\alpha, \beta)} \in N .
$$

Next we prove another special case where

$$
\begin{equation*}
1 \leq \exists i<\exists j \leq 2 q, j-i<q, s_{1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{2 q}=1 . \tag{80}
\end{equation*}
$$

Indeed, comparing this with (78) yields

$$
s_{i} \cdots s_{j}=s_{i+1} \cdots s_{j-1}
$$

or equivalently,

$$
f\left(t_{i} \cdots t_{j-1} t_{j} t_{j-1} \cdots t_{i+1} N\right)=1
$$

Since $j-i<q$, we can apply the inductive hypothesis to conclude

$$
t_{i} \cdots t_{j-1} t_{j} t_{j-1} \cdots t_{i+1} \in N .
$$

Using Lemma 51, we obtain

$$
\begin{equation*}
t_{1} \cdots t_{2 q} N=t_{1} \cdots \hat{t}_{i} \cdots \hat{t}_{j} \cdots t_{2 q} N \tag{81}
\end{equation*}
$$

Together with the assumption of (77), we obtain

$$
f\left(t_{1} \cdots \hat{t}_{i} \cdots \hat{t}_{j} \cdots t_{2 q} N\right)=1
$$

which, by the inductive hypothesis, shows

$$
t_{1} \cdots \hat{t}_{i} \cdots \hat{t}_{j} \cdots t_{2 q} \in N
$$

The result then follows from (81).
Before proceeding to the general case, observe

$$
\begin{aligned}
s_{1} \cdots s_{r}=1 & \Longleftrightarrow s_{i} \cdots s_{r} s_{1} \cdots s_{i-1}=1, \\
t_{1} \cdots t_{r} \in N & \Longleftrightarrow t_{i} \cdots t_{r} t_{1} \cdots t_{i-1} \in N .
\end{aligned}
$$

Define $s_{r+i}=s_{i}$ for $1 \leq i \leq r$ and $t_{r+i}=t_{i}$ for $1 \leq i \leq r$. Then the second special case treated above actually takes care of the case:

$$
\begin{equation*}
1 \leq \exists i<\exists j \leq 4 q, j-i<q, s_{i} \cdots s_{j}=s_{i+1} \cdots s_{j-1} \tag{82}
\end{equation*}
$$

Also, since the first special case has already been established, we may assume that there exists i with $1 \leq i \leq 2 q$ such that $t_{i} \neq t_{i+2}$. Without loss of generality, we may assume $t_{1} \neq t_{3}$, so

$$
\begin{equation*}
s_{1} \neq s_{3} . \tag{83}
\end{equation*}
$$

Since

$$
s_{k} s_{k+1} \cdots s_{k+q}=s_{k+2 q-1} s_{k+2 q-2} \cdots s_{k+q+1} \quad(1 \leq k \leq 2 q),
$$

we have

$$
\ell\left(s_{k} s_{k+1} \cdots s_{k+q}\right) \leq q-1<q+1 .
$$

Theorem 48(iii) implies that there exist i, j with $k \leq i<j \leq k+q$ such that

$$
s_{k} s_{k+1} \cdots s_{k+q}=s_{k} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{k+q},
$$

or equivalently,

$$
s_{i} \cdots s_{j}=s_{i+1} \cdots s_{j-1}
$$

Since the second special case includes (82), we may assume $k=i$ and $j=k+q$, that is,

$$
s_{k} s_{k+1} \cdots s_{k+q}=s_{k+1} \cdots s_{k+q-1} \quad(1 \leq k \leq 2 q) .
$$

In particular, as $q \geq 2$,

$$
\begin{align*}
s_{1} s_{2} \cdots s_{q+1} & =s_{2} \cdots s_{q}, \tag{84}\\
s_{2} s_{3} \cdots s_{q+2} & =s_{3} \cdots s_{q+1}, \\
s_{3} s_{4} \cdots s_{q+3} & =s_{4} \cdots s_{q+2}
\end{align*}
$$

or equivalently,

$$
\begin{align*}
s_{1} s_{2} \cdots s_{q} & =s_{2} \cdots s_{q+1}, \\
s_{2} s_{3} \cdots s_{q+1} & =s_{3} \cdots s_{q+2}, \tag{85}\\
s_{3} s_{4} \cdots s_{q+2} & =s_{4} \cdots s_{q+3} . \tag{86}
\end{align*}
$$

By (85), we have

$$
\begin{equation*}
s_{3}\left(s_{2} \cdots s_{q+1}\right)\left(s_{q+2} \cdots s_{4}\right)=1 \tag{87}
\end{equation*}
$$

In particular,

$$
\ell\left(s_{3}\left(s_{2} \cdots s_{q+1}\right)\right) \leq q-1<q+1 .
$$

If

$$
\begin{equation*}
s_{3}\left(s_{2} \cdots s_{q+1}\right)=s_{2} \cdots s_{q} \tag{88}
\end{equation*}
$$

then (84) implies $s_{1}=s_{3}$, contradicting (83). Thus $s_{3}\left(s_{2} \cdots s_{q+1}\right) \neq s_{2} \cdots s_{q}$, and hence Theorem 48(iii) implies that we are in the second special case for the relation (87), and hence

$$
t_{3}\left(t_{2} \cdots t_{q+1}\right)\left(t_{q+2} \cdots t_{4}\right) \in N
$$

This implies

$$
t_{2} \cdots t_{q+1} t_{q+2} t_{q+1} \cdots t_{3} \in N
$$

By Lemma 51, we obtain

$$
\begin{equation*}
t_{1} \cdots t_{2 q} N=t_{1} \hat{t}_{2} \cdots \hat{t}_{q+2} \cdots t_{2 q} N \tag{89}
\end{equation*}
$$

Together with the assumption of (77), we obtain

$$
f\left(t_{1} \hat{t}_{2} \cdots \hat{t}_{q+2} \cdots t_{2 q} N\right)=1
$$

which, by the inductive hypothesis, shows

$$
t_{1} \hat{t}_{2} \cdots \hat{t}_{q+2} \cdots t_{2 q} \in N
$$

The result then follows from (89).

June 20, 2016

Definition 53. Let G be a group acting on a set Ω. We say that G acts simply transitively on Ω if
(i) G acts transitively on Ω,
(ii) for every pair α, β of elements in Ω, there exists a unique element $g \in G$ such that $g . \alpha=\beta$.

Lemma 54. Let G be a finite group acting transitively on a set Ω. Let G_{α} denote the stabilizer of α in G, that is,

$$
G_{\alpha}=\{g \in G \mid g . \alpha=\alpha\}
$$

Then the following are equivalent:
(i) G acts simply transitively on Ω,
(ii) for every $\alpha \in \Omega, G_{\alpha}=\{1\}$,
(iii) for some $\alpha \in \Omega, G_{\alpha}=\{1\}$,
(iv) $|G|=|\Omega|$.

Proof. (i) \Longrightarrow (ii): Immediate from Definition 53(ii) by setting $\alpha=\beta$.
(ii) \Longrightarrow (iii): Trivial.
(iii) \Longrightarrow (iv): The mapping $\phi: G \rightarrow \Omega$ defined by $g \mapsto g . \alpha$ is a bijection. Indeed, ϕ is surjective since G is transitive. If $\phi(g)=\phi(h)$, then $g . \alpha=h . \alpha$, hence $g^{-1} h \in G_{\alpha}=\{1\}$. This implies $g=h$. Thus ϕ is injective.
(iv) \Longrightarrow (i): Let $\alpha \in \Omega$. Then

$$
\begin{aligned}
|G| & =|\Omega| \\
& =\sum_{\beta \in \Omega} 1 \\
& \leq \sum_{\beta \in \Omega}|\{g \in G \mid g \cdot \alpha=\beta\}| \\
& =\left|\bigcup_{\beta \in \Omega}\{g \in G \mid g \cdot \alpha=\beta\}\right| \\
& =|\{g \in G \mid g \cdot \alpha \in \Omega\}| \\
& =|G| .
\end{aligned}
$$

This forces

$$
|\{g \in G \mid g \cdot \alpha=\beta\}|=1 \quad(\forall \beta \in \Omega) .
$$

Since $\alpha \in \Omega$ was arbitrary, we obtain (i).

