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Abstract

A normal-ordered white noise differential equation generalizes a quantum
stochastic differential equation so as to include in coefficients highly singular
noises such as higher powers of quantum white noises. Unique existence of a
solution is discussed on the basis of white noise operator theory and its unitarity
condition is derived by means of symbol calculus with complex Gaussian inte-
gral. It is proved that higher powers of quantum white noises produce no new
class of unitary evolutions in the original Fock space where quantum white noises
are represented.
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1 Introduction

The white noise theory, initiated by Hida [10], is based on a Gelfand triple called

a white noise triple:
W CT(L*(R)) = L*(E*, ) C W, @
where I'(L?(R)) is the Boson Fock space over L?(R) and L?(E*, u) is its functional
realization by means of the Wiener-It6-Segal isomorphism. Construction of a white

This is the final form of the paper.
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noise triple (1) has been extensively discussed, see e.g., [8], [15], [16], [17], [18]. A
continuous operator E from W into W* is called a white noise operator and the space
of such operators is denoted by L(W, W*). The white noise operator theory has been
established in [4], [18].

A continuous map t — L; € L(W,W*) defined on an interval is called a quan-
tum stochastic process in the sense of white noise theory. Given a quantum stochastic
process {L;}, an ordinary differential equation: -

(—i—)—(—:Lto'X, - X(0)=1, V3]
dt
where ¢ stands for the Wick product (also called the normal-ordered product) in
LW, W*), is generally called a normal-ordered white noise differential equation and is
our object. Unique existence of a solution in the sense of white noise operators has
been studied in the series of papers [5], [20], {21], and its regularity propérties in [6],
[7], where proper Hilbert spaces in which the solution acts (as unbounded operators
in general) are specified.
The normal-ordered white noise differential equation (2) was first brought aga-
inst quantum stochastic calculus. In the famous paper [12] Hudson and Parthasa-
rathy introduced a quantum stochastic differential equation of It type:

dX = (L1dAs + LodA? + LadAg + Ladt) X, X(0) =1, 3)

where {4} is the annihilation process, { 4} } the creation process, and {A;} the num-
‘ber process acting in the Fock space I'(L?(R)). The quantum It6 formula was one of
the most important achievements and was used effectively to derive unitarity con-
dition for the solution. In white noise operator theory the three basic processes are
all differentiable. In fact,

dA, . d4; . dA

“=TE e T g

hold in the spaces LW, W), L(W*, W?*), and L(W, W*), respectively. The operators
a; and a; are respectively called the annihilation operator and the creation operator at a
time point ¢ € R. It then turns out that (3) is brought into a normal-ordered white
noise differential equation (2) with the coefficient given by

L; = Lia; + Lza: -+ Lga;{at + Ly,

see [20], [21]. From this observation we are convinced of importance of the white
noise approach; for example, higher powers of quantum white noises, which are far
beyond the traditional It6 theory, have become within our reach.

In this paper we focus on a normal-ordered white noise differential equation with
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a particular coefficient of the form:

k n
Ltzg E Ll,ma:’a{”.

=0 m=0

Itis proved that the solution acts in the original Fock space I'(L?(R)) (as unbounded
operators in general) only in the case of 0 < k < 1. For a general coefficient, we need
another Fock space singular to the original one or a weighted Fock space which is
somehow outside the Gaussian analysis. Thus, as for the unitarity, it seems natural
to start with the case of

n n

_ m * m

L, = E Lo mai® + E Ly ma;al”.
m=0 =0

We employ a new approach based on the complex white noise theory recently devel-
oped in [23], [24], [22]. By using the unitarity condition in terms of complex Gaussian
integral and the operator symbol, we shall show that a unitary solution is obtained
only when 0 < n < 1, i.e., when the normal-ordered white noise differential equation
is reduced to a quantum stochastic differential equation of Hudson-Parthasarathy
type. As a result, the unitarity criterion of Hudson and Parthasarathy [12] is repro-
duced without using the quantum It6 formula. This is a by-product of our approach
though the use of the quantum It6 formula is much simpler.

In conclusion, to obtain a unitary evolution driven by higher powers of quantum
white noises one needs a change of inner product of the original Fock space where
the quantum white noises act. Relevant questions in higher powers, in particular, in
the quadratic powers of quantum white noises have been discussed from a different
point of view, see e.g., [1], [2], [3], [25].

