August 1, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R} , with positivedefinite inner product.

Lemma 1. For $t \in O(V)$ and $0 \neq \alpha \in V$, we have $ts_{\alpha}t^{-1} = s_{t\alpha}$.

Definition 2. Let V be a finite-dimensional vector space over \mathbf{R} with positive definite inner product. Let $W \subset O(V)$ be a finite reflection group. We say that W is *not essential* if there exists a nonzero vector $\lambda \in V$ such that $t\lambda = \lambda$ for all $t \in W$. Otherwise, we say that W is *essential*.

Definition 3. Let Δ be a subset of a root system Φ . We call Δ a *simple system* if Δ is a basis of the subspace spanned by Φ , and if moreover each $\alpha \in \Phi$ is a linear combination of Δ with coefficients all of the same sign (all nonnegative or all nonpositive). In other words,

$$\Phi \subset \mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta,\tag{1}$$

where

$$\mathbf{R}_{\geq 0}\Delta = \{\sum_{\alpha \in \Delta} c_{\alpha}\alpha \mid c_{\alpha} \geq 0 \ (\alpha \in \Delta)\}.$$

If Δ is a simple system, we call its elements *simple roots*.

Theorem 4. If Δ is a simple system in a root system Φ , then $W = \langle s_{\alpha} \mid \alpha \in \Delta \rangle$. Notation 5. Let $S = \{s_{\alpha} \mid \alpha \in \Delta\}$. For $I \subset S$, we define

$$W_{I} = \langle I \rangle,$$

$$\Delta_{I} = \{ \alpha \in \Delta \mid s_{\alpha} \in I \},$$

$$V_{I} = \mathbf{R}\Delta_{I},$$

$$\Phi_{I} = \Phi \cap V_{I},$$

$$\Pi_{I} = \Pi \cap V_{I}.$$

Proposition 6. Let $I \subset S$.

- (i) Φ_I is a root system with simple system Δ_I .
- (ii) Π_I is the unique positive system of Φ_I containing the simple system Δ_I .
- (iii) $W(\Phi_I) = W_I$.
- (iv) Let ℓ be the length function of W with respect to Δ . Then the restriction of ℓ to W_I coincides with the length function ℓ_I of W_I with respect to the simple system Δ_I .

Proposition 7. If $s \in W$ is a reflection, then there exists $\alpha \in \Phi$ such that $s = s_{\alpha}$.

Proposition 8. If Φ and Φ' are root systems in V such that $W(\Phi) = W(\Phi')$, then

$$\{H_{\alpha} \mid \alpha \in \Phi\} = \{H_{\alpha'} \mid \alpha' \in \Phi'\},\$$

or equivalently,

$$\{\mathbf{R}\alpha \mid \alpha \in \Phi\} = \{\mathbf{R}\alpha' \mid \alpha' \in \Phi'\}$$