For the remainder of today's lecture, we let Φ be a root system.
Theorem 55. The group $W(\Phi)$ acts simply transitively on $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$.
Proof. By Theorem 36, $W(\Phi)$ acts transitively on $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$. Let $w \in W(\Phi)$ and $\Pi \in \mathcal{P}(\Phi)$, and suppose $w \Pi=\Pi$. Let Δ be the unique simple system contained in Π. Then by Corollary 49 and Notation 45,

$$
\begin{aligned}
\ell(w) & =n(w) \\
& =\left|\Pi \cap w^{-1}(-\Pi)\right| \\
& =\left|\Pi \cap\left(-w^{-1} \Pi\right)\right| \\
& =|\Pi \cap(-\Pi)| \\
& =|\emptyset| \\
& =0 .
\end{aligned}
$$

Thus $w=1$. Therefore, $W(\Phi)$ acts simply transitively on $\mathcal{P}(\Phi)$.
Next suppose $w \Delta=\Delta$. Then by Lemma 33(i), we obtain $w \Pi=\Pi$, and hence $w=1$. Therefore, $W(\Phi)$ acts simply transitively on $\mathcal{S}(\Phi)$.

In what follows, we fix a simple system $\Delta \in \mathcal{S}(\Phi)$. Let $\Pi=\Phi \cap \mathbf{R}_{\geq 0} \Delta$ be the unique positive system in Φ containing Δ.

Notation 56. Let $S=\left\{s_{\alpha} \mid \alpha \in \Delta\right\}$. For $I \subset S$, we define

$$
\begin{aligned}
W_{I} & =\langle I\rangle, \\
\Delta_{I} & =\left\{\alpha \in \Delta \mid s_{\alpha} \in I\right\}, \\
V_{I} & =\mathbf{R} \Delta_{I}, \\
\Phi_{I} & =\Phi \cap V_{I}, \\
\Pi_{I} & =\Pi \cap V_{I} .
\end{aligned}
$$

Lemma 57. For $w \in\left\langle s_{\alpha} \mid \alpha \in \Phi_{I}\right\rangle$, we have
(i) $w V_{I}=V_{I}$,
(ii) $w\left(\Pi \backslash \Pi_{I}\right)=\Pi \backslash \Pi_{I}$.

Proof. It suffices to show (i) and (ii) for $w=s_{\alpha}$ with $\alpha \in \Phi_{I}$. Let $\alpha \in \Phi_{I}$.
(i) For $\beta \in \Delta_{I} \subset V_{I}, s_{\alpha} \beta \in \mathbf{R} \alpha+\mathbf{R} \beta \subset V_{I}$. Thus $s_{\alpha} \Delta_{I} \subset V_{I}$, and this implies $s_{\alpha} V_{I}=V_{I}$.
(ii) Let $\beta \in \Pi \backslash \Pi_{I}$. Then $\beta \notin V_{I}=\mathbf{R} \Delta_{I}$, so there exists $\gamma \in \Delta \backslash \Delta_{I}$ such that

$$
\beta \in \mathbf{R}_{>0} \gamma+\mathbf{R}_{\geq 0} \Delta
$$

Since $\alpha \in \Phi_{I} \subset V_{I}=\mathbf{R} \Delta_{I}$, we have

$$
\begin{aligned}
s_{\alpha} \beta & =\beta-\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha \\
& \in \mathbf{R}_{>0} \gamma+\mathbf{R}_{\geq 0} \Delta+\mathbf{R} \alpha \\
& \subset \mathbf{R}_{>0} \gamma+\mathbf{R}_{\geq 0} \Delta+\mathbf{R} \Delta_{I} .
\end{aligned}
$$

Since $\gamma \notin \Delta_{I}$, the coefficient of γ in the expansion of $s_{\alpha} \beta$ is positive. This implies $s_{\alpha} \beta \in$ $\Phi \cap \mathbf{R}_{\geq 0} \Delta=\Pi$. Since $\beta \in \Pi \backslash \Pi_{I}$ was arbitrary, we obtain $s_{\alpha}\left(\Pi \backslash \Pi_{I}\right) \subset \Pi$. Since

$$
\begin{aligned}
s_{\alpha}\left(\Pi \backslash \Pi_{I}\right) \cap V_{I} & =s_{\alpha}\left(\Pi \backslash V_{I}\right) \cap V_{I} \\
& =s_{\alpha}\left(\Pi \backslash V_{I}\right) \cap s_{\alpha} V_{I} \\
& =s_{\alpha}\left(\left(\Pi \backslash V_{I}\right) \cap V_{I}\right) \\
& =\emptyset,
\end{aligned}
$$

we have $s_{\alpha}\left(\Pi \backslash \Pi_{I}\right) \subset \Pi \backslash V_{I}=\Pi \backslash \Pi_{I}$. Since s_{α} is a bijection, we conclude $s_{\alpha}\left(\Pi \backslash \Pi_{I}\right)=$ $\Pi \backslash \Pi_{I}$.

Proposition 58. Let $I \subset S$.
(i) Φ_{I} is a root system with simple system Δ_{I}.
(ii) Π_{I} is the unique positive system of Φ_{I} containing the simple system Δ_{I}.
(iii) $W\left(\Phi_{I}\right)=W_{I}$.
(iv) Let ℓ be the length function of W with respect to Δ. Then the restriction of ℓ to W_{I} coincides with the length function ℓ_{I} of W_{I} with respect to the simple system Δ_{I}.

Proof. (i) For $\alpha \in \Phi_{I} \subset V_{I}$,

$$
\begin{aligned}
\mathbf{R} \alpha \cap \Phi_{I} & =(\mathbf{R} \alpha \cap \Phi) \cap V_{I} \\
& =\{\alpha,-\alpha\} \cap V_{I} \\
& =\{\alpha,-\alpha\} .
\end{aligned}
$$

Since

$$
\begin{aligned}
s_{\alpha} \Phi_{I} & =s_{\alpha} \Phi \cap s_{\alpha} V_{I} \\
& =\Phi \cap V_{I} \\
& =\Phi_{I} .
\end{aligned}
$$

$$
=\Phi \cap V_{I} \quad \text { (by Lemma 57(i)) }
$$

we see that Φ_{I} is a root system. Since Δ is linearly independent, so is Δ_{I}. Since

$$
\begin{aligned}
\Phi_{I} & =\Phi \cap V_{I} \\
& \subset\left(\mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta\right) \cap \mathbf{R} \Delta_{I}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\mathbf{R}_{\geq 0} \Delta \cap \mathbf{R} \Delta_{I}\right) \cup\left(\mathbf{R}_{\leq 0} \Delta \cap \mathbf{R} \Delta_{I}\right) \\
& =\left(\mathbf{R}_{\geq 0} \Delta_{I}\right) \cup\left(\mathbf{R}_{\leq 0} \Delta_{I}\right),
\end{aligned}
$$

we see that Δ_{I} is a simple system in Φ_{I}.
(ii) Since

$$
\begin{aligned}
\Pi_{I} & =\Pi \cap V_{I} \\
& =\Phi \cap \mathbf{R}_{\geq 0} \Delta \cap V_{I} \\
& =\Phi \cap V_{I} \cap \mathbf{R}_{\geq 0} \Delta \cap \mathbf{R} \Delta_{I} \\
& =\Phi_{I} \cap \mathbf{R}_{\geq 0} \Delta_{I},
\end{aligned}
$$

the result follows from Lemma 29(i).
(iii)

$$
\begin{aligned}
W\left(\Phi_{I}\right) & =\left\langle s_{\alpha} \mid \alpha \in \Delta_{I}\right\rangle \quad \text { (by Theorem 41) } \\
& =\langle I\rangle \\
& =W_{I} .
\end{aligned}
$$

(iv) Let $w \in W_{I}=W(\Phi)$. Then by Lemma 57(i), we have

$$
\begin{equation*}
w \Phi_{I}=\Phi_{I} \tag{90}
\end{equation*}
$$

and by Lemma 57(ii), we have $w\left(\Pi \backslash \Pi_{I}\right)=\Pi \backslash \Pi_{I} \subset \Pi$. This implies $w\left(\Pi \backslash \Pi_{I}\right) \cap(-\Pi)=$ \emptyset. Thus

$$
\begin{align*}
w \Pi \cap(-\Pi) & =w\left(\Pi_{I} \cup\left(\Pi \backslash \Pi_{I}\right)\right) \cap(-\Pi) \\
& =\left(w \Pi_{I} \cup w\left(\Pi \backslash \Pi_{I}\right)\right) \cap(-\Pi) \\
& =\left(w\left(\Pi_{I}\right) \cap(-\Pi)\right) \cup\left(w\left(\Pi \backslash \Pi_{I}\right) \cap(-\Pi)\right) \\
& =w\left(\Pi_{I}\right) \cap(-\Pi) \\
& =w\left(\Pi \cap V_{I}\right) \cap(-\Pi) \\
& =w \Pi \cap w V_{I} \cap V_{I} \cap(-\Pi) \\
& =w\left(\Pi \cap V_{I}\right) \cap\left(-\Pi \cap V_{I}\right) \\
& =w\left(\Pi_{I}\right) \cap\left(-\Pi_{I}\right) \tag{91}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
\ell(w) & =\left|\Pi \cap w^{-1}(-\Pi)\right| & & \text { (by Corollary 49) } \\
& =|w \Pi \cap(-\Pi)| & & \\
& =\left|w\left(\Pi_{I}\right) \cap\left(-\Pi_{I}\right)\right| & & \\
& =\left|\Pi_{I} \cap w^{-1}\left(-\Pi_{I}\right)\right| & & \\
& =\ell_{I}(w) & & \text { (by Corollary 49). }
\end{aligned}
$$

June 27, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Let Φ be a root system in V with simple system Δ. Let $W=$ $W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle$. Recall Notation 56.

