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Abstract

A solution to the heat equation associated with the Lévy Laplacian is
studied by means of nuclear spaces of infinite dimensional entire func-
tions. In particular, evolution of positive distributions and relation to the
quadratic quantum white noise are discussed in a unified manner.

1 Introduction

In the famous books [17], [18] P. Lévy introduced and studied an infinite dimen-
sional generalization of the classical Laplace operator:
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This operator, called the Lévy Laplacian, possesses many peculiar properties
and has been studied by many authors from various aspects. For example,
formulating as a differential operator acting on functions on a Hilbert space,
Feller [10], Polishchuk [28] and others (see the references cited therein) studied
differential equations such as boundary problems in detail and Obata [19] gave
a group-theoretical characterization. In recent years, more attention has been
paid to the Lévy Laplacian acting on functions on a nuclear space for its rich
structure. A somehow unexpected relation to the Gross Laplacian was found by
Kuo—Obata-Saito [15]. A connection between Yang-Mills equations and heat
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equations associated with the Lévy Laplacian, first pointed out by Aref’eva—
Volovich [6], has become an important research topic, see e.g., Accardi [1],
Accardi-Bogachev [2], Accardi-Gibilisco—Volovich [3]. Using a particular do-
main constructed from Lévy’s normal functions, Chung—Ji-Saitd [7] solved a
heat equation associated with the Lévy Laplacian by means of an analytic one-
parameter group e*“%, see also Saitd [29]. Recently, using an idea of Poisson
analysis, Saito—Tsoi [31] found a new space where the Lévy Laplacian is formu-
lated as a selfadjoint operator. In this direction further progress has been made
by Saité [30] and Kuo—Obata—Saito [16].

In this paper, we focus on the heat equation associated with the Lévy Lapla-
cian acting on functions on a real nuclear space E. Thus we are interested in
the Cauchy problem:

SR8 = ALF(,E),  F(0,6) = Fy(o) )

where the initial condition Fj is a certain function on a nuclear space E. When
Fy(¢) is the Fourier transform of a measure p on E’' which is invariant under
a certain shift operator, a solution to (2) was explicitly obtained by Accardi—
Roselli-Smolyanov [5]. Another interesting function F'(t, ) satisfying the heat
equation was constructed by Obata [22] from a normal-ordered white noise equa-
tion involving the quadratic quantum white noises. The main purpose of this
paper is to show that the above two classes of solutions are obtained in a unified
manner without assuming that {z;, 2, ...} is an orthogonal coordinate system,
which is a traditional assumption in the definition of the Lévy Laplacian (1).
Furthermore, employing the recent framework of infinite dimensional holomor-
phic functions due to Gannoun-Hachaichi—Ouerdiane-Rezgui [11], we obtain an
evolution of a positive distribution driven by the Lévy Laplacian. It is noted
that our approach is independent of Gaussian analysis and seems appropriate
for analysis of the Lévy Laplacian.

2 Preliminaries

In this section we assemble some basic notation and results on entire functions
on nuclear spaces, for more details see [11].

2.1 Entire functions with #-exponential growth

We begin with a general notation. For a complex Banach space (B, || - ||) we
denote by H(B) the space of entire functions on B, i.e., continuous functions
B — C whose restrictions to every affine line of B are entire holomorphic on C.
We classify such entire functions by growth rates. Let # be a Young function,
ie, 0 : Ry — R, is a continuous, convex, increasing function such that 6(0) = 0
and

lim — = co. (3)



For m > 0 we define the space of entire functions on B with 8-exponential growth
of finite type m by

Exp (B,8,m) = {f € H(B); || fllo,m = sup [f(w)le™*"I*D < oo},
u€EB

If 6 is a Young function,

" (x) = sup (tz - 6(t)), x>0, (4)
>0

becomes also a Young function. This is called the polar function of 8 and plays
a role in duality argument.

2.2 Nuclear spaces of entire functions

Let N be a complex nuclear Fréchet space whose topology is defined by a family
of increasing Hilbertian norms {| - |,, p € N}. The space N can be represented
as N = NpenNp, where N, is the Hilbert space obtained by completing N with
respect the norm | - |,. Denote by N_, the topological dual space of N,. Then
by general duality theory the dual space N’ can be expressed as N' = U,enN_,.
Because of the nuclearity of the space N, the strong topology of N’ coincides
with the inductive limit topology.

