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An operator on a Fock space is considered as a non-linear and non-commutative
function of annihilation and creation operators at points {a:,a};t € T}. The
derivatives with respect to a: and a}, called respectively the annihilation- and
creation-derivatives, are formulated within the framework of quantum white noise
theory. We prove the differentiability of an admissible white noise operator and
give explicit formulae for the derivatives in terms of integral kernel operators.
The qwn-derivative is a non-commutative counterpart of the Gross derivative in
stochastic analysis.
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1. Introduction

In this paper we focus on an operator on the (Boson) Fock space I'(H)
with H = L?(T,v), where T is a topologlcal space equipped with a o-finite
Borel measure v. A fundamental role is played by the annihilation and
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creation operators at a point, denoted by a; and a;, in many questions
arising from quantum stochastic analysis, infinite dimensional harmonic
analysis, quantum field theory and so on. The pair {as,af;t € T} is
sometimes called a quantum white noise field on T. However, they are not
well defined only within the framework of the Fock space. In literatures
we find two formulations. One is to consider a; and a; as unbounded-
operator-valued distribution by smearing t; the other is to formulate them
as continuous operators on a certain Gelfand triple (E) C T'(H) C (E)*
without smearing t. The second approach is along with the classical Hida
calculus and has been considerably studied under the name of quantum
white noise theory [4, 8, 17].

We recall that every white noise operator admits a Fock expansion,
i.e., Z € L((E), (E)*) is decomposed into an infinite sum of integral kernel
operators: :

o '
E= z El,m("’l,m)v (1'1)

lym=0
where

<= * *
Et,m (K1,m) =/ Kim{S1, 381,10 ytm)ay, ... a5
Ti+m \

X ag, - a5, v(dsy) ... v(ds)u(dty) ... v(dtm), (1.2)

and K, ,, is a kernel distribution. One may accept (1.2) as a “polynomial”
in a; and a, hence (1.1) as a function of them: E = E(as,a;; t € T'). Thus
we are naturally led to a kind of functional derivatives:
62 6=
- 5&? 3}:’7
These motivated us to study the annihilation- and creation-derivatives.

The main purpose of this paper is to formulate the annihilation- and
creation-derivatives (together called qun-derivatives), and to study qwn-
differentiability of a white noise operator. In fact, a general white noise
operator is not qwn-differentiable and there is difficulty in formulating (1.3)
in a direct manner. Our strategy is to establish an operator version of Gross
derivative (the derivative along H) of an admissible white noise function
(see e.g., [1]). '

The paper is organized as follows. In Section 2 we prepare some notation
in white noise theory. We introduce in Section 3 the spaces of admissible
(test and generalized) functions as

(Ey)cGCI(H)CG*C(E)

Dy E D:‘H = (1.3)
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and discuss an admissible white noise operator, i.e., a continuous oper-
ator from G into G*. In Section 4 we give the definition of the qwn-
derivatives DCiE for a white noise operator 2. Then we prove the qwn-
differentiability of an admissible white noise operator and obtain formulae
for the annihilation- and creation derivatives (Theorem 4.4). This result
follows from the qwn-differentiability of an admissible integral kernel op-
erator (Theorem 4.1) and the Fock expansion of an admissible white noise
operator (Theorem 4.3).

The notion equivalent to an admissible white noise function was first in-
troduced by Lindsay-Maassen [13] and has been studied in many literatures
for different purposes, e.g., Aase-Qksendal-Privault-Ubge [1], Belavkin
[2], Benth-Potthoff [3], Grothaus—Kondratiev-Streit [5], Ji [7], Lindsay-
Parthasarathy [14]. We hope that our new idea of qwn-derivative opens
a new direction in the study of Fock space operators. Further study and
application will be discussed in [10].

2. White Noise Theory
2.1. Underlying Gelfand Triple

Let T be a topological space equipp‘ed with a o-finite Borel measure v. Let
H = L*(T,v) be the (complex) Hilbert space of L?-functions and the norm
is denoted by |- |,. Let A be a selfadjoint operator (densely defined) in H
satisfying the conditions (A1)-(A4) below.