Lemma 59. Let $I \subset S$. If $u \in W$ satisfies

$$
\ell(u)=\min \left\{\ell(x) \mid x \in u W_{I}\right\},
$$

then

$$
\ell(u v)=\ell(u)+\ell(v) \quad\left(\forall v \in W_{I}\right) .
$$

Proof. Let $q=\ell(u)$. Then there exist $s_{1}, \ldots, s_{q} \in S$ such that

$$
u=s_{1} \cdots s_{q} .
$$

Let $v \in W_{I}$. Then by Proposition 58(iv), we have $\ell(v)=\ell_{I}(v)$. This implies that there exist $s_{q+1}, \ldots, s_{q+r} \in I$ such that

$$
v=s_{q+1} \cdots s_{q+r}
$$

where $r=\ell(v)$. Then $u v=s_{1} \cdots s_{q+r}$, hence $\ell(u v) \leq q+r$.
Suppose $\ell(w)<q+r$. Then by Theorem 48, there exist i, j with $1 \leq i<j \leq q+r$ such that

$$
u v=s_{1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{q+r} .
$$

If $i<j \leq q$, then

$$
u v=s_{1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{q} v
$$

hence $u=s_{1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{q}$, contradicting $\ell(u)=q$. Similarly, if $q+1 \leq i<j$, then

$$
u v=u s_{q+1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{q+r},
$$

hence $v=s_{q+1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{q+r}$, contradicting $\ell(v)=r$. Thus

$$
1 \leq i \leq q<j \leq q+r .
$$

Setting

$$
\begin{aligned}
u^{\prime} & =s_{1} \cdots \hat{s}_{i} \cdots s_{q} \\
v^{\prime} & =s_{q+1} \cdots \hat{s}_{j} \cdots s_{q+r} \in W_{I},
\end{aligned}
$$

we have $u^{\prime} v^{\prime}=u v$, and hence $u^{\prime}=u v v^{\prime-1} \in u W_{I}$. But $\ell\left(u^{\prime}\right)<q=\ell(u)$, contrary to the minimality of $\ell(u)$. Therefore, we conclude $\ell(w)=q+r=\ell(u)+\ell(v)$.

Notation 60. For $I \subset S$, we define

$$
W^{I}=\{w \in W \mid \ell(w s)>\ell(w) \text { for all } s \in I\} .
$$

Lemma 61. Let $I \subset S$ and $w \in W$. If $u_{0} \in w W_{I}$ satisfies

$$
\ell\left(u_{0}\right)=\min \left\{\ell(x) \mid x \in w W_{I}\right\},
$$

and $u_{1} \in W^{I} \cap w W_{I}$, then $u_{0}=u_{1}$. In particular,
(i) $W^{I} \cap w W_{I}$ consists of a single element,
(ii) $\min \left\{\ell(x) \mid x \in w W_{I}\right\}$ is achieved by a unique element,
and the elements described in (i) and (ii) coincide.
Proof. Since $u_{1} \in w W_{I}=u_{0} W_{I}$, there exists $v \in W_{I}$ such that $u_{1}=u_{0} v$. Suppose $v \neq 1$. Then there exists $s \in I$ such that $\ell(v s)<\ell(v)$. This implies

$$
\begin{aligned}
\ell\left(u_{1} s\right) & =\ell\left(u_{0} v s\right) \\
& =\ell\left(u_{0}\right)+\ell(v s) \\
& <\ell\left(u_{0}\right)+\ell(v) \\
& =\ell\left(u_{0} v\right) \\
& =\ell\left(u_{1}\right) .
\end{aligned}
$$

$$
=\ell\left(u_{0}\right)+\ell(v s) \quad(\text { by Lemma } 59)
$$

$$
=\ell\left(u_{0} v\right) \quad(\text { by Lemma } 59)
$$

This contradicts $u_{1} \in W^{I}$. Thus, we conclude $v=1$, or equivalently, $u_{1}=u_{0}$. The rest of the statements are immediate.

Lemma 62. Let $I \subset S$. The mapping $\phi: W^{I} \times W_{I} \rightarrow W$ defined by $\phi(u, v)=u v$ is a bijection, and it satisfies

$$
\ell(\phi(u, v))=\ell(u)+\ell(v) \quad\left(u \in W^{I}, v \in W_{I}\right) .
$$

Proof. Let $w \in W$. Choose $u_{0}=u_{1} \in W^{I} \cap w W_{I}$ as in Lemma 61. Then there exists $v \in W_{I}$ such that $u_{0}=w v$. Then $w=\phi\left(u_{0}, v^{-1}\right)$. Thus ϕ is surjective.

Suppose $(u, v),\left(u^{\prime}, v^{\prime}\right) \in W^{I} \times W_{I}$ and $\phi(u, v)=\phi\left(u^{\prime}, v^{\prime}\right)$. Then $u v=u^{\prime} v^{\prime}$. Thus $u, u^{\prime} \in W^{I} \cap u W_{I}$, which forces $u=u^{\prime}$ by Lemma 61(i). Then we also have $v=v^{\prime}$. Thus ϕ is injective.

Finally, for $u \in W^{I}$, we have $u \in W^{I} \cap u W_{I}$, so Lemma 61 implies $\ell(u)=\min \{\ell(x) \mid$ $\left.x \in u W_{I}\right\}$. Then by Lemma 59, we have $\ell(u v)=\ell(u)+\ell(v)$ for all $v \in W_{I}$.

Notation 63. Let t be an indeterminate over \mathbf{Q}, or in other words, consider the polynomial ring $\mathbf{Q}[t]$ (or its field of fractions $\mathbf{Q}(t)$). For a subset X of W, write

$$
X(t)=\sum_{w \in X} t^{\ell(w)} .
$$

Definition 64. The Poincaré polynomial $W(t)$ of W is defined as

$$
W(t)=\sum_{w \in W} t^{\ell(w)} .
$$

We remark that $W(t)$ is independent of the choice of a simple system, even though the length function ℓ does depend on it. Indeed, let Δ^{\prime} be another simple system. Then there exists $z \in W$ such that $\Delta^{\prime}=z \Delta$ by Theorem 36. Let

$$
\begin{aligned}
S & =\left\{s_{\alpha} \mid \alpha \in \Delta\right\}, \\
S^{\prime} & =\left\{s_{\alpha} \mid \alpha \in \Delta^{\prime}\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
z S z^{-1} & =\left\{z s_{\alpha} z^{-1} \mid \alpha \in \Delta\right\} \\
& =\left\{s_{z \alpha} \mid \alpha \in \Delta\right\} \\
& =\left\{s_{\alpha} \mid \alpha \in z \Delta\right\} \\
& =\left\{s_{\alpha} \mid \alpha \in \Delta^{\prime}\right\} \\
& =S^{\prime} .
\end{aligned}
$$

If we denote by the length function with respect to Δ and Δ^{\prime} by ℓ_{Δ} and $\ell_{\Delta^{\prime}}$, respectively, then $\ell_{\Delta}(w)=\ell_{\Delta^{\prime}}\left(z w z^{-1}\right)$ for all $w \in W$. Thus

$$
\sum_{w \in W} t^{\ell_{\Delta}(w)}=\sum_{w \in W} t^{\ell_{\Delta^{\prime}}\left(z w z^{-1}\right)}=\sum_{w \in W} t^{\ell_{\Delta^{\prime}}(w)} .
$$

Lemma 65. For $I \subset S$,

$$
W(t)=W^{I}(t) W_{I}(t)
$$

Proof. By Lemma 62,

$$
\begin{aligned}
W(t) & =\sum_{w \in W} t^{\ell(w)} \\
& =\sum_{(u, v) \in W^{I} \times W_{I}} t^{\ell(\phi(u, v))} \\
& =\sum_{u \in W^{I}} \sum_{v \in W_{I}} t^{\ell(u)+\ell(v)} \\
& =\sum_{u \in W^{I}} t^{\ell(u)} \sum_{v \in W_{I}} t^{\ell(v)} \\
& =W^{I}(t) W_{I}(t) .
\end{aligned}
$$

Lemma 66. Let Π be the unique positive system containing Δ. For $w \in W$, set

$$
K(w)=\{s \in S \mid \ell(w s)>\ell(w)\} .
$$

Then the following are equivalent:
(i) $K(w)=\emptyset$,
(ii) $w \Pi=-\Pi$,
(iii) $\ell(w)=|\Pi|$.