It is easily verified that {Exp (N_,,8,m)} forms a projective system of Ba-
nach spaces as p — oo and m | 0. We then define the space of entire functions
on N' with 0-exponential growth of minimal type by

Fo(N)y= () Exp(N_p,0,m). (5)
peEN,M>0

Similarly, {Exp (N,,8,m)} forms an inductive system of Banach spaces as p —
oo and m — oo, and we define the space of entire functions on N with 8-
exponential growth of (arbitrarily) finite type by

Go(N)= | J Exp(Np,6,m). (6)
peEN,Mm>0
If 8 and ¢ are two Young functions which are equivalent at infinity, i.e.,
lim, o0 8(x)/(x) = 1, we have Fyp(N') = F,(N') and G4(N) = G, (N).
2.3 Taylor series map

Each f € Fy(N') and g € Gy(N) admit Taylor series expansions:

f@) =@ ), reN,
n=0

96 = (gn, €57,  EEN.
n=0



Characterization of these spaces in terms of Taylor expansion is useful. The
correspondences f — f = (fn)n>0 and g = § = (gn)n>o0 are called the Taylor
series map (at zero) and denoted by T.

Given a Young function 8, we put

o(r)
9, = inf
r>0 1"

Then we define the Hilbert space Fy n,(Np) by

F97m(Np) = {f: (fn)nZO; fn € Np®n7 ||ﬂ|97p7m < OO},

where Np®" is the n-fold symmetric tensor power of IV, and
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n=0

Then, equipped with the projective limit topology,

Fy(N) = ﬂ Fo,m(Np)
peEN,m>0

becomes a nuclear Fréchet space. In a similar manner, one defines

Gom(N_p) = {(f = (®n)n>0; Pn € NEP ”5”9,—17,771 < oo},

Zp
where
oo
IBI15,— . = Y (n160)*m" (@],
n=0
Then we put

Go(N') = U Gom(N-p),

pEN,m>0

which is equipped with the inductive limit topology. By definition the power
series spaces Fy(N) and G¢(N') are dual each other with the canonical bilinear
form defined by

—

(8, 1) = n!(®n, fo)- (7
n=0

Theorem 1 (Gannoun—Hachaichi-Ouerdiane—Rezgui [11]) The Taylor
series map T induces two topological isomorphisms:

TIfe(N,) —)Fg(N) and Tlgg*(N) —)Ge(Nl), (8)

where 8% is the polar function of 6.



2.4 Laplace Transform

Let F;(N') denote the strong dual space of F4(N'). We shall obtain its concise
description.

Let ® € F;(N'). By the adjoint map 7* : Fj (N) — Fy(N'), which is also
an isomorphism by (8), we obtain 7*71® € Fy(N). On the other hand, Fy (N)
is identified with Gy(N') through (7). Let & = (®,,) € Gy(N') be the element
corresponding to 7*~1®. Then, for f € F»(N') we have

B(f) = (&, f) = Zn' B, fn), (9)

n=0

where f = (f,) =TF.

For £ € N we define the exponential function e : N’ — C by ef(x) = e{®&),
x € N'. Tt is proved with the help of (3) that e¢ € Fy(N') for all £ € N. The
Laplace transform of ® € F;(N') is defined by

(LD)(E) = B() = B(F), EE€N. (10)

Since the Taylor expansion of ef is given by

0 ®n
ef(z) = el®8) = Z <.7:®n, %r> ;

n=0

we have
E®"
et = (16 0.0,

Therefore, by (9) we see that (10) becomes

o0

<£¢)<a>=é<5):2n!< > Z<<1>me®">

n=0
Thus, taking Theorem 1 into account, we come to the following
Theorem 2 (Gannoun-—-Hachaichi-Ouerdiane—Rezgui [11]) The Laplace
transform induces a topological isomorphism
L:FG(N') = Go-(N), (11)

where 8% is the polar function of 6.

2.5 Integral representation of positive distributions

We assume that N = E + iFE, where E is a real nuclear Fréchet space. Then
an element f € Fp(N') is called positive if f(x +i0) > 0 for all z € E'. We
denote by Fp(N')4 the set of positive functions. An element & € F;(N') is
called positive if ®(f) > 0 for all f € Fo(N'),. The cone of positive elements
in F;(N') is denoted by Fj(N')1. We always assume that E’ is equipped with
the Borel o-field.