(A1) inf Spec(A4) > 1 and A™! is of Hilbert-Schmidt type.

Then there exist a sequence

\ o0
1<h<h<h<..., [[47Es= 272 <o,
Jj=0

and an orthonormal basis {e;}32, of H such that Ae; = Aje;. Forp€e R
we define

1612 = 4762 = Y 0|(¢, e;) P, €€ H.
j=0

Now let p > 0. We put Ep, = {{ € H; |{|, < 00} and define E_, to be the
completion of H with respect to |-|_,. Thus we obtain a chain of Hilbert
spaces {Ep; p € R} and consider their limit spaces:

S4sT)=E= p;ci];gm E,, | Si(T)=FE* = ix;(llgom E_,.
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These are mutually dual spaces. Note also that S '4(T") becomes a count-
ably Hilbert nuclear space. Identifying H with its dual space, we obtain a
complex Gelfand triple:

E=84(T)C H=IL*T,v) C EB* = S4(T).
As usual, we understand that S4(T') and S (T') are spaces of test functions
and generalized functions (or distributions) on T, respectively.

For white noise theory S%(T") must contain delta functions. But this is
not automatic and we need further assumptions:

(A2) For each function £ € 54 (T') there exists a unique continuous func-
tion £ on T such that £(t) = £(t) for v-ae. t € T.

Thus Sa(T) is regarded as a space of continuous functions on T and we
do not use the exclusive symbol £. The uniqueness in (A2) is equivalent to
that any continuous function on T which is zero v-a.e. is identically zero.

(A3) For each ¢ € T the evaluation map 0 € E(t), £ € SA(T), is a
continuous linear functional, i.e., &; € S} (T).

(A4) The map t — §; € S4(T), t € T, is continuous with respect to the
strong dual topology of &% (T').

See [17] for more discussion on these assumptions.
The canonical C-bilinear form on E* x E is denoted by (-, -). In other
words, we set

(z, &) = Za,ﬂ, for :c.—ZaJe,, = Zﬁ]e]’ aj,B; € C.

3=0 j=0

We also write (-, -) for the canonical C-bilinear form on H. Let J be the
conjugate operator defined by

0 \ 00
JE = Za]-ej for {= Zajej € H.
=0

j=0
It then follows that

€2 = Zlam / €)1 w(de) = (JE, €).

The real parts of E, H E* are subspaces invariant under the action of J
and are denoted by Eg, HR and EgR, respectlvely Then we obtain a real
Gelfand triple:

Ep C Hg C Ep. (2.1)
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(These are real vector spaces but not necessarily spaces of R-valued func-
tions.)

Remark 2.1. A prototype of our consideration is the case where T = R
with Lebesgue measure v(dt) = dt and

d? d\* d
—_ 2—-—-—: —_— _— .
A=1+8"- (t+dt) (t+dt)+2

In this case S4(T') coincides with the space of rapidly decreasing functions,
which is commonly denoted by S(R). Recall also that

ei(t) = (Vr2ij)) P H e 2, j=0,1,2,---,

where H; is the Hermite polynomial of degree j, constitute an orthonor-
mal basis of L*(R) and Ae; = (2j + 2)e;. This prototype is suitable for
stochastic processes, where R plays a role of the time axis. Our general
framework allows to take T' to be a manifold (space-time), a discrete space
or even a finite set. k\

~

2.2. Hida—-Kubo-Takenaka Space

Let E, be the Hilbert space defined in §2.1, where p € R. We consider the
(Boson) Fock space:

I(Ep) = {¢= (Fa)ozos fn € BE™ 1915 =D nt| fulh < oo},
n=0

which is essentially a direct sum of symmetric tensor powers of E, and the
weight factor n! is for convention. ‘Having obtained a chain of Fock spaces
{T'(Ep) ; p € R}, we set