Moreover, there exists a unique $w \in W$ satisfying these conditions.
Proof. Equivalence of (ii) and (iii) follows from Corollary 49.

$$
\text { (i) } \begin{aligned}
& \Longleftrightarrow \ell(w s)<\ell(w) \quad(\forall s \in S) \\
& \Longleftrightarrow w \Delta \subset-\Pi \\
& \Longleftrightarrow w \Pi \subset-\Pi \\
& \Longleftrightarrow \text { (ii). }
\end{aligned}
$$

The uniqueness of w follows from Theorem 55.
Proposition 67. Then

$$
\sum_{I \subset S}(-1)^{|I|} \frac{W(t)}{W_{I}(t)}=\sum_{I \subset S}(-1)^{|I|} W^{I}(t)=t^{|\Pi|}
$$

Proof. The first equality follows immediately from Lemma 65. For $I \subset S$, we have

$$
w \in W^{I} \Longleftrightarrow K(w) \supset I .
$$

Thus

$$
\begin{aligned}
\sum_{I \subset S}(-1)^{|I|} W^{I}(t) & =\sum_{I \subset S}(-1)^{|I|} \sum_{w \in W^{I}} t^{\ell(w)} \\
& =\sum_{w \in W} \sum_{I \subset S}(-1)^{|I|} t^{\ell(w)} \\
& =\sum_{w \in W} \sum_{I \subset K(w)}(-1)^{|I|} t^{\ell(w)} \\
& =\sum_{w \in W} t^{\ell(w)} \sum_{i=0}^{|K(w)|} \sum_{\substack{I \subset K(w) \\
|I|=i}}(-1)^{i} \\
& =\sum_{w \in W} t^{\ell(w)} \sum_{i=0}^{|K(w)|}(-1)^{i}\binom{|K(w)|}{i} \\
& =\sum_{\substack{w \in W}} t^{\ell(w)}+\sum_{w \in W} t^{\ell(w)}(1+(-1))^{|K(w)|} \\
& =\sum_{\substack{w \in W}} t^{\ell(w) \mid=0} \left\lvert\, \begin{array}{l}
|K(w)| \geq 1
\end{array}\right. \\
& =t^{K(w)}
\end{aligned}
$$

by Lemma 66.

July 4, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Let Φ be a root system in V with simple system Δ, and let $W=$ $W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle$. Let $\Pi=\Phi \cap \mathbf{R}_{\geq 0} \Delta$ be the unique positive system in Φ containing Δ.

Recall Notation 56 and Proposition 67:

$$
\begin{equation*}
\sum_{I \subsetneq S} \frac{(-1)^{|I|}}{W_{I}(t)}=\frac{t^{|\Pi|}-(-1)^{|S|}}{W(t)} . \tag{92}
\end{equation*}
$$

Continuing Example 16 with $n=4$, write $W=G_{4}, s_{i}=s_{\varepsilon_{i}-\varepsilon_{i+1}}$ for $i=1,2,3$, so that $S=\left\{s_{1}, s_{2}, s_{3}\right\}$. Then

$$
\begin{aligned}
W_{\emptyset}(t) & =1 \\
W_{\left\{s_{i}\right\}}(t) & =t+1, \\
W_{\left\{s_{1}, s_{2}\right\}}(t) & =(t+1)\left(t^{2}+t+1\right) .
\end{aligned}
$$

If we compute $W_{I}(t)$ for all $I \varsubsetneqq S$, then (92) can be used to determine $W(t)$ and, in particular, $|W|$.

Define

$$
\begin{aligned}
& C=\{\lambda \in V \mid(\lambda, \alpha)>0(\forall \alpha \in \Delta)\}, \\
& D=\{\lambda \in V \mid(\lambda, \alpha) \geq 0(\forall \alpha \in \Delta)\} .
\end{aligned}
$$

Lemma 68. For each $\lambda \in V$, there exist $w \in W$ such that $w \lambda \in D$. Moreover, in this case, $w \lambda-\lambda \in \mathbf{R}_{\geq 0} \Delta$.

Proof. Let $\lambda \in V$. Define a partial order on the set $W \lambda=\{w \lambda \mid w \in W\}$ by setting

$$
\mu \preceq \mu^{\prime} \Longleftrightarrow \mu^{\prime}-\mu \in \mathbf{R}_{\geq 0} \Delta \quad\left(\mu, \mu^{\prime} \in W \lambda\right)
$$

Since $W \lambda$ is finite, so is its subset

$$
M=\{\mu \in W \lambda \mid \lambda \preceq \mu\} .
$$

The set M is non-empty since $\lambda \in M$. Thus, there exists a maximal element μ in M. Since $\mu=w \lambda$ for some $w \in W$ and $\mu-\lambda \in \mathbf{R}_{\geq 0} \Delta$, it remains to show $\mu \in D$.

Suppose, to the contrary, $\mu \notin D$. Then there exists $\alpha \in \Delta$ such that $(\mu, \alpha)<0$. By the definition of a reflection, we have $s_{\alpha} \mu-\mu \in \mathbf{R}_{>0} \alpha \subset \mathbf{R}_{\geq 0} \Delta$, so $\mu \preceq s_{\alpha} \mu$ and $\mu \neq s_{\alpha} \mu$. Since $\lambda \preceq \mu$, we have $\lambda \preceq s_{\alpha} \mu$. Moreover, $s_{\alpha} \mu=s_{\alpha} w \lambda \in W \lambda$. Therefore, $s_{\alpha} \mu \in M$, and this contradicts maximality of μ in M.

Notation 69. For a subset U of V, define

$$
\operatorname{Stab}_{W}(U)=\{w \in W \mid w \lambda=\lambda(\forall \lambda \in U)\} .
$$

Lemma 70. (i) If $\lambda \in D$, then

$$
\operatorname{Stab}_{W}(\{\lambda\})=\left\langle s_{\alpha} \mid \alpha \in \Delta, s_{\alpha} \lambda=\lambda\right\rangle .
$$

(ii) If $\lambda, \mu \in D, w \in W$ and $w \lambda=\mu$, then $\lambda=\mu$.
(iii) If $\lambda \in C$, then $\operatorname{Stab}_{W}(\{\lambda\})=\{1\}$.
(iv) If $\lambda \in V$, then

$$
\operatorname{Stab}_{W}(\{\lambda\})=\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \lambda=\lambda\right\rangle .
$$

Proof. First we prove, for $w \in W$,

$$
\begin{align*}
\lambda, \mu \in D, w \lambda & =\mu \tag{93}\\
\lambda \in C, \mu \in D, w \lambda & \Longrightarrow \mu \tag{94}
\end{align*}
$$

by induction on $n(w)=|w \Pi \cap(-\Pi)|$. If $n(w)=0$, then $\ell(w)=0$ by Corollary 49, hence $w=1$. Then (93) and (94) hold. Suppose $n(w)>0$. Then there exists $\beta \in \Pi$ such that $w \beta \in-\Pi$. Since $\Pi \subset \mathbf{R}_{\geq 0} \Delta$, this implies $w \mathbf{R}_{\geq 0} \Delta \cap \mathbf{R}_{\leq 0} \Delta \supsetneqq\{0\}$, which in turn implies $w \Delta \cap(-\Pi) \neq \emptyset$. Suppose $w \gamma \in-\Pi$, where $\gamma \in \Delta$. Then by Lemma 47,

$$
\begin{align*}
\ell\left(w s_{\gamma}\right) & =\ell(w)-1 \\
& =n(w)-1 \quad \quad \text { (by Corollary 49) } \\
& <n(w) . \tag{95}
\end{align*}
$$

Since $\mu \in D$ and $-w \gamma \in \Pi \subset \mathbf{R}_{\geq 0} \Delta$, we have

$$
\begin{aligned}
0 & \leq(\mu,-w \gamma) \\
& =-\left(w^{-1} \mu, \gamma\right) \\
& =-(\lambda, \gamma) .
\end{aligned}
$$

If $\lambda \in C$, this is impossible. This implies that (94) holds. If $\lambda \in D$, then this forces $(\lambda, \gamma)=0$, implying $s_{\gamma} \in \operatorname{Stab}_{W}(\{\lambda\})$. Now, we have $w s_{\gamma} \lambda=\mu$ and (95), so we can apply inductive hypothesis to conclude $\lambda=\mu$ and

$$
w s_{\gamma} \in\left\langle s_{\alpha} \mid \alpha \in \Delta, s_{\alpha} \lambda=\lambda\right\rangle .
$$

Thus (93) holds.
Now (ii) follows from (93), while (i) and (iii) follow from (93) and (94), respectively, by setting $\lambda=\mu$.