Acknowledgments The author is grateful to the organizers of the sixth symposium
on “Probability and Stochastic Processes” held at CIMAT at Guanajuato, Mexico, in
May 2000 for their kind hospitality. This work is partially supported by Grant-in-Aid
for Scientific Research No. 12440036, Ministry of Education, Japan.

2 White Noise Triple

Up to now several different spaces of white noise distributions have been intro-
duced keeping a common spirit in the characterization theorems of S-transform and
of operator symbols. Here we adopt the CKS-space [8] for explicit computation. As
usual we start with the real Gelfand triple:

E=S(R)C H = L*R,dt) C E* = S'(R), )
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where S(R) is the space of rapidly decreasing functions, and S’'(R) the space of
tempered distributions. The canonical bilinear form on E* x E and the inner product
of H are denoted by the common symbol (-, -) since they are compatible. The norm
of H is denoted by |- |,. We shall introduce the canonical topology of E = S(R) by
means of Hilbertian norms. For p € R we put

d?
= — 2
€1, =14%¢l,,  §€H, A=1+t"- 25
Then, for p > 0 the set
. Ep:{§€H;|§!p<oo} (5)

becomes a Hilbert space with norm |- | . While, E_, denotes the completion of H
with respect to the norm | - | _. Note that E, and E_, are dual each other. With these
notations we have

E = S(R) = projlim E,, E*=8R)= ind lim E_p. (6)
p—>00

p—>00

For n > 0 let H®" be the n-fold symmetric tensor power of H and their norms
are denoted by the common symbol |- |,. For a sequence a = {a(n)}32., of positive
numbers we put

To(H) = {«s ~ (fn) 20 fn € HE || 01l5 . = > nla(n)| fals < oo} :

n=0

Then I, (H) becomes a Hilbert space and is called a weighted Fock space. The (Boson)
Fock space is the special case of a(n) = 1 and is denoted by I'(H). From now on we
assume that o = {a(n)} fulfills the following five conditions:

(A) 1=0(0) < (1) <a(2) <-4

(A2) the generating function

has an infinite radius of convergence;

(A3) the power series

~ _ s n2n ) Ga(s) n
Galt) = Z nla(n) {gg sn }t

n=0
has a positive radius of convergence R, > 0;

(A4) there exists a constant Cy, > 0 such that a(m)a(n) < C7%"a(m + n) for all
m,n;
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(A5) there exists a constant Cy, > 0 such that a(m + n) < Ci%"a(m)a(n) for all
m,n.

Now we construct the space of white noise distributions. For the Hilbert space E,
defined in (5) consider the weighted Fock space I'4 (E;), and according to (6) define

L' (E) = projlim 'y (E,).

p—r00

Itis easily shown that I', (E) is a nuclear space whose topology is given by the family
of norms: '

Il¢l|§,+=§:"!a(n)|fnli’ ¢~ (fn), P20.
n=0

By a standard argument we see that

Ta(E)" 2 indlim Tq-1 (E-p),

where I'o(E)* carries the strong dual topology and = means a topological isomor-
phism. Then, by taking the complexification, we obtain a complex Gelfand triple:

Wa = To(Ec) C T(Hc) C Ta(Ec)* =W, @)

where the middle space is the usual Fock space over Hc. The above Gelfand triple
is referred to as the Cochran—Kuo—Sengupta space (or CKS-space for short) with weight
sequence a = {a(n)}. When there is no danger of confusion, we write W = W, for
simplicity. The canonical bilinear form on W* x W is denoted by (-, -)). Then

(2, ) =D nl(Fn, fn), @~ (F) EW', ¢~ (fn) EW,

n=0
and it holds that
|2, ont < M1@ll_p - lloll,+>
where ‘
‘ 2 = n! 2
”Q”——p,—:rg)g(?)IFnl—p$ QN(Fn)

For 0 < 8 < 1 we put §(n) = (n!). The corresponding CKS-space is called the
Kondratiev-Streit space [15] and is denoted by (E)g. In particular, in case of § = 0, i.e.,
a(n) = 1, the corresponding CKS-space is called the Hida—Kubo—Takenaka space [16]
and is denoted by (E) for simplicity. The k-th order Bell numbers { Bx(n)} also pro-
vide an important class of white noise distributions [8], see also [7] for applications.
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3 White Noise Operators

A continuous operator = : W — W* is called a white noise operator and the space of
such operators is denoted by £(W, W*). Note that L(W, W) and L(T'(Hc), I'(Hc))
are subspaces of L(W, W*). Moreover, L(W*,W*) is isomorphic to L(W, W) by
duality. These spaces are equipped with the topology of uniform convergence on
every bounded set. General theory for white noise operators has been extensively
developed in [4], [18].