(E) = pﬁgm T(Ep),  (B)" =indlimI(E_p).
Then we obtain a complex Gelfand triple:
(E) cI'(H) c (B)", (2.2)

which is referred to as the Hida—~Kubo-Takenaka space [11].
By definition the topology of (E) is defined by the norms

NBI2=>"nful2, é=(fa), pER.

n=0
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On the other hand, for each ® € (E)* there exists p > 0 such that ® €
I['(E-p). In this case, we have
- [o0)

22, =Y nl|Fal?, <00, &= (F).

n=0

The canonical C-bilinear form on (E)* x (E) takes the form:

(8, ) =Y nl{Fn, fa),  &=(Fa) €(B), ¢=(fn)€(E)
n=0
Here we recall two important elements of (E)*.
(a) White noise. By assumption (A3),

Wt=(0,5t,0,...), . tET,

belongs to (E)* and is called a white noise. According as T represents time
or space, the family {W;; t € T} C (E)* is called the white noise process
or white noise field on T.

(b) Ezponential vector: For z € E* an ezponential vector (or a coherent

vector) is defined by
1®2 z®n
d)z = (1,.’12,-—2-'!-—,...,—;;3“,...) .

Obviously, ¢, € (E)*. Moreover, ¢¢ belongs to (E) (resp. I'(Ep)) if and
only if £ belongs to E (resp. E,). In particular, ¢ is called the vacuum
vector.

2.3. White Noise Operators '

In general, a continuous operator from (E) into (E)* is called a white noise
operator. The space of all white noise operators is denoted by L((E), (EY*)
and is equipped with the bounded convergence topology. It is noted that
L((E),(E)) is a subspace of L((E), (E)*).

For each t € R the annihilation operator a; is uniquely specified by the
action on exponential vectors as follows:

ade =E(t)e,  E€E.

It is well known that a; € LZ((E), (E)). The creation operator is by defini-
tion the adjoint a} € L((E)*, (E)*). We see from (2.2) that the composition
a}, ...aas, ... az, is well defined and belongs to L((E), (E)*).

m
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Let I,m > 0 be integers and K, € L(E®™, (E®')*). We define
Kl = Sny10 (I, ® Ki ), (2.3)

where I, : E®" — E®" is the identity and Sp4; : E®(+) o E8(nH) the
symmetrizing operator. An integral kernel operator Z; (K m) is defined
by the action ¢ = (f,) — (g») given by

n+m
gn=0, 0<n<y In+1 = ( oy )Klmfn+ma n>0.

It is known that Z;,,,(Ki,m) € L((E), (E)*).

Remark 2.2. We have L(E®™, (E®)*) = (E®(+m))* by the kernel the-
orem. For K; , € L(E®™,(E®")*) let &;,m be the corresponding element,
ie, °

<’€l,m) 77®l ® €®m> = (Kl,m£®ma "’7®l> ’ &neE.

We then easily understand that (1.2) in Introduction is a descriptive ex-
pression for Z; ,, (Ki,m). In many literatures the notation 5 ,,, (k1,m) is used
for Zy m (Ki,m), see e.g., [17].

For a white noise operator £ € L((E), (E)*) the symbol and the Wick
symbol are defined by

E,n) = (Ede, 6 E,m) = (Ede, dr) e €™, gneE,

respectively. A white noise operator is uniquely specified by the symbol or
by the Wick symbol. For an integral kernel operator we have

El,m(Kl,m)A(g’ 77) = (Kl,m€®m, n@l)e<£,q),
Eim(Kim) (€,m) = (Kl,m£®m,‘ n@l)_

2.4. Gaussian Realization

Based on the real Gelfand triple (2.1) we define a Gaussian measure pu by
its characteristic function:

e {-3 168} = [ SOy, e n

R

The celebrated Wiener-It6 decomposition theorem says that L*(Eg,p) is
unitarily isomorphic to I'(H) through the correspondence:

bie) = 0002 o g (1650.), ¢en
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Taking (2.2) into account, we regard (E) as a subspace of L?(E*, u). In this
sense an element of (E) is called a test white noise function and, accordingly,
an element of (E)* is called a generalized white noise function.