Theorem 3 (Ouerdiane-Rezgui [27]) For each ® € F}(N')1 there exists a
unique positive Radon measure i = g on the space E' such that

o(f) = . f@+i0)du(x),  fe Fo(N'). (12)

In that case there exist ¢ > 0 and m > 0 such that the measure p is carried by
the space E_, and

/ efmlel-a) g (x) < oo, (13)
E_q

Conversely, such a positive finite measure u on the space E' defines a positive
distribution ® € F5(N'); by formula (12).

Note that the Fourier transform of ug and the Laplace transform of & is
related as

Fuua(6) = / 60 dug(z) = B(e) = LB(iE),  E€ B (14)

7

3 The Lévy Laplacian

3.1 Definition in general

Let E be a real nuclear Fréchet space as before. A function F : E — R is
called of class C?(E) if there exist two continuous maps ¢ + F'(¢) € E' and
& F' (&) € L(EE"), € € E, such that

F(§+m) =F(&+ (F'(§),n+ % (F"(&n,m +em),  &neE,

where the error term satisfies:

(T
i €( ‘n)
t—0 ¢2

=0, nekE.

In view of the nuclear kernel theorem L£(E,E') = (E & E)' = B(E, E) we use
the common symbol F"'(£) for all:

(F"(&n,m) = (F"(&),n®mn) = F"(§)(n,n) = DyD,F(§),
where D, is the Fréchet derivative in the direction 7, i.e.,

(D,F)(g) = Jim ZEXHVZFE),

A C-valued function F : E — C is a member of C*(E) if so are its real and
imaginary parts. In that case, F'(€) € N' and F"(£) € (N @ N)'.



Fix an arbitrary infinite sequence {e,}22; C E. We shall assume additional
properties later, though. The Lévy Laplacian is defined for F' € C?(E) by

N
ALF(¢) Z (F"(&)en,en), E€BE,

whenever the limit exists. Let D (E) be the space of all F € C%(FE) for which
AL F(£) exists for all £ € E. It is noted that the Lévy Laplacian depends on
the choice of the sequence {e,} as well as its arrangement.

3.2 Cesaro mean

We prepare a notation. Let {e,}>2, C E be an arbitrary sequence as in the
previous subsection. Recall that N = E + {E. We denote by (E ® E)} (resp.
(N©®N)p) theset of all f € (E® E) (resp. f € (N ® N)') which admit the
limit

1 N
(flr = lim = ijl<f, en ® €n)-

Although not explicitly written, (E ® E)} and (N ® N)} depend on the choice
of {e,}. Obviously, f € (N ® N)} if and only if its real and imaginary parts
belong to (E ® E)f.

By definition we have the following

Lemma 4 A function F € C*(E) belongs to Dr(E) if and only if F"(§) €
(NQN), for all £ € E. In that case,

ApF(§) = (F"()w-

Let E} (resp. Njp) denote the set of all @ € E' (resp. a € N') such that
a®a€ (E®E); (resp. a®a € (N ®N);), Le., the limit

1

— i A 2
(a®@a)g, = R N (a,en)

WE

n=1

exists. For areal a € E} we also write ||a]|Z = (a®a). It is clear that E} C N}
but N; = E} + iE} does not necessarily hold.

Lemma 5 For a,b € E} it holds that

lim sup — Z Ha® b, en ®en)| < |lallz]lbllz-

N—oo nel



Proof. Note the Schwartz inequality
1/2

N N 1/2 N
Z |<Cl & b, €n & €n>| < (Z(aa en>2> <Z<b7 en>2> >

n=1

from which the assertion follows immediately. m

Lemma 6 Let a,b € Ef.
(1) Ifatbe Ep, then [la+bllz < la||z + [[b]|z-
(2) IfIIbllL =0, thena+b € E} and |la + || = ||al|r.

Proof. We note the obvious identity:

N N N N
Z(a +b,en)? = Z(a,en)2 + Z(b,en)2 +2 Z(a ®b,e, @ ep).

n=1 n=1 n=1

Then the assertions are immediate from Lemma 5. m

3.3 Eigenfunctions

Lemma 7 Let p € D (E) with p'(§) € Nj for all ¢ € E. Then e € Dy (E)
and

Ape!® = (") + (' (&) ® P/ (E)1) "9
Proof. The assertion is immediate from
D? e?® = [(p"(€)en, en) + (0'(€), en)?} P,

which is verified by a direct computation. m

Now we show two typical classes of eigenfunctions of Aj.
Proposition 8 (1) For a € N} it holds that
Apel®) = (a@a)y el (15)

(2) Let f € (N & N)p be symmetric. If ((f 01 &) @ (f @1 &)L = 0 for all
¢ € E, it holds that