Finally we prove (iv). Let $\lambda \in V$. Clearly,

$$
\operatorname{Stab}_{W}(\{\lambda\}) \supset\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \lambda=\lambda\right\rangle
$$

To prove the reverse containment, observe that, by Lemma 68, there exists $z \in W$ such that $z \lambda \in D$. Then

$$
\operatorname{Stab}_{W}(\{\lambda\})=\{w \in W \mid w \lambda=\lambda\}
$$

$$
\begin{aligned}
& =\left\{w \in W \mid z w z^{-1} z \lambda=z \lambda\right\} \\
& =\left\{z^{-1} x z \in W \mid x z \lambda=z \lambda\right\} \\
& =z^{-1} \operatorname{Stab}_{W}(\{z \lambda\}) z \\
& =z^{-1}\left\langle s_{\beta} \mid \beta \in \Delta, s_{\beta} z \lambda=z \lambda\right\rangle z \\
& =\left\langle z^{-1} s_{\beta} z \mid \beta \in \Delta, z^{-1} s_{\beta} z \lambda=\lambda\right\rangle \\
& =\left\langle s_{z}{ }^{-1} \mid \beta \in \Delta, s_{z^{-1} \beta} \lambda=\lambda\right\rangle \\
& \subset\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \lambda=\lambda\right\rangle .
\end{aligned} \quad \text { (by (i)) } \quad \text { (by Lemma 12) } \quad \text {) }
$$

The following property of the set D is referred to as D being a fundamental domain for the action of W on V.

Theorem 71. For each $\lambda \in V,|W \lambda \cap D|=1$.
Proof. By Lemma 68, we have $W \lambda \cap D \neq \emptyset$. Suppose $\mu, \mu^{\prime} \in W \lambda \cap D$. Then Lemma 70(ii) implies $\mu=\mu^{\prime}$.

July 11, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Let Φ be a root system in V with simple system Δ, and let $W=$ $W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle$.

Notation 72. Let $\alpha \in \Phi$. We define

$$
\begin{aligned}
H_{\alpha} & =\{\lambda \in V \mid(\alpha, \lambda)=0\}, \\
H_{\alpha}^{+} & =\{\lambda \in V \mid(\alpha, \lambda)>0\}, \\
H_{\alpha}^{-} & =\{\lambda \in V \mid(\alpha, \lambda)<0\},
\end{aligned}
$$

so that $V=H_{\alpha}^{+} \cup H_{\alpha} \cup H_{\alpha}^{-}$(disjoint).
Recall

$$
\begin{aligned}
& C=\bigcap_{\alpha \in \Delta} H_{\alpha}^{+}, \\
& D=\bigcap_{\alpha \in \Delta}\left(H_{\alpha}^{+} \cup H_{\alpha}\right) .
\end{aligned}
$$

Lemma 73. For $w \in W$ and $\alpha \in \Phi$,

$$
\begin{align*}
w H_{\alpha} & =H_{w \alpha}, \tag{96}\\
w H_{\alpha}^{ \pm} & =H_{w \alpha}^{ \pm} . \tag{97}
\end{align*}
$$

In particular,

$$
\begin{align*}
s_{\alpha} H_{\alpha}^{ \pm} & =H_{\alpha}^{\mp} \tag{98}\\
\bigcup_{\alpha \in \Phi} H_{\alpha} & =w \bigcup_{\alpha \in \Phi} H_{\alpha} \tag{99}
\end{align*}
$$

Proof. Observe

$$
\begin{aligned}
w H_{\alpha} & =\{w \lambda \mid \lambda \in V,(\alpha, \lambda)=0\} \\
& =\{\mu \mid \mu \in V,(w \alpha, \mu)=0\} \\
& =H_{w \alpha} .
\end{aligned}
$$

This proves (96). Replacing " $=$ " by " $>$ " or " $<$ ", we obtain (97). Moreover, (97) implies

$$
\begin{aligned}
s_{\alpha} H_{\alpha}^{ \pm} & =H_{s_{\alpha} \alpha}^{ \pm} \\
& =H_{-\alpha}^{ \pm} \\
& =H_{\alpha}^{\mp},
\end{aligned}
$$

while (96) implies

$$
w \bigcup_{\alpha \in \Phi} H_{\alpha}=\bigcup_{\alpha \in \Phi} w H_{\alpha}
$$

$$
\begin{aligned}
& =\bigcup_{\alpha \in \Phi} H_{w \alpha} \\
& =\bigcup_{\alpha \in w \Phi} H_{\alpha} \\
& =\bigcup_{\alpha \in \Phi} H_{\alpha} .
\end{aligned}
$$

Lemma 74. If U is a linear subspace of V such that $\Phi \cap U \neq \emptyset$, then $\Phi \cap U$ is a root system.

Proof. Clearly, $\Phi \cap U$ satisfies (R1) of Definition 14. As for (R2), let $\alpha, \beta \in \Phi \cap U$. Then $s_{\alpha} \beta \in \Phi \cap(\mathbf{R} \alpha+\mathbf{R} \beta) \subset \Phi \cap U$. Thus $s_{\alpha}(\Phi \cap U) \subset \Phi \cap U$. This implies $s_{\alpha}(\Phi \cap U)=\Phi \cap U$.

Lemma 75. If U is a linear subspace of V, then

$$
\operatorname{Stab}_{W}(U)= \begin{cases}W\left(\Phi \cap U^{\perp}\right) & \text { if } \Phi \cap U^{\perp} \neq \emptyset \\ \{1\} & \text { otherwise. }\end{cases}
$$

Proof. We prove the assertion by induction on $\operatorname{dim} U$. The assertion is trivial if $\operatorname{dim} U=0$. If $\operatorname{dim} U=1$, then write $U=\mathbf{R} \lambda$. We have

$$
\begin{aligned}
\operatorname{Stab}_{W}(U) & =\operatorname{Stab}_{W}(\{\lambda\}) \\
& =\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \lambda=\lambda\right\rangle \\
& =\left\langle s_{\alpha} \mid \alpha \in \Phi,(\alpha, \lambda)=0\right\rangle \\
& =\left\langle s_{\alpha} \mid \alpha \in \Phi \cap(\mathbf{R} \lambda)^{\perp}\right\rangle \\
& = \begin{cases}W\left(\Phi \cap U^{\perp}\right) & \text { if } \Phi \cap U^{\perp} \neq \emptyset \\
\{1\} & \text { otherwise },\end{cases}
\end{aligned}
$$

since $\Phi \cap U^{\perp}$ is a root system by Lemma 74 as long as it is nonempty.
Now assume $\operatorname{dim} U \geq 2$. Then there exist nonzero subspaces U_{1}, U_{2} of U such that $U=U_{1} \oplus U_{2}$. Then

$$
\begin{align*}
U_{1}^{\perp} \cap U_{2}^{\perp} & =\left(U_{1} \oplus U_{2}\right)^{\perp} \\
& =U^{\perp} . \tag{100}
\end{align*}
$$

Since $\operatorname{dim} U_{1}, \operatorname{dim} U_{2}<\operatorname{dim} U$, the inductive hypothesis implies

$$
\operatorname{Stab}_{W}\left(U_{i}\right)= \begin{cases}W\left(\Phi \cap U_{i}^{\perp}\right) & \text { if } \Phi \cap U_{i}^{\perp} \neq \emptyset \\ \{1\} & \text { otherwise }\end{cases}
$$

for $i=1,2$. Suppose first that $\Phi \cap U_{1}^{\perp}=\emptyset$. Then $\Phi \cap U^{\perp}=\emptyset$, and

$$
\begin{aligned}
\operatorname{Stab}_{W}(U) & \subset \operatorname{Stab}_{W}\left(U_{1}\right) \\
& =\{1\} .
\end{aligned}
$$