Let a; and a} be the annihilation and creation operators at a point ¢ € R. Then,
for ¢ € W we have

o(z + 06;) — ¢(x)

ud(z) = lim 9

where the limit always exists forallt € Rand z € E*. Itis known thata; € L(W, W)
and a} € L(W*,W*). Moreover, the maps t — a; and t > af are both infinitely many
times differentiable. The pair {a;, a} } is referred to as the quantum white noise process.
The annihilation, creation and number processes are respectively defined by

t ¢ t
A = / asds, A = / a; ds, Ay =/ asas ds, (8)
0 0 0

where the integrals are understood as integral kernel operators, see below. These are
white noise operators and

d d * * d *
aAt=at, E‘t'At = a;, -d—tAt=atat,

hold in L(W, W), in L(W*, W*), and in L(W, W*), respectively. The following result
illustrates a precise norm estimate which follows by combination of [4, Lemma 2.1]
and a norm estimate of :

d
a_t 1[O,t] = (St'

Proposition 1 For any p > 0and q >' 0 with p 4 q > 11/12 there exists a constant Cc>0
depending only on p + q such that

(e

forall¢ e Wandt,h € R.

29 1/2
= LU
ot 2q€10g2 | I” ”p+q,+

Since the composition a}, ---a},a¢, - - as,, is well-defined as an operator in
L(W, W*), it is quite natural to consider an operator of the form:

/ n(sl,.. .,sl’tl,. . ’tm)a;:l .. .a;latl .o .atmdsl .. 'ds[dtl .o dtm
Rl+m
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In fact, extending the Lebesgue integral by duality, we may define an integral ker-

nel operator with an arbitrary distribution kernel k € (ES (+m)y« and denote it by
Z1,m (k). More precisely, for ¢ ~ (f,) € W we define Z; (k)¢ ~ (gn) by

-1+ m)!
gn=0, 0<n<; gn=(ﬁ(‘n—:_—l—)r2‘

K®m fr-t4+m, n2>1,

where ®,, denotes the right contraction of tensor products. Then, by a direct ver-
ification we see that 5, ,,(k) € L(W,W?*) and the map k — Z; (k) is continu-
ous, for more details see [18, Chapter 4]. It is noted that every white noise operator
E € L(W, W*) is decomposed into an infinite series:

[

oo
= > Eimlkim),
l,m=0

where the right hand side converges in £(W, W*). In that case we put
deg E = max{l + m; Z; n(ki,m) # 0}.

The white noise operators with degZ < oo, i.e., which are finite sums of integral
kernel operators belong to £L(W,, W},) for any choice of a.

An exponential vector or a coherent vector is defined by
§®2 £®n

¢€=(1’€,_‘2°'_”v71—|—a)1 EEEC (9)

Because the exponential vectors {¢¢ ; £ € Ec} span a dense subspace of W, every
white noise operator Z € L(W, W*) is uniquely specified by

E&,n) = (Eoe, ),  EmEW.

The above is called the symbol of Z. A remarkable outcome of white noise theory is
found in the following ‘

Theorem 2 [5] (Characterization for operator symbols) A C-valued function © on
Ec x Ec is the symbol of an operator = € L(W, W?*) if and only if

(O1) for any &,&,m,m € Ec, the function (z,w) — ©(z€ + &1, wn + m1) is entire holo-
morphic on C x C; '

(O2) there exist constant numbers C > 0 and p > 0 such that

106, < CGa(l€3)Gallnl;),  &n € Ec.
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Several refinements have been so far obtained. Let K+ be Hilbert spaces interpo-
lating the Gelfand triple (4) in such a way that

ECK*CcHCK™ CE", | (10)

where all the embeddings are continuous and have dense images, K™ — H is a
contraction, and K* are dual each other. With this fine structure we have

Theorem 3 [7] Let 8 = {B(n)} be another weight sequence satisfying conditions (A1)~
(A3). Let © : Ec x EcrightarrowC be a function satisfying condition (O1). Assume that
there exist C > 0, p > 0 and a bounded, non-negative sesquilinear form Q on K& with
Tr Q@ < Rg such that

O, < CGa(KIZ)Gﬂ(Q(h, m), & neEc.

