August 1, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R}, with positivedefinite inner product.
Lemma 1. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $t s_{\alpha} t^{-1}=s_{t \alpha}$.
Definition 2. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. Let $W \subset O(V)$ be a finite reflection group. We say that W is not essential if there exists a nonzero vector $\lambda \in V$ such that $t \lambda=\lambda$ for all $t \in W$. Otherwise, we say that W is essential.

Definition 3. Let Δ be a subset of a root system Φ. We call Δ a simple system if Δ is a basis of the subspace spanned by Φ, and if moreover each $\alpha \in \Phi$ is a linear combination of Δ with coefficients all of the same sign (all nonnegative or all nonpositive). In other words,

$$
\begin{equation*}
\Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta, \tag{1}
\end{equation*}
$$

where

$$
\mathbf{R}_{\geq 0} \Delta=\left\{\sum_{\alpha \in \Delta} c_{\alpha} \alpha \mid c_{\alpha} \geq 0(\alpha \in \Delta)\right\}
$$

If Δ is a simple system, we call its elements simple roots.
Theorem 4. If Δ is a simple system in a root system Φ, then $W=\left\langle s_{\alpha} \mid \alpha \in \Delta\right\rangle$.
Notation 5. Let $S=\left\{s_{\alpha} \mid \alpha \in \Delta\right\}$. For $I \subset S$, we define

$$
\begin{aligned}
W_{I} & =\langle I\rangle, \\
\Delta_{I} & =\left\{\alpha \in \Delta \mid s_{\alpha} \in I\right\}, \\
V_{I} & =\mathbf{R} \Delta_{I}, \\
\Phi_{I} & =\Phi \cap V_{I}, \\
\Pi_{I} & =\Pi \cap V_{I} .
\end{aligned}
$$

Proposition 6. Let $I \subset S$.
(i) Φ_{I} is a root system with simple system Δ_{I}.
(ii) Π_{I} is the unique positive system of Φ_{I} containing the simple system Δ_{I}.
(iii) $W\left(\Phi_{I}\right)=W_{I}$.
(iv) Let ℓ be the length function of W with respect to Δ. Then the restriction of ℓ to W_{I} coincides with the length function ℓ_{I} of W_{I} with respect to the simple system Δ_{I}.
Proposition 7. If $s \in W$ is a reflection, then there exists $\alpha \in \Phi$ such that $s=s_{\alpha}$.
Proposition 8. If Φ and Φ^{\prime} are root systems in V such that $W(\Phi)=W\left(\Phi^{\prime}\right)$, then

$$
\left\{H_{\alpha} \mid \alpha \in \Phi\right\}=\left\{H_{\alpha^{\prime}} \mid \alpha^{\prime} \in \Phi^{\prime}\right\}
$$

or equivalently,

$$
\{\mathbf{R} \alpha \mid \alpha \in \Phi\}=\left\{\mathbf{R} \alpha^{\prime} \mid \alpha^{\prime} \in \Phi^{\prime}\right\}
$$