Next suppose that $\Phi \cap U_{1}^{\perp} \neq \emptyset$. Then

$$
\begin{aligned}
\operatorname{Stab}_{W}(U) & =\operatorname{Stab}_{W}\left(U_{1}\right) \cap \operatorname{Stab}_{W}\left(U_{2}\right) \\
& =W\left(\Phi \cap U_{1}^{\perp}\right) \cap \operatorname{Stab}_{W}\left(U_{2}\right) \\
& =\operatorname{Stab}_{W\left(\Phi \cap U_{1}^{\perp}\right)}\left(U_{2}\right) \\
& = \begin{cases}W\left(\Phi \cap U_{1}^{\perp} \cap U_{2}^{\perp}\right) & \text { if } \Phi \cap U_{1}^{\perp} \cap U_{2}^{\perp} \neq \emptyset, \\
\{1\} & \text { otherwise }\end{cases} \\
& = \begin{cases}W\left(\Phi \cap U^{\perp}\right) & \text { if } \Phi \cap U^{\perp} \neq \emptyset, \\
\{1\} & \text { otherwise }\end{cases}
\end{aligned}
$$

Proposition 76. If U is a subset of V, then

$$
\operatorname{Stab}_{W}(U)=\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \in \operatorname{Stab}_{W}(U)\right\rangle
$$

Proof. Replacing U by its span, we may assume without loss of generality U is a linear subspace of V. Then by Lemma 75, we have

$$
\begin{aligned}
\operatorname{Stab}_{W}(U) & = \begin{cases}W\left(\Phi \cap U^{\perp}\right) & \text { if } \Phi \cap U^{\perp} \neq \emptyset \\
\{1\} & \text { otherwise }\end{cases} \\
& =\left\langle s_{\alpha} \mid \alpha \in \Phi \cap U^{\perp}\right\rangle \\
& =\left\langle s_{\alpha} \mid \alpha \in \Phi, \forall \lambda \in U,(\alpha, \lambda)=0\right\rangle \\
& =\left\langle s_{\alpha} \mid \alpha \in \Phi, \quad \forall \lambda \in U, s_{\alpha} \lambda=\lambda\right\rangle \\
& =\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \in \operatorname{Stab}_{W}(U)\right\rangle .
\end{aligned}
$$

Definition 77. The members of the family

$$
\{w C \mid w \in W\}
$$

are called chambers.
Lemma 78. Let $\Pi=\Phi \cap \mathbf{R}_{\geq 0} \Delta$ be the unique positive system containing Δ. Then

$$
\begin{equation*}
C=\bigcap_{\alpha \in \Pi} H_{\alpha}^{+} . \tag{101}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
C \subset V \backslash \bigcup_{\beta \in \Phi} H_{\beta} \tag{102}
\end{equation*}
$$

Proof. If $\lambda \in C$, then $(\lambda, \alpha)>0$ for all $\alpha \in \Delta$. Since $\Phi \subset\left(\mathbf{R}_{\geq 0} \Delta\right) \cup\left(\mathbf{R}_{\leq 0} \Delta\right) \backslash\{0\}$, we see that $(\lambda, \beta)>0$ for all $\beta \in \Pi$. This implies (101). Since $\Phi=\Pi \cup(-\Pi)$, we see that $(\lambda, \beta) \neq 0$ for all $\beta \in \Phi$. This implies $\lambda \notin \bigcup_{\beta \in \Phi} H_{\beta}$, proving (102).

Lemma 79. If $w \in W$ and $w C \cap C \neq \emptyset$, then $w=1$. In particular, the group W acts simply transitively on the set of chambers.

Proof. Suppose $w \in W$ satisfies $w C \cap C \neq \emptyset$. Then there exists $\lambda, \mu \in C$ such that $w \lambda=\mu$. This implies $\{\lambda, \mu\} \subset W \lambda \cap C \subset W \lambda \cap D$. By Theorem 71, we conclude $\lambda=\mu$. This also implies $w \in \operatorname{Stab}_{W}(\{\lambda\})$, hence $w=1$ by Lemma 70(iii). In particular, $w C=C$ implies $w=1$. This shows that W acts simply transitively on the set of chambers.

Proposition 80.

$$
\left.V \backslash \bigcup_{\alpha \in \Phi} H_{\alpha}=\bigcup_{w \in W} w C \quad \text { (disjoint }\right) .
$$

Proof. By Lemma 79, the chambers are disjoint from each other. Observe

$$
\begin{align*}
w C & \subset V \backslash w \bigcup_{\alpha \in \Phi} H_{\alpha} \tag{byLemma78}\\
& =V \backslash \bigcup_{\alpha \in \Phi} H_{\alpha} \tag{99}
\end{align*}
$$

Thus

$$
V \backslash \bigcup_{\alpha \in \Phi} H_{\alpha} \supset \bigcup_{w \in W} w C \quad \text { (disjoint). }
$$

Conversely, let $\lambda \in V \backslash \bigcup_{\alpha \in \Phi} H_{\alpha}$. By Theorem 71, there exists $w \in W$ such that $w \lambda \in D$, or equivalently, $\lambda \in w^{-1} D$. We claim $\lambda \in w^{-1} C$. Indeed, if $\lambda \notin w^{-1} C$, then

$$
\begin{align*}
w \lambda & \in D \backslash C \\
& =\{\mu \in V \mid(\mu, \alpha) \geq 0(\forall \alpha \in \Delta),(\mu, \beta) \leq 0(\exists \beta \in \Delta)\} \\
& \subset\{\mu \in V \mid(\mu, \beta)=0(\exists \beta \in \Delta)\} \\
& =\bigcup_{\beta \in \Delta} H_{\beta} \\
& \subset \bigcup_{\beta \in \Phi} H_{\beta} \\
& =w \bigcup_{\beta \in \Phi} H_{\beta} \tag{99}
\end{align*}
$$

This implies $\lambda \in \bigcup_{\beta \in \Phi} H_{\beta}$ which is absurd. This proves the claim, and hence

$$
V \backslash \bigcup_{\alpha \in \Phi} H_{\alpha} \subset \bigcup_{w \in W} w C .
$$

July 25, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product. Let Φ be a root system in V, and let $W=W(\Phi)=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle$. Fix a simple system Δ in Φ.

Definition 81. Let $\alpha \in \Phi$ and $w \in W$. The hyperplane H_{α} is called a wall of a chamber $w C$ if $\alpha \in w \Delta$.

Notation 82. For $\lambda \in V$ and $\varepsilon>0$, denote by $B(\lambda, \varepsilon)$ the ε-ball centered at λ :

$$
B(\lambda, \varepsilon)=\{\lambda+\mu \mid \mu \in V,\|\mu\|<\varepsilon\} .
$$

Lemma 83. Let $\lambda \in V$ and $\varepsilon>0$. If w is an orthogonal transformation of V, then $w B(\lambda, \varepsilon)=B(w \lambda, \varepsilon)$.

Proof.

$$
\begin{aligned}
w B(\lambda, \varepsilon) & =\{w(\lambda+\mu) \mid \mu \in V,\|\mu\|<\varepsilon\} \\
& =\{w \lambda+w \mu \mid \mu \in V,\|w \mu\|<\varepsilon\} \\
& =\{w \lambda+\mu \mid \mu \in V,\|\mu\|<\varepsilon\} \\
& =B(w \lambda, \varepsilon) .
\end{aligned}
$$

Lemma 84. Let $\alpha \in \Phi$ and $\lambda \in H_{\alpha}^{+}$. Then there exists $\varepsilon>0$ such that $B(\lambda, \varepsilon) \subset H_{\alpha}^{+}$.
Proof. Since $\lambda \in H_{\alpha}^{+}$, we have $(\lambda, \alpha)>0$. Set

$$
\varepsilon=\frac{(\lambda, \alpha)}{2\|\alpha\|}
$$

Then for $\mu \in V$ with $\|\mu\|<\varepsilon$, we have

$$
\begin{aligned}
(\lambda+\mu, \alpha) & =(\lambda, \alpha)+(\mu, \alpha) \\
& \geq(\lambda, \alpha)-|(\mu, \alpha)| \\
& \geq(\lambda, \alpha)-\|\mu\|\|\alpha\| \\
& >(\lambda, \alpha)-\varepsilon\|\alpha\| \\
& =\frac{(\lambda, \alpha)}{2} \\
& >0 .
\end{aligned}
$$

Thus $\lambda+\mu \in H_{\alpha}^{+}$. This implies $B(\lambda, \varepsilon) \subset H_{\alpha}^{+}$.
Lemma 85. Let $\alpha \in \Phi$ and $\lambda, \mu \in H_{\alpha}^{+}$. Then for $0 \leq t \leq 1, t \lambda+(1-t) \mu \in H_{\alpha}^{+}$.

Proof. We have

$$
(t \lambda+(1-t) \mu, \alpha)=t(\lambda, \alpha)+(1-t)(\mu, \alpha)>0 .
$$

Proposition 86. For $\alpha \in \Phi$ and $w \in W$, the following are equivalent:
(i) H_{α} is a wall of $w C$,
(ii) there exist $\lambda \in H_{\alpha}$ and $\varepsilon>0$ such that $H_{\alpha} \cap B(\lambda, \varepsilon) \subset w D$.