Then there exists a unique Z € L(Wa,T's-1(Kg)) such that © = E.

4 Analytic Definition of Wick Product

We start with some elementary properties of the generating function G, (t) de-
fined in (A2).

Lemma4 Let a = {a(n)} be a positive sequence as before and G o(t) the generating func-
tion. Then,

(1) Ga(0) = 1and Ga(s) < Ga() for 0 < s < t;

(2) e°Ga(t) < Go(s+t)and et < Gy(t) for s, t > 0;

(3) Y[Ga(t) —1] < Gu(yt) =1 foranyy > 1andt > 0.

(@) Ga(5)Ga(t) < Ga(Crals +1)) for s,t 2 0.

(5) Ga(s +t) < Ga(C2a8)Ga(Cant) for s,t > 0.

Lemma 5 For two white noise operators 1,22 € L(W, W*) there exists a unique operator
Z € LW, W?*) such that ‘

2&m) = Ei6mE(Eme ™™, &ne Ec. (11)

Proof. For simplicity we write ©(¢, 7) for the right hand side of (11). By virtue of

Theorem 2 we need only to show that © satisfies conditions (O1) and (O2). In fact,
(O1) is obvious. As for (02), we take C; > 0 and p; > 0 in such a way that

B < CiGalIE3)Gallnl3),  §=1,2.
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Since [, < p71€l,4q < 1€lpyq o= l1A7 lop = 1/2, we have

Er(&:mEEm)* < CGLUERGE(nT),
where C' = C;C; and p = max{p1, p2}. Moreover, combining an obvious inequality:
le=(&m 2 < e2l€lolnlo < el€liHInlE < lélztinly

we obtain . ,
|0, n)* < CeltbG2(|¢2)el G2 (In[3).

By using Lemma 4 the above becomes
10(&,m)|* < CGa((2C1a + 1) |£[2)Ga((2C1a + 1) | 7]3). (12)

Choose g > 0 with (2C14 + 1)p?? < 1 so that (12) becomes

0(& M) < CGall€lr )Gallnlry,),
which proves (02). [

The operator = defined in (11) is called the Wick product or normal-ordered product
of 21 and =5, and is denoted by E = Z; ¢ Z;. We note some simple properties:
IOE:EOI:E, (51052)053=510(52053),
(E105)* =23 0], 108y =55 05;.

Thus, equipped with the Wick product, £L(W, W*) becomes a commutative *-alge-
bra. As for the annihilation and creation operators we have

Qs 0a; = QsQy, Q0 =Q30;, Gz00a; =0a;0s, Q5 0a; = a,0;. (13)

More generally, it follows by diréct verification that

* = e
‘asl te aslaatl at

*

= (a’31 )

m

akfayra) 08, E€LOVWY). (1)

Note that the left hand side is well-defined as the composition of white noise opera-
tors.

5 Normal-Ordered White Noise Differential Equations

A continuous map t — L; € L(W,W*) defined on a time interval is called a
quantum stochastic process in the sense of white noise theory [19]. Then, {A:}, {4}},
{A¢} are all quantum stochastic processes as well as their derivatives {a;}, {a}},
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{a}a:}. Given a quantum stochastic process {L;} defined on an interval containing
0, we shall focus on a linear equation for unknown quantum stochastic process {Z;}
of the following type:

= =L03, E0)=1I (15)

The above equation is generally called a normal-ordered white noise differential equation.
Since the equation (15) is linear and £(W, W*) is a commutative algebra with the
Wick product, the formal solution to (15) is obtained by the Wick exponential:

t (o) 1 t on
= = wexp (/0 Lsds) = z%m (A‘ L,ds) . (16)
n=

A serious question is convergence of the above infinite series and is answered, for
example, in the following

Theorem 6 [7] Let {L;} C LWy, W) be a quantum stochastic process. Let w be another
weight sequence satisfying condition (A1)~(A5) and assume the relation:

Gu(t) = exp Y{Ga(t) — 1},

where v > 0 is a certain constant. Then, the series (16) converges in L(W,,, W},) and is a
unique solution to (15).

