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Abstracts 
 

 

Some constructions of spherical designs 

Samy Baladram 

 

In this talk, I will explain some fundamentals and well-known constructions of spherical t-designs. 

Some new recent construction from my personal research, using a so-called ball t-design, will 

also be presented. 

 

 

Complementary Ramsey numbers, graph factorizations and Ramsey graphs 

Akihiro Munemasa 

 

A special case of weak Ramsey numbers which we call the complementary Ramsey number is 

the smallest number of vertices in a graph such that in every edge coloring, there exists a complete 

subgraph of a specified size whose edge colors misses one. This generalizes the classical Ramsey 

number for 2 colors. We show that certain graph factorizations and knowledge of Ramsey graphs 

can help determine complementary Ramsey numbers. This is based on joint work with Masashi 

Shinohara. 

 

 

Some topics in distance matrices of graphs 

Nobuaki Obata 

 

A graph is called of QE class if it admits a quadratic embedding in Euclidean space (or Hilbert 

space). By Schönberg theorem this is equivalent to that the distance matrix is conditionally 

negative definite. In order to decide this property the quadratic embedding constant (QEC) of a 

graph was introduced. In this talk graph operations preserving the property of being of QE class 

and estimates of QEC are discussed. 

 

 

Hadamard matrices and a matrix approach to complementary sequences 

Pritta Etriana Putri 

 

It is known that complementary sequences has a relation with Hadamard matrices. We give a 

matrix approach, rather than a sequence approach, to construct complementary sequences. Two-

variable Laurent polynomials and the Lagrange identity are used in our method. This talk is based 

on a joint work with Akihiro Munemasa.   

 

 

A short review on a quantum search driven by quantum walks 

Etsuo Segawa 

 

We take a short review on a quantum search driven by quantum walks on the complete graphs for 

simplicity. The eigenspace of the time evolution operator of the quantum search inherited from the 

isotropic random walk on the graph with the Dirichlet boundary condition on the marked vertices 

plays important role to estimate the efficiency. 



Asymptotic spectral distributions for Cartesian powers of strongly regular graphs 

Hajime Tanaka 

 

Generalizing previous work of Hora on the Hamming graphs which are Cartesian powers of 

complete graphs, we compute various limit spectral distributions of pairs of Cartesian powers of 

strongly regular graphs and their complements. 

 

 

On Ramsey (P4, P4)-minimal graphs 

Yusuke Yoshie 

 

For any given two graphs G and H, the notation 𝐹 → (𝐺,𝐻) means that any red-blue coloring 

of all the edges of F will create either a red subgraph isomorphic to G or a blue subgraph 

isomorphic to H. A graph F is a Ramsey (𝐺, 𝐻)-minimal graph if 𝐹 → (𝐺,𝐻) but 𝐹 − {𝑒} ↛

(𝐺,𝐻) for every 𝑒 ∈ 𝐸(𝐹). The class of all Ramsey (𝐺, 𝐻)-minimal graphs is denoted by 

𝑅(𝐺,𝐻). In this paper, we prove that there is no tree in R(𝑃𝑚, 𝑃𝑛) for 𝑚, 𝑛 ≥ 4.  We also 

characterize the unique kind of unicyclic graphs in R(𝑃4, 𝑃4). In particular, we determine some 

infinite classes of graphs belonging to R(𝑃4, 𝑃4). 
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Abstract. Ramsey graphs theory deals with regularity and coloring of graphs.
There are many interesting applications of Ramsey graphs theory, such as in the
fields of communications, information retrieval, and decision making. Let F, G and
H be simple graphs. We write F → (G,H) to mean that any red-blue coloring on
all edges of F will contain either a red copy of G or a blue copy of H. The graph
F (without isolated vertices) satisfying F → (G,H) and (F − e) 9 (G,H) for
every e ∈ E(F ) is called a Ramsey (G,H)−minimal graph. The set of all Ramsey
(G,H)−minimal graphs is denoted by R(G,H). In this paper, we derive the suffi-
cient and necessary condition of graphs belonging to R(mK2, H). We give a relation
between Ramsey (mK2, H)− and ((m− 1)K2, H)−minimal graphs. Furthermore,
we construct graphs in R(2K2, H), where H = K4 and H = C4. We show that
a graph obtained from any two connected graphs in R(2K2, H) by identifying a
vertex or an edge is a member of R(2K2, 2H), where H is a complete, a cycle, a
path, or a star.