3. Admissible White Noise Operators
3.1. Admissible White Noise Functions
For p € R we set

[ol2 = nle®|fal3, ¢ =(fa) € T(H).

n=0

For p > 0 we define G, = {¢ = (f») € T'(H); [ ¢ll, < oo} and G_, to be
the completion of I'(H) with respect to ||-]|_,. Then {G,; p € R} form a
chain of Hilbert spaces satisfying

G = projlimG, C G, C §o = I(H) C G, C ¢* = indlimG_p.

p—00

Note that G is a countable Hilbert space but not necessarily a nuclear space
(G is nuclear if and only if H is finite dimensional), and that G and G* are
mutually dual spaces.

Lemma 3.1. For any pair p, q satisfying 0 < p < —qlog|| A~ ||op we have

holl, <ligll, ond |2l <H2l,,

where ¢ € I'(H) and & € (E)*. (The norms can be oo, which is understood
in a usual way.)

The proof is immediate from tile definition of the norms. Then, we have
(EycGgCT(H)CG" C(E). (3.1)

An element in G (resp. G*) is called an admissible test (resp. generalized)
function. The canonical C-bilinear form on G* x G is denoted by ((, -)) too.

3.2. Admissible White Noise Operators

We note from the inclusion relations (3.1) that £(G,G*) is regarded as a
subspace of L((E), (E)*). A white noise operator belonging to the former
space is called admissible. For an admissible operator we can find a pair of
real numbers p > g such that E € £(G,, G,)-
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Proposition 3.1. Let K;,, € L(E®™,(E®)*). Then the integral kernel
operator 2y m(Kim) is admissible if and only if K; ,, € L(H®™, H®). In
that case, for an arbitrary g € R and r > 0 we have

l" El,m(Kl,m)¢ qu < c ” Kl,m ”op "l ¢ |I|q+7; )
where

’ (I+m)/2
C = er/2+ql—(q+r)m(ll,mlm)l/2 _Cf__/i "
er

and || Ki,m |lop stands for the Hilbert space operator norm. In particular,
El,m(Kl,m) € Ac(gq-l—m Gq)-

Proof. If & ,, (K}, ) is admissible, there exist a pair of real numbers p > ¢
and a constant C > 0 such that ‘

1Em(Kim)l, <Clél,, ¢€Gyp
Taking a particular ¢ = (0,...,0, f,0,...), one obtains easily

Cepm—ql

| Kiymfm g < i | fm lo s

which shows that K, € L(H®™, H®).
Conversely, suppose K, € L(H®™, H®). Forqe Rand ¢ = (f,) € G
we have by definition

(e 0]

_ n+m)\? o 2
i Eim)oly = 3o+ Dt (S e g o (02

n=0

Note from (2.3) that || K7, llop <{| Ki,m |lop. Then for any r > 0, (3.2) is
bounded by

[o o]
<N EKim lide Y @™ (4 m)! | frpm 3

n=0
% {sup (n +'l)~'(_" +'m)! e—2rn} e2ai—2(g+r)m (3.3)
n>0 n: n:
By an elementary calculus (see e.g., [17: Section 4.1]) we have
1 1 /2 Hm
sup (n + l) (n + m) e~2rn < erllmm € . (34)
n>0 n! n! er

Combining (3.3) and (3.4), we obtain the desired estimate. O
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3.3. Admissible White Noise Operators with Supports

-~ Let U C T be a Borel set with (U) > 0. Then, starting from the Hilbert
space LZ(U,v) we obtain the spaces of admissible functions which are de-
noted by

gU) cGp(U) C f(Lz(U, v)) =Go(U) cG_,(U) C g:(U).

We identify G, (U) with a closed subspace of G, = Gp(T') through the natural
inclusion L?(U,v) < L*(T,v). An element in G,(U) is called an admissible
white noise function supported by U.

A description of the inclusion G,(U) < Gp(T) is given in terms of tensor
product decomposition. We first recall the following fact whose proof is
standard and is omitted.