Relevant results are proved in [5], [6], [20], [21]; see also [13] for a nonlinear case.
The next question then arises: in which Hilbert space the solution {Z;} acts. Here
we recall

Theorem 7 [7] Let K* be Hilbert spaces defined as in (10). Assume that {L.} is given by

1 n t :
L= 3 3 Enin®) min(® = [ (o) ds € (K6) @ (™Y

=0 m=0

Then, the unique solution to (15) lies in L((E),[(Kg)) f 0 < n < 1; and in
L((E)s, T(KG)) withf =1—1/nifn > 1.

As a simple consequence we have

Theorem 8 Let n > 1. The initial value problem (15) with

n n
L= Lomal+ > Limeia,  Lom,Lim€C,

has a unique solution in L((E)g,I'(Hc)), where § =1 —1/n.
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Proof. Forany &,n € Ec, we have

t n t L t
e (&) /0 Ly(¢mds = ELM /0 (o)™ds+ Y Lim / n(s)¢(s)™ds

m=0 0

= z Lom(l0,q, €™) + Z Ly,m(Mp €™, m)

m=0 m=0
= Y (kom(t), ™) + Y (k1m(t), n @ E5™),
m=0 m=0 -

where Mo 4 is the multiplication operator by the indicator function 14 of [0, ].
Since the pointwise multiplication (&,--+,&m) +* & ---ém € Ec is a continuous
m-linear map, there is a unique continuous linear map T € L(E&™, Ec) such that
TG ®-® &m) =& Em. Then, ﬂo,m(t) = LO,mT*l[O,t] € (Egm)*' On the other
hand, &1,,(t) corresponds to Ly ;m Mo 4T € L(EE™, Hc) and hence k1,m(t) € Hc ®
(EE™)*. With these observation it follows from Theorem 7 that the unique solution
liesinﬁ((E)g,I‘(HC)). ~J |

In the above theorem, the degree of the creation operators contained in {L;} is
at most one. If {L;} involves higher powers of creation operators, the solution no
longer acts in the original Fock space I'(Hc). In that case the solution acts (as un-
bounded operators in general) in another Fock space or in a weighted Fock space
interpolating the CKS-space, for more details see e.g., [7].

To end with, we mention briefly the classical-quantum correspondence in white
noise theory. A continuous map t — &; € L(W, W*) is called a classical stochastic
process in the sense of white noise theory. The pointwise multiplication by a white
noise distribution ® € W* gives rise to a white noise operator, which is denoted by

& € £L(W, W*). Thus, a classical stochastic process {®;} yields a quantum stochastic

process {&n} possessing the relation\fl;,d)o = &;, where ¢y is the Fock vacuum. The
fundamental relations W; = a; + a} for the classical white noise process and B; =
A; + A} for the Brownian motion are understood in this sense. '

Moreover, we note the following

Proposition 9 Let {L;} C W* be a classical stochastic process and assume that a quantum
stochastic process {Z;} C L(W, W*) satisfies the normal-ordered white noise differential
equation:

d= =

= = Z(0) =1.
dt Lto ) (0)

Then the classical stochastic process defined by ®, = Z; o satisfies the normal-ordered white
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noise differential equation of classical type:

dd
—(Yt‘ = Lt 0@, Q(O) = ¢0,

Proof. For the Wick product of white noise distributions we refer to e.g., [14],
[17]. As is easily verified by definition, for two white noise operators Z1,2; €
LW, W*) we have

(E1 0 E2)¢0 = E16o © Ez0,

where the right hand side is the Wick product of white noise distributions. Hence
(wexp E)¢o = wexp (E¢o), Ee LW, W),

where the right hand side is the Wick exponential of a white noise distribution. With
the above observation the proof is obvious. |

6 Complex Gaussian Integral and Unitarity Criterion

Let 4 be the Gaussian measure on E* = S'(R) with variance 1/2, namely, a
probability measure on E* determined uniquely by the characteristic function:

—lé12/a :/ =6/ (dr),  E€E.