Proof. First we prove the assertion for $w=1$. Suppose H_{α} is a wall of C. Then $\alpha \in \Delta$. Then by Lemma 34,

$$
\begin{equation*}
s_{\alpha}(\Pi \backslash\{\alpha\})=\Pi \backslash\{\alpha\} . \tag{103}
\end{equation*}
$$

Let

$$
C^{\prime}=\bigcap_{\beta \in \Pi \backslash\{\alpha\}} H_{\beta}^{+} .
$$

Then $C \subset C^{\prime}$, and

$$
\begin{align*}
s_{\alpha} C & =\bigcap_{\beta \in \Pi} s_{\alpha} H_{\beta}^{+} \\
& =\bigcap_{\beta \in \Pi} H_{s_{\alpha} \beta}^{+} \tag{97}\\
& \subset \bigcap_{\beta \in \Pi \backslash\{\alpha\}} H_{s_{\alpha} \beta}^{+} \\
& =\bigcap_{\beta \in s_{\alpha}(\Pi \backslash\{\alpha\})} H_{\beta}^{+} \\
& =\bigcap_{\beta \in \Pi \backslash\{\alpha\}} H_{\beta}^{+} \tag{103}\\
& =C^{\prime} .
\end{align*}
$$

Thus

$$
\begin{equation*}
C \cup s_{\alpha} C \subset C^{\prime} \tag{104}
\end{equation*}
$$

Let $\lambda_{1} \in C$. Then $s_{\alpha} \lambda_{1} \in s_{\alpha} C$. Set $\lambda=\frac{1}{2}\left(\lambda_{1}+s_{\alpha} \lambda_{1}\right)$. Then $(\lambda, \alpha)=0$, so $\lambda \in H_{\alpha}$. Since $\lambda_{1}, s_{\alpha} \lambda_{1} \in C^{\prime}$ by (104), Lemma 85 implies $\lambda \in C^{\prime}$. Then by Lemma 84 , for each $\beta \in \Pi \backslash\{\alpha\}$, there exists $\varepsilon_{\beta}>0$ such that $B\left(\lambda, \varepsilon_{\beta}\right) \subset H_{\beta}^{+}$. Setting

$$
\varepsilon=\min \left\{\varepsilon_{\beta} \mid \beta \in \Pi \backslash\{\alpha\}\right\}
$$

we obtain $B(\lambda, \varepsilon) \subset C^{\prime}$. Thus

$$
H_{\alpha} \cap B(\lambda, \varepsilon) \subset H_{\alpha} \cap C^{\prime}
$$

$$
\begin{aligned}
& =H_{\alpha} \cap\left(\bigcap_{\beta \in \Pi \backslash\{\alpha\}} H_{\beta}^{+}\right) \\
& \subset\left(H_{\alpha}^{+} \cup H_{\alpha}\right) \cap\left(\bigcap_{\beta \in \Pi \backslash\{\alpha\}}\left(H_{\beta}^{+} \cup H_{\beta}\right)\right) \\
& =D .
\end{aligned}
$$

Conversely, suppose there exist $\lambda \in H_{\alpha}$ and $\varepsilon>0$ such that $H_{\alpha} \cap B(\lambda, \varepsilon) \subset D$. Since $s_{\alpha} \lambda=\lambda$, we have $s_{\alpha} B(\lambda, \varepsilon)=B(\lambda, \varepsilon)$ by Lemma 83. This, together with $s_{\alpha} H_{\alpha}=H_{\alpha}$ implies

$$
H_{\alpha} \cap B(\lambda, \varepsilon) \subset s_{\alpha} D .
$$

Thus

$$
\begin{equation*}
H_{\alpha} \cap B(\lambda, \varepsilon) \subset D \cap s_{\alpha} D . \tag{105}
\end{equation*}
$$

We aim to show $\alpha \in \Delta$. Suppose, by way of contradiction, $\alpha \notin \Delta$. Then $n\left(s_{\alpha}\right)>1$, so $\Pi \cap s_{\alpha}(-\Pi) \supsetneqq\{\alpha\}$. This implies that there exists $\beta \in \Pi \backslash\{\alpha\}$ such that $s_{\alpha} \beta \in-\Pi$. Thus $-s_{\alpha} \beta \in \Pi$, and hence

$$
\begin{align*}
D & \subset H_{-s_{\alpha} \beta}^{+} \cup H_{-s_{\alpha} \beta} \\
& =H_{s_{\alpha} \beta}^{-} \cup H_{s_{\alpha} \beta} . \tag{106}
\end{align*}
$$

Also, since $\beta \in \Pi$, we have

$$
\begin{align*}
s_{\alpha} D & \subset s_{\alpha}\left(H_{\beta}^{+} \cup H_{\beta}\right) \\
& =H_{s_{\alpha} \beta}^{+} \cup H_{s_{\alpha} \beta} \tag{107}
\end{align*}
$$

Thus, combining (105)-(107), we find

$$
\begin{equation*}
H_{\alpha} \cap B(\lambda, \varepsilon) \subset H_{s_{\alpha} \beta} . \tag{108}
\end{equation*}
$$

Since $\beta \neq \pm \alpha$, we have $s_{\alpha} \beta \neq \pm \alpha$. Thus $H_{s_{\alpha} \beta} \neq H_{\alpha}$, which implies that there exists $\mu \in H_{\alpha} \backslash H_{s_{\alpha} \beta}$. We may assume $\|\mu\|<\varepsilon$. Then

$$
\begin{align*}
\lambda+\mu & \in B(\lambda, \varepsilon) \cap H_{\alpha} \\
& \subset H_{s_{\alpha} \beta} \tag{109}
\end{align*} \quad \text { (by (108)). }
$$

Since

$$
\begin{aligned}
\lambda & \in B(\lambda, \varepsilon) \cap H_{\alpha} \\
& \subset H_{s_{\alpha} \beta}
\end{aligned} \quad \text { (by (108)), }, ~ l
$$

while $\mu \notin H_{s_{\alpha} \beta}$, we obtain $\lambda+\mu \notin H_{s_{\alpha} \beta}$. This contradicts (109).

We have shown that the assertion holds for $w=1$. We next consider the general case. Let $\alpha \in \Phi$ and $w \in W$. Then

$$
\text { (i) } \begin{array}{rlrl}
& \Longleftrightarrow \alpha \in w \Delta \\
& \Longleftrightarrow w^{-1} \alpha \in \Delta \\
& \Longleftrightarrow H_{w^{-1} \alpha} \text { is a wall of } C \\
& \Longleftrightarrow \exists \lambda \in H_{w^{-1} \alpha}, \exists \varepsilon>0, H_{w^{-1} \alpha} \cap B(\lambda, \varepsilon) \subset D & \\
& \Longleftrightarrow \exists \lambda \in w^{-1} H_{\alpha}, \exists \varepsilon>0, w^{-1} H_{\alpha} \cap B(\lambda, \varepsilon) \subset D & & \text { (by (96)) } \\
& \Longleftrightarrow \exists \lambda \in w^{-1} H_{\alpha}, \exists \varepsilon>0, w^{-1} H_{\alpha} \cap w^{-1} B(w \lambda, \varepsilon) \subset D & & \text { (by Lemma 83) } \\
& \Longleftrightarrow \exists \mu \in H_{\alpha}, \exists \varepsilon>0, H_{\alpha} \cap B(\mu, \varepsilon) \subset w D & \\
& \Longleftrightarrow \text { (ii). } &
\end{array}
$$

Proposition 87. If $s \in W$ is a reflection, then there exists $\alpha \in \Phi$ such that $s=s_{\alpha}$.
Proof. Since s is a reflection, s fixes a hyperplane H. Let $H^{\perp}=\mathbf{R} \beta$, where $0 \neq \beta \in V$. Then $s=s_{\beta}$. Since $s \in \operatorname{Stab}_{W}(H)$, we have

$$
\begin{aligned}
\{1\} & \neq \operatorname{Stab}_{W}(H) \\
& =\left\langle s_{\alpha} \mid \alpha \in \Phi, s_{\alpha} \in \operatorname{Stab}_{W}(H)\right\rangle \quad \text { (by Proposition 76). }
\end{aligned}
$$

This implies that there exists $\alpha \in \Phi$ such that $s_{\alpha} \in \operatorname{Stab}_{W}(H)$. The latter implies $s_{\alpha}=$ $s_{\beta}=s$.

Note that Proposition 15 implies that the mapping which sends a root system to a reflection group is a surjection, the following proposition implies that it is essentially an injection.