ApelfE88) — 911y, o(F:808)

Proof. (1)is immediate from Lemma 7. We prove (2). Put p(§) = (f,£R¢).
Note that

(P'(&)sen) = 2f,E® en) = 2(f ®1 & €n),
where f ®; £ is constraction of degree one and is defined as above. Then

PPN =4Hf®EQ(f@1 &)L =0

by assumption. On the other hand, (p"(£)); = 2(f)r. Hence the assertion
follows from Lemma 7. m



3.4 Derivation property

It is widely known as one of the peculiar properties that the Lévy Lapalacian is
a derivation, i.e., behaves like a first order differential operator. This property,
however, depends on the domain as shown in the next proposition. A similar
fact was already pointed out by Accardi-Obata [4].

Proposition 9 Let F1,F, € Dp(E). If (F' (&) @ G'(€))r = 0 for all € € E,
then

AL(F1Fy) = (ALF)Fs + Fi(ALF).

The proof is straightforward. A function H € C?(E) is called Lévy-harmonic
it ApH(E) =0 for all £ € E. Then we have immediately the following

Corollary 10 Let F € Dp(E) and H a Lévy-harmonic function. If (F'(£) @
H' (&), =0 for all £ € E, then

AL(FH) = (ALF)H.

4 Heat Equation

4.1 Cauchy problem

In general, the Cauchy problem associated with the Lévy Laplacian is stated as
follows:

OF

5 = 1ALE F(0,8) = Fo(¢), (16)
where v € C is a constant, the initial condition Fj is a suitable function on E
and ¢ runs over an interval including 0. Note that (16) involves both heat type
and Schrodinger type equations associated with the Lévy Laplacian.

The formal solution F' of (16) is given by

o

FLe = 2 m)e = Y D agm)e©.

n=0

However, the convergence is always in question. For particular initial condi-
tions the convergence is proved by Chung-Ji-Saité [7]. We do not go into this
direction.

As a general remark we only mention the following

Proposition 11 Let p,q € Di(E) and assume that

ALP(&) =q, ALQ(f) = 03

and

P epE =0 odE)L=0, () =5



where a, 3 € C are constant numbers. Let v € C be another constant. Then,
Fy(§) = F(t,§) = eMtAep@td® 4 e R, ¢€B, (17)

satisfies the Cauchy problem associated with the Lévy Laplacian:

O F(,8) = ALF(LE),  F(0,6) = OO, (18)

Proof. By Lemma 7 we have
A ePE)+a(d)
= (") + (@"©))r + (' (&) + ' (€)) ® @'(€) + ¢ (€)))1) e"F4E).
By assumption we have

AP+ = (o 4 g) eP(O)+a(&)
from which the assertion is immediate. m

In order to check the condition in the above theorem such results as in
Lemmas 5 and 6 are useful. Typically we take

p(§) =(f,£08),  q)={a8),

and consider (17), see Proposition 8. From the next subsection on, we shall
show that superposition of (17) gives a solution to the Cauchy problem (16)
with an interesting initial condition.

4.2 Shift-invariance

Recall that the Lévy Laplacian Ap depends on an arbitrarily fixed sequence
{en}ie; C E. We now consider the shift operator S associated with this se-
quence. Assume that there exists a continuous operator S : E — E such that
Sen = epy1 for all n. It would be more natural to do the converse. Given a
continuous operator S and a fixed e; € E, we may construct the sequence {e,, }
by e, = 57 Le;.

Proposition 12 The Lévy Laplacian is invariant under the shift S, i.e.,
Ap(FoS)=(ApF)oS, F e Di(E).
Proof. By a direct computation we have
((F'08)"(§)en, en) = (F"(S€)Sen, Sen) = (F"(SE)ens1, €nsy1)-

Since the Cesaro mean is invariant under the shift, the assertion follows. m

10



4.3 Evolution of positive distributions
For 2 € E' we put ¢,(€) = X, Then, if z € E}, we have
AL%:(&) = —(iB ®x>LQx(£) = —||£U||%qx(§)

We shall consider a superposition of such g,.
Note that the adjoint S* is a continuous operator from E’ into itself.