In view of the topological isomorphism Eg = E* x E*, we define a probability
measure v = u' x y' on Eg by

v(dz) = p'(dz)p'(dy),  z=z+iy€ Eg.

The probability space (Eg, v) is then called the complex Gaussian space after Hida [11,
Chapter 6]. The “reproducing property” is essential:

/ eFHOHEM y(dy) = &M £ € Eg, 17)
FE

'

C
wherez = 2 — iy for z = 2 + iy € E* +41E*, and (-, -) is the canonical C-bilinear form
on Eg x Ec.

We next study unitarity of a white noise operator. The hermitian inner product
of I'(Hc) is defined by
g, ¥ = (&, ¥)-

For an operator = we denote by E its adjoint with respect to the above hermitian
inner product. As is easily verified, it holds that

Elp=2%¢, e
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By definition = € L£(W,T(Hc)) is called an isometry on I'(Hc) if 212 = I; and
is called a unitary operator if both = and E' are isometries. Since the exponential
vectors {¢; ; £ € Ec} span a dense subspace of W and hence of I'(Hc), the condition
Zt= = Iis equivalent to

(B0, Sou) = (66 &), &€ Bo,

or in terms of the original C-bilinear form:

(Ede Een)) = (de, da) =€, &me Ec. (18)

Similarly, under the assumption that Z* € L£(W,T'(Hc)), the condition Z=f = I is
equivalent to ' '

(E* 0z, E*¢n) = (0¢, da) =e&™, &€ Ec. (19)

We shall derive an equivalent condition by means of complex Gaussian integral.
By the same formula as in (9) we define ¢, € W* also for z € Eg, which is again
called an exponential vector.

Lemma 10 For ® € I'(Hc) the S-transform

S®(&) = (®, ¢, €€ Ec,

is extended to a unique L*-function on E§ with respect to v.

This is a consequence of the Segal-Bargmann transform (see e.g., [9]). Thus, for
= € LW,T'(Hc)) the symbol é({ ;1) being originally a C-valued function on E¢c X
Ec, admits an extension to a function on Ec x Eg as a function in L?(Eg, v) with

respect to the second argument. The extension is denoted by E(¢,2) = (Ege, ¢.)) for
simplicity. .

Theorem 11 A white noise operator"E € L(W,T(Hcg)) is an isometry on I'(Hc), ie.,
StZ = I ifand only if

Jo

(o]

[

(,2)E(m,z)v(dz) =e&M,  €ne Ec. (20)

In addition, assume =* € L(W,T(Hc)). Then, Z is a unitary operator on I'(Hc), i.e.,
E1E = 22t = I ifand only if (20) and

A

C

[

(2,6)E(z,m) v(dz) = ™, €ne Ec. 1)
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Proof. For z € E§ we define

QZ¢ = «¢5a ¢» ¢z, ¢ € W.

Then Q, € L(W, W*) and the map z — @, is continuous. Moreover, the resolution
of the identity:

I= Qz V(dz)

holds, where the right hand side is understood through the canomcal bilinear form
[23]. The left hand side of (18) thereby becomes ,

{1}

(%2, Sn) / (S0, :)(Ber Sba) v(d2)

I

/E. oz, 60 (Edn, 6:) v(d2)

]

/ 2@, 2) 5, ) v(d2),

which proves (20). The rest is proved similarly using the fact that v is invariant under
the complex conjugation z — Z. [

7 Unitarity of Solutions

We go back to the normal-ordered white noise differential equation:

d= =
‘a‘t‘ (Z Lo mat + Z Ly maia; ) g, E(0) =1, (22)

m=0

where Loy, L1,m € C.

Theorem 12 The solution to (22) is isometric if and only if there exist € R, a € R and
B € C such that

1 . s )
LO,O = —E'BP tie, Lo’l = ﬂ’ LI,O = __6105, Ll,l = e'l,o - 17

LO,m = Ll,m = 0, m > 2.

In that case the solution is automatically unitary.

Proof. The symbol of the solution to (22) is given by

Uy

¢(€,m) = exp { Z Lo,m (1j0,, £™) + Z Li,m (Ljo,5 0 6’")} (23)

m=0
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Obviously, the function 1 — ét(g ,m) is extended to an L2-function on the complex
Gaussian space (Eg, v). Then, a simple computation yields

Ei(€,2) Ee(n, 2)

=exp{

(Loo + Loo)t + Z Lo,m (1j0,4), &) + Z Lo,m (1j0,4), ™)

m2>1 m2>1 }
X exp{ <5, €+ Limlpye™

> + <z, n+ Z L1,m1[o,t]77m> }
m2>0
By integration with the formula (17) we obtain

m>0 _

/ 5, 2) Buln, 2) v(dz)
.