Lemma 3.2. Let T = U UUs U --- U Uy, be a partition into a disjoint
union of Borel subsets up to null sets. Then, the correspondence

$e > Py @ - ® Pgru,,, £ € L(T),
gives rise to a unitary isomorphism
Go(T) = Gp(U1) ® - ® Gp(Unm)
for allp € R.

Now let T = U UV be a partition, where »(U) > 0 and v(V) > 0
without loss of generality. It follows from Lemma 3.2 that

Gp(T) = Gp(U) ® Gp(V) - (35)

and ® — & ® ¢orv gives the canonical inclusion G,(U) < Gp(T).

With each continuous operator Z € L(G,(U), G4(U)), where we assume
p > q without loss of generality,‘ we associate an admissible white noise
operator = ® I according to the factorization (3.5), where I is the identity
operator on Gp(V). Summing up, for a Borel set U C T and a pair of real
. numbers p > q we have inclusions:

L(Gp(U),G4(U)) C L(Gp(T), Go(T)) C L((E), (E)")-

An operator in £(G,(U), G4(U)) is called an admissible white noise operator
supported by U. Whenever no confusion occurs we use the same symbol Z
forE®1. ‘

The concept of an admissible white noise operator with support is useful
in the study of conditional expectation and quantum martingale, see [7].
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4. Quantum White Noise Derivatives
4.1. Translation Operator

Since each ¢ € (E) is a continuous function on Eg, for any ¢ € Eg the
translation T¢¢ deﬁned naturally by -~

Ted(z) =p(z+(), =z€Eg. (4.1)

It is known [17] that T¢¢ € (E) and T; € L((E), (E)). However, (4.1) is
not applicable to a generalized function. By the Wiener-It6-Segal isomor-
phism, for ¢ = (f,) € (F) we have

[s o]

Te = ( > Ll <®m®mfn+m) , (42)

m!
nm. n=0

where ®, is the right m-contraction of symmetric tensor products. It is
then natural to define the translation operator by extending the right hand
side of (4.2). Namely, given ¢ € E* (hereafter we allow a complex ¢) and
® = (F,) € (E)*, we define T;® by the right hand side of (4.2) with
replacing fnym by Fnim, whenever well defined as an element in (E)*.

Proposition 4.1. Let ( € H and ® € G, with some p € R. Then, for any
q < p—log 2 it holds that T¢® € G, and T € L(Gp,G,)-

Proof. Let p,q € R. By definition,

2

n -+ m
Z ( Im! C®m®an+m .
nm: 0

17c2l; = Z nle?®

n=0

Applying the Schwartz inequality, we have

2 _ o — (n +m)!
17c2l; < Z"!ezq"( > e fzp(”'"’l(lﬁm)

o = (n!m))
< (3 0t myeim, +m|o)
m=0 .
oo o0
< (£ 5 eI mosmige) ap;
n=0 m=0

(e o]

=3 e Y Ly,

n=0 - m=0
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Given p € R, we choose g € R such that 2¢72(P~9) < 1 ie., ¢ <p-log V2.
Then we come to

exp (e~ |C|0)
el < SEEL nel,,
which means that T;® € G, and T¢ € L(Gp, Gy)- 0

4.2. Gross Derivative

Modelled after abstract Wiener space theory, we say that & € (E)* is
Gross differentiable if for any ¢ € H the translation T¢® is defined for
small |¢] < € and if

T2 -2 (4.3)

D¢ = lim

€—0 €

converges in (E)* with respect to the weak topology D¢® is called the
Gross derivative of ® in the direction (.

Proposition 4.2. Every ® = (F,) € G* is Gross differentiable and D¢ ® =
(n+1)¢®1Fny1)g. Moreover, D¢ is a continuous linear operator on G*
equipped with the strong dual topology.

Proof. Let ( € H, & = (F,) € Gp and set ¥ = ((n + 1)(§1Fn+1):°=0. We
first note that ¥ € G, for any ¢ < p. In fact, by direct computation we
obtain

B2, <e™CoqlCloh2l, Cpg=sup(n+ De~ =9 (4.4)
”_
Next we show that ¥ = D.®. It follows from (4.2) that

TCCQ - g ( Z (n + m) m—lc®m®an+m) oo .