Proposition 88. If Φ and Φ^{\prime} are root systems in V such that $W(\Phi)=W\left(\Phi^{\prime}\right)$, then

$$
\left\{H_{\alpha} \mid \alpha \in \Phi\right\}=\left\{H_{\alpha^{\prime}} \mid \alpha^{\prime} \in \Phi^{\prime}\right\}
$$

or equivalently,

$$
\{\mathbf{R} \alpha \mid \alpha \in \Phi\}=\left\{\mathbf{R} \alpha^{\prime} \mid \alpha^{\prime} \in \Phi^{\prime}\right\}
$$

Proof. If $\alpha \in \Phi$, then s_{α} is a reflection in $W(\Phi)=W\left(\Phi^{\prime}\right)$. By Proposition 87 , there exists $\alpha^{\prime} \in \Phi^{\prime}$ such that $s_{\alpha}=s_{\alpha^{\prime}}$. This implies $H_{\alpha}=H_{\alpha^{\prime}}$. Therefore, we have shown

$$
\left\{H_{\alpha} \mid \alpha \in \Phi\right\} \subset\left\{H_{\alpha^{\prime}} \mid \alpha^{\prime} \in \Phi^{\prime}\right\} .
$$

The reverse containment can be shown in a similar manner.

August 1, 2016

Today, we describe briefly how to classify essential finite reflection groups. We have shown that every finite reflection group W comes from some root system, in the sense that $W=$ $W(\Phi)$ for some root system Φ. Since $W(\Phi)$ is unchanged if we replace $\alpha \in \Phi$ by any nonzero scalar multiple, we assume Φ consists of vectors of length 1 . We also assume that a root system spans the underlying vector space.

First, we consider the case $\operatorname{dim} V=2$. A finite reflection group is of the form $W(\Phi)$ for some root system $\Phi \subset V$. Let Δ be a simple system in Φ. Then $|\Delta|=\operatorname{dim} V=2$. Let $\Delta=\{\alpha, \beta\}$. By Theorem 41, we have $W(\Phi)=\left\langle s_{\alpha}, s_{\beta}\right\rangle$. Since $W(\Phi)$ is finite, there exists a positive integer m such that $\left(s_{\alpha} s_{\beta}\right)^{m}=1$. We choose minimal such m, which is called the order of $s_{\alpha} s_{\beta}$. Then from the lecture on April 11, $s_{\alpha} s_{\beta}$ is a rotation. By the minimality of $m, W(\Phi)$ is the dihedral group of order m. Writing $r=s t$ where $s=s_{\alpha}$ and $t=s_{\beta}$, $W(\Phi)$ consists of m rotations

$$
1, r, r^{2}, \ldots, r^{m-1}
$$

and m other elements

$$
s, r s, r^{2} s, \ldots, r^{m-1} s
$$

which are reflections since

$$
s=s_{\alpha}, r s=s_{s_{\alpha} \beta}, r^{2} s=s_{s_{\alpha} s_{\beta} \alpha}, \ldots
$$

By Proposition 87, the root system Φ consists of $2 m$ vertices of regular $2 m$-gons. It follows from the definition of a simple system that the angle formed by α and β is $\pi-\frac{\pi}{m}$. In particular,

$$
\begin{equation*}
(\alpha, \beta)=-\cos \frac{\pi}{m} . \tag{110}
\end{equation*}
$$

Lemma 89. Let Φ be a root system with a simple system Δ, and let $\alpha, \beta \in \Delta$. If $\alpha \neq \pm \beta$ and $s_{\alpha} s_{\beta}$ has order m, then (110) holds.

Proof. Let $I=\left\{s_{\alpha}, s_{\beta}\right\}$. Then $W_{I}=\langle I\rangle$ is a dihedral group of order $2 m$, and Φ_{I} is a root system in the 2-dimensional space $V_{I}=\mathbf{R} \alpha+\mathbf{R} \beta$. By Proposition 58(iii), $W_{I}=W\left(\Phi_{I}\right)$, so Φ_{I} consists of $2 m$ vertices of regular $2 m$-gons. As shown above, $\Delta_{I}=\{\alpha, \beta\}$ consists of vectors α, β which satisfy (110).

Lemma 90. Let Φ and Φ^{\prime} be root systems in \mathbf{R}^{n}, with respective simple systems Δ and Δ^{\prime}. Then the following are equivalent:
(i) there exists $t \in O(V)$ such that $W\left(\Phi^{\prime}\right)=t W(\Phi) t^{-1}$,
(ii) $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}, \Delta^{\prime}=\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right\}$ such that $\left(\alpha_{i}, \alpha_{j}\right)=\left(\alpha_{i}^{\prime}, \alpha_{j}^{\prime}\right)$ for all $i, j \in$ $\{1, \ldots, n\}$.

Proof. Suppose first (i) holds. Then $W\left(\Phi^{\prime}\right)=W(t \Phi)$. Thus, by Proposition 88, we obtain $\Phi^{\prime}=t \Phi$. Since t is an orthogonal transformation, (ii) holds.

Next suppose (ii) holds. Let C and C^{\prime} be square matrices whose column vectors are α_{i}^{\prime} 's and α_{i}^{\prime} 's, respectively. Then $C^{\top} C=C^{\prime \top} C^{\prime}$, hence $t=C^{\prime} C^{-1}$ is an orthogonal matrix. Clearly, $\Delta^{\prime}=t \Delta$, hence

$$
\begin{array}{rlr}
W\left(\Phi^{\prime}\right) & =\left\langle s_{\alpha} \mid \alpha \in \Delta^{\prime}\right\rangle & \text { (by Theorem 41) } \tag{byTheorem41}\\
& =\left\langle s_{\alpha} \mid \alpha \in t \Delta\right\rangle \\
& =\left\langle s_{t \alpha} \mid \alpha \in \Delta\right\rangle \\
& =\left\langle t s_{\alpha} t^{-1} \mid \alpha \in \Delta\right\rangle \\
& =t\left\langle s_{\alpha} \mid \alpha \in \Delta\right\rangle t^{-1} \\
& =t W(\Phi) t^{-1} \quad \text { (by Theorem 41). }
\end{array}
$$

Combining Lemmas 89 and 90 , we see that a finite reflection group in \mathbf{R}^{n} is completely described by $n(n-1) / 2$ integers $m_{i j} \geq 2(1 \leq i<j \leq n)$, where the corresponding simple system is $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ with

$$
\begin{equation*}
\left(\alpha_{i}, \alpha_{j}\right)=-\cos \frac{\pi}{m_{i j}} \tag{111}
\end{equation*}
$$

When $n=2$, every integer $m_{12} \geq 2$ gives a finite reflection group, namely, the dihedral group $D_{m_{12}}$. However, for higher dimensions, $m_{i j}$'s are not arbitrary; rather quite restricted.

Lemma 91. Let B be a real symmetric $n \times n$ matrix. Then the following are equivalent:
(i) B is positive definite,
(ii) there exist linearly independent vectors $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{R}^{n}$ such that $\left(\alpha_{i}, \alpha_{j}\right)=B_{i j}$ for $1 \leq i<j \leq n$.

Proof. Suppose first (ii) holds. Let C be the $n \times n$ matrix whose column vectors are $\alpha_{1}, \ldots, \alpha_{n}$. Then $C^{\top} C=B$. This implies that B is positive definite.

Next suppose (i) holds. Then there exists an orthogonal matrix P such that $P^{\top} B P$ is a diagonal matrix with positive diagonal entries. This implies that there exists a diagonal matrix D with positive diagonal entries such that $P^{\top} B P=D^{2}$. Set $C=D P^{\top}$. Then $C^{\top} C=B$, hence the column vectors $\alpha_{1}, \ldots, \alpha_{n}$ of C have the property required in (ii).

Let $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a simple system, and define integers $m_{i j}$ by (111). Then the real symmetric matrix B defined by

$$
B_{i j}= \begin{cases}1 & \text { if } i=j \\ -\cos \frac{\pi}{m_{i j}} & \text { otherwise }\end{cases}
$$

is positive definite. It turns out that this is the only condition needed to classify root systems or finite reflection groups, but it is already quite strong. For example, $n=3, m_{12}=m_{13}=$
$m_{23}=4$ fails to satisfy this condition, since

$$
\left[\begin{array}{ccc}
1 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & 1 & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 1
\end{array}\right]
$$

is not positive definite. For $n=3$, unless B is block diagonal, we have only three possibilities:

$$
\left(m_{12}, m_{13}, m_{23}\right)=(2,3,3),(2,3,4),(2,3,5)
$$

Bibliography

[1] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, 1990.
[2] J. Rotman, Advanced Modern Algebra, Prentice Hall, 2002.