Theorem 13 Let ®y € Fy(N')+ and p the corresponding Radon measure on
E', see Theorem 3. If p is invariant under S*, then x € E} for y-a.e. x and

Fi(&) = F(t,6) = / e tlelieheau(e), ¢eE, t>0, (19)

is a solution to the Cauchy problem:
OF

CL=ALF, R0, = LBo(iE) = / e Dduz). (20)

Proof. For simplicity we put
G(z) = (z,e1)?, T € E.
Then G € L'(E', 1). In fact, taking Theorem 3 into account, we note that

[ 16@ldute) = [ (o exyetimii-a etmii-n gy

E e
< / |x|2_q|€1|Ze—0(m|w|—q)69(m|wl—q) dp(z). (21)

—-q

Since sup,> t?e~(mt) < oo by the assumptions on 6, (21) is finite as desired.

Now we recall the assumption that p is invariant under the measurable trans-

formation S*. Then applying the ergodic theorem (see e.g., [9, Chapter VIII]),

we see that

N
Gla)= Jim < 3 G5 Va)
n=1

converges for y-a.e. z € E'. Moreover, the convergence holds also in the L-
sense and GG € L' (E’, ). On the other hand, since

N N N N
D GS Iz =Y (S Vg e) = Y (2,87 ) = D (xen),
n=1 n=1 n=1 n=1

we have G(z) = (x ® #)y = ||z||}. Consequently, a measurable function z +»

||lz||3 is defined p-a.e. x € E' and belongs to L'(E’, u). Then, one can check
easily that (19) is a solution to (20) by the Lebesque convergence theorem. m

In the usual definition of Ay, the sequence {e,} C E is assumed to have
some particular properties, typically, to be a complete orthonormal basis for a
certain Hilbert space. We note that in Theorem 13 such additional assumptions
are not required. However, the idea of proof is essentially due to Accardi—
Roselli-Smolyanov [5] and Accardi-Obata [4].

11



4.4 A relation with quadratic quantum white noises
In this subsection we take a concrete nuclear triple:
E=SR)Cc H=L*R)C E =S'(R).

As before, we set N = E +¢E. For s > 0 consider

PelE) = (L6, &) = / €w?idu, E€E.

Then,
1 N s 2
I = Aol = 4 fim S ([ entwrcoan)
and
1 X e
Apps(€) = 21, q7)r =2 ]\}E)noo N Z/o en(u)? du,

where 7 € §'(R x R) is the trace. With the help of Proposition 11 we come to
the following

Lemma 14 Let s > 0. If |[1j9,¢|lz =0 for all £ € E and (1)p 7)1 = s, then
fie) =e*tet® teR, (€E,

satisfies the heat equation:

0
aft(f) = ALft(f)-

Let {a¢, af }+cr be the quantum white noise, namely, a; is a continuous linear
operator on Fp(N') defined by

aget = &(t)et, £eN, teR,

and aj is the dual operator. Consider the normal-ordered white noise differential
equation

d=

dt
This is a “singular” quantum stochastic differential equation beyond the tradi-
tional It6 theory. By general theory [21] there exists a unique solution to (22)
in L(Fg(N"), F5(N")). Let {¥;} C F;(N') be the “classical” stochastic process
corresponding to the “quantum” stochastic process {Z;} defined by ¥; = Z;e°,
where €%(£) = 1. Then by a direct computation we have

e® =LU,(0), s>0, L€E.

=(a?+a?) o=, EZ(0)=1I (22)

Summing up,

12



Theorem 15 Let {¥,} C F;(N') be the classical stochastic process correspond-
ing to the quantum stochastic process determined by (22). Let s > 0. Assume
that |[1j0,s€llz = 0 for all § € E and (19 4)1 = 5. Then

Ft(g) = eQSt‘C‘IjS(g)7 t 2 07 5 S E7

satisfies the heat equation:

JF=ALF, F0.6) = L) (23)

Let T be a compact interval equipped with a finite measure v. If the as-
sumption in Theorem 15 is true for all s € T, then

Fie) = /T LT (E)v(ds),  t>0, £€E,

satisfies the heat equation (23) with an initial condition:

F0.6) = [ .9 va).

This draws out an essence of [22, Theorem 6].

Remark 16 Recall that for & ¢ F}(N'), the Laplace transform £& belongs to
Go-(N). In particular, £L& € C?(E). Let Dy, denote the space of all & € F;(N')

such that L& € Dy (E) and AL LP € Gg-(N). Then the Lévy Laplacian Ay is
defined by

AL‘ﬁzﬁleLﬁq’, $ e Dy.

This Ay is essentially the same as the Lévy Laplacian formulated within white
noise theory, see e.g., Kuo [14] and references cited therein.
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