Keywords: Ramsey minimal graph, edge coloring, complete graph, path graph.

References

[1] Baskoro, E.T. and Yulianti, L., On Ramsey Minimal Graphs for 2K2 versus
Pn, Advanced and Applications in Discrete Mathematics, 8:2 (2011), 83–90.

[2] Borowiecki, M., Haluszczak, M., Sidorowicz, E., On Ramsey minimal graphs,
Discrete Math., 286 (2004), no. 1–2, 37–43.

[3] Burr, S.A., Erdos, P., Faudree, R.J. and Schelp, R.H., A class of Ramsey-finite
graphs, Congressus Numer., 21 (1978), 171–180.

[4] Burr, S.A., Erdos, P., Faudree, R., Rousseau, C. and Schelp, R., Ramsey-
minimal graphs for forests, Discrete Math., 38 (1982), no. 1, 23–32.

[5] Burr, S.A., Erdos, P., Faudree, R., Rousseau, C. and Schelp, R., Ramsey-
minimal graphs for star-forests, Discrete Math., 33 (1981), no. 3, 227–237.

[6] Burr, S.A., Erdos, P., Faudree, R., Rousseau, C. and Schelp, R., Ramsey-
minimal graphs for matchings, The theory and applications of graphs (Kala-
mazoo, Mich.)(1980), 159–168, Wiley, New York, 1981.

[7] Burr, S.A., On the Computational Complexity of Ramsey-Type Problems,
Springer-Verlag Berlin Heidelberg, 1990

1



2

[8] Luczak, T., On Ramsey minimal graphs, Electron. J. Combin., 1 (1994), Re-
search Paper 4, approx 4pp. (electronic).

[9] Mengersen, I. and Oeckermann, J., Matching-star Ransey sets, Discrete Ap-
plied Mathematics., 95 (1999), 417–424.

[10] Muhshi, H. and Baskoro, E.T., On Ramsey (3K2, P3)-minimal graphs, AIP
Conf. Proc., 1450 (2012), 110–117.
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Restricted Size Ramsey Number for Graph of Size Two versus
Connected Graph
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Abstract

Let G and H be simple graphs. The Ramsey number for G and H is the smallest
number r such that any red-blue coloring of edges of Kr contains a red subgraph G
or a blue subgraph H . The size Ramsey number for G and H is the smallest number
r̂ such that there exists a graph F with size r̂ satisfying the property that any red-blue
coloring of edges of F contains a red subgraph G or a blue subgraph H . Additionally,
if the order of F is r(G,H), then it is called the restricted size Ramsey number. In
1983, Harary and Miller started to find the (restricted) size Ramsey number for any
pair of small graphs. They obtained the values for some fair af small graphs with order
at most four. Faudree and Sheehan (1983) continued Harary and Miller’s works and
summarized the complete results on the (restricted) size Ramsey number for any pair
of small graphs with order at most four. Moreover, Lortz and Mengenser (1998) gave
both the size Ramsey number and the restricted size Ramsey number for any pair of
small forests with order at most five.

Furthermore, for any pair of graphs G and H , both the size Ramsey number
r̂(G,H) and the restricted size Ramsey number r∗(G,H) are bounded above by the
size of the complete graph with order is equal to the Ramsey number r(G,H), and
bounded below by e(G)+ e(H)−1. Moreover, trivially, r̂(G,H) ≤ r∗(G,H). When
both G and H are complete graphs, both the size and restricted size Ramsey number
of G and H attain the upper bound. While, when both G and H are star graphs, the
size Ramsey number of G and H attains the lower bound.

In this talk we consider the restricted size Ramsey number for graph of size two
versus connected graph H . We give a short survey of our results concerning to the
topic. They are included the necessary and sufficient conditions for a connected graph
H such that the restricted size Ramsey number r∗(P3, H) and r∗(2P2, H) attain the
upper and lower bounds, some exact values of r∗(P3, H) and r∗(2P2, H) for H is a
connected graph, and some exact values of r∗(P3, H) and r∗(2P2, H) for H is any
small connected graph of order five.

Keywords : restricted size Ramsey number, path, matching, connected graph
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