€ nim! n=s0
Applying a similar estimate as in the proof of Proposition 4.1, we obtain

GCQ -¢ 266_2p | C IO exp(e e~2p | C lO) m d m
€ q' V1 = 2¢-2(p—9) P’
where ¢ < p — logv/2. Thus we have shown that (4.3) converges in norm

and the desired assertion follows. The last assertion follows from (4.4) and
general theory of locally convex spaces. 0

-0

A Gross differentiable function € (E)* is called pointwisely Gross
differentiable if there exists a weakly measurable function ¢ — ¥; € (E)*
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such that the function t — || ¥, ||, belongs to H = L*(T,v) for some p € R
and

(Dct, ¢) = [ CO) (R @) vidt),  CeH, (B (49

In that case we write ¥; = D, ®. Note that D;® is determined for almost
all t € T. The pointwise Gross derivative plays a basic role in’stochastic
analysis and similar derivatives have been introduced by many authors in
different contexts, see e.g., [6,12,15,16)].

Proposition 4.3. [1: Lemma 3.10] Every & € G* is pointwisely Gross
differentiable and D;® = ((n + 1)Fp,41(t, ), for & = (F,). Moreover, if
®=(F,)€Gpandq < p —log+/2, then D;® € G, for v-ae. t € T.

Proof. Our proof is different from the one in [1]. Consider a function
t = ¥ = ((n+1)Frya(t, )2, which is defined for almost all ¢t € T by
Fubini theorem. We note that

/ I 05 v(de) = / > nle* ™ (n + 1)%| P (8, )| v(de)

T n=0

= Z(n +1)e” e 2P=In (5 4 1)l | B L 2

n=0

<e?C2 2| < oo. (4.6)
Then ¥, € G, for almost all ¢ € T. Since || ¢ || ;0 < | ¥t ln0 < ¥,

by Lemma 3.1, we see from (4.6) that the function ¢ ~ || ¥;||gro belongs
to H = L?(T,v). Finally, (4.5) follows from Proposition 4.2 with direct
computation. Thus D;$ = ¥, for \almost allteT. O

Corollary 4.1. For ¢ € (E) we have Dip = a;¢.

It is shown by norm estimates that G* is closed under the Wick product:
n oo
3ol = (Zmanuk) , &=(F,), ¥=(G).
k=0 n=0
Then the next result is straightforward.
Proposition 4.4. For &,V € G* we have

De(®@o¥) = (D8)o¥+80(D¥), (ecH,
Di(@0%) = (Di®)o ¥ + P o(D:¥),  foralmostallteT.
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4.3. Annihilation- and Creation-Derivatives
Let Z € L((E), (E)*). It is proved that for any n € E there exists &, € (E)*
uniquely specified by
«q)m ¢§» = «E*¢177 ¢€» «¢—7I7 ¢£» ) £ €Lk
By using the Wick product we may write
&, = (E¢y) © b

Now assume that &, is Gross differentiable for all n € E. This assumption
is equivalent to that so is E*¢,, since &, o ¢, = E*¢,. If, in addition,
(D¢ ®,, ¢¢)) is the Wick symbol of some operator in L((E), (E)*) for any
¢ € H, denoted by D/ &, i.e.,

((D7E)de, duhe™ ™ = (D2, ge), &€ E, (47)

then Z is said to be differentiable in annihilation parts and DEE is called the
annihilation-derivative of Z with ¢ € H. Similarly, the creation-derivative
D?E € L((E), (E)*) is defined by
((DFE)de, $nde™ @™ = (Dc¥e, ¢a)),  EmEE,
where
T = (E¢e) 0 p—¢-

We say that = € L((E), (E)*) is qun-differentiable if DZEE € L((E), (E)*)
exists for all ( € H. The derivatives DSEE are regarded as non-commutative
extension of the Gross derivative.