C

= exp {(Lo,o + m)t +

Z Lo,m (10,4, &y + Z Lo,m (1j0,4)5 nm) }

m2>1 m>1

X exp{ <E + Z Ly mlp €™, n+ Z Ly mlp,gn™
m>0

> } ) (24)
m2>0
By Theorem 11, a necessary and sufficient condition for Z; to be isometric is that (24)

is equal to e&m for all £, € Ec. To this end we may equate coefficients of {™n"
inside the exponential function. From the constant terms we obtain

Loo + Loo + L1,0L1,0 = 0.
Observing the coefficients of £ and 7, we obtain

(25)
—I—Jo_,l_ + L1,0 + E:Ll,() =0, (26)
Loi +TL10+LioLiy =0,
which are mutually equivalent. From the coefficients of {n we have
Iig+ILii+Li1Lii =0. (27)
From the coefficients of £™ and n™ with m > 2,

Lom + LimL1o =0, (28)

Lom + L10L1,m =0,

which are mutually equivalent. From the coefficients of £™7 and {n™ with m > 2,
Lipm+LimLiy =0,

(29)
Ll,m + le,m = 0,
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which are mutually equivalent. Finally, from ¢™7™ with m,m’' > 2, we have
Ll,leyml =0. (30)

The desired conditions follow from identities (25)—(30). In that case it is easily ver-
ified that the solution Z; satisfies the second identity of Theorem 11, and hence is
unitary. |

The above result is also valid when the coefficients Ly, ,,» are continuous func-
tions in t. The case where L,, ,,» are bounded operators acting on an initial Hilbert
space can be discussed with slight modification, while Theorem 12 is the case of the

initial Hilbert space being C. In that case L means the adjoint operator of L. It seems

convenient to introduce W = 1 + L; ;. It then follows from (27) that WW =1,ie.,
W is an isometry. Then, arranging identities (25)—(30), we obtain the following

Theorem 13 Assume that L,, n, are bounded operators on an initial Hilbert space. Then,
the solution to (22) is an isometry if and only if there exists an isometry W on the initial
Hilbert space and the following relations hold:

Loo + Loo+ L1,0L10 =0,
Loy = —L1,oW,
Lyz=W-1,
CLom+Limlip=0, m>2,
LinW=0 m>2,
LimLi g =0, m,m’ > 2.
By a pararell discussion for =] we see that the solution to (22) is unitary only

when W is a unitary operator. In that case, the six conditions in Theorem 13 are
reduced to

Loo + Loo+ LioLip =0,
Loy = —Li oW,
Ligz=W-1,
Lom=Lim=0, m>2

Hence we have

Theorem 14 The solution to (22) is unitary if and only if there exist a unitary operator W,
a selfadjoint operator H, and a bounded operator L on the initial Hilbert space such that

LO,O = -—% Lf+ iH, LO,l = L, LI,O = -—Wf, L1,1 =W — 1,

LO,m = Ll,m =0, m > 2.
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In particular, the solution to (22) can be unitary (on the original Fock space) only
when the coefficient is of the form:

L; = Ll,la:‘at + Lo,lat + L1,0(1: + LO,O-

In that case, the corresponding normal-ordered white noise differential equation is
equivalent to a quantum stochastic differential equation of Hudson-Parthasarathy
type, see also [20], [21]. Thus, Theorem 14 reproduces the famous unitarity condition
of Hudson and Parthasarathy [12].

The above argument does not go well when the coefficient {L;} contains higher
powers of creation operators. In fact, the symbol of the solution Z; contains a higher
powers of ) in such a way that L

Ei(&,n) = exp { (& m) + Z Lim (10,4, 1'€™) }
lm

Hence, contrary to (23), there is no way to extend the function n ét(f ,m) to an
L?-function on Eg. Furthermore, in that case unitarity of the solution should be
discussed along with a Hilbert space different from the original Fock space I'(L%(R))).
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