Let us study the qwn-deriyativesA of an integral kernel operator. We need
notation. For Kji1,m € L(H®™, H®U+1) and ¢ € H we define (*Kj11,m €
L(H®™, H®) by

(¢ * Ki41,m)€®™, 1) = (Kiy1m®™, n® ®C), &n,¢ € H.

Similarly, for Kj m1 € E(Hé('"“), Hél) and ( € H we define Kj ,,11%( €
L(H®™, H®) by

(Kime1 * Q€™ n®0) = (Kimi1£2™ ® ¢, 1®').

Theorem 4.1. An admissible integral kernel operator is qun-differentiable.
Moreover, for any K, € L(H®™, H®) and ¢ € H we have

DC—El,m(Kl,m) = mE;,m_l(K,,m * C), ) (4.8)
DY Epm(Ki,m) = 1E1-1,m (¢ * Ki,m)- (4.9)
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Proof. For simplicity we set & = Z;,,,(Ki,m). It follows from (4.7) and
Proposition 4.4 that D E € L((E), (E)*) is characterized by

((DFE)de, dae €™ = ((DCE"dy) 0§ b
+(EG00 (Depoa) ). (410)

The right hand side being equal to

(DeE"ny b6} (D-ns BN + (E"¢n, b¢) (Ded-ns ¢
= e~ &M (DE* ¢y, de)) — (n, Q) e~ (2, B¢,

(4.10) is equivalent to

(D E)de, dn)) = (DCEdn, de)) — (n, ) (Edbe, bn))- (4.11)

As is verified by direct computation, D;Z*¢, = (h,) is given by

. el o 1" «  ®l p®(n—1)
hm+n,—1 = m(c * Kl,m)n ® —,'f;'— + <77’ C) (Kl,?-nn ) ® (n _ 1)!’
where n = 0,1,2,... (the second term vanishes for n = 0). Then the first

term of the right hand side of (4.11) becomes

(DeE*$ny ) = 3 (hmpn-1, E20mH71)
n=0
= (¢ Kf)n®, ¢otmn-0) 3 160"

n=:0

. (e n—1
+1,0) (g™, 2m Y S0
n=1

= m((K[,m * C)g@(m—'l), n®l)e(f»’7) + <17, C) (Kl,m€®m, n®l>e(€,n)
= m«El,m—l(Kl,m * €)¢£’ ¢7]» + <77, C) «E¢£, ¢17»

Therefore (4.11) becomes
<<(D£S)¢E’ ¢T)» =m ((El,m;l(Kl,m * C)¢£a ¢7I» )

from which we see that Z admits the annihilation derivative and (4.8) holds.
A similar argument can be applied to (4.9). 0
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4.4. Fock Ezpansion of an Admissible Operator

We assemble some general results on an admissible white noise operator to
discuss its qwn-differentiability in the next subsection.
As a special case of [9] we obtain

1

Lemma 4.1. Let p,q € R. For each L, € ,C(H@’",H @) there exists a
unique operator I m(Lim) € L(Gp,G,) such that

L (Lim) (61) = (Lim€®™, n®),  €n€E.
In this case, || Im(Lim) llop < VI'M! || Lim llop-

Theorem 4.2. Let p,q € R. For any E € L(Gp,G,) there exists a unique
family of operators Ly, € L(H®™, H®'), I,m > 0, such that

E= Y Im(lim), (4.12)

l,m=0

where the series converges weakly in the sense that

00

(E ¥) = > (hm(Lim)d ¥,  SEGp, YEG,.

. I,m=0

The expression (4.12) is called the chaotic ezpansion of Z. In fact, Li,m
is obtained by the formula:

1 .
Ll,m = m I, =L, (413)

where I, € L(H®™,G,) defined by InFy = (0,...,0,Fy,0,...). On the
other hand, the Fock expansion of Ij s (L;,m) is easily computed:

= (=)”
I (Lim) = D~ =~ Enttntm(I®" ® Lim). (4.14)
n=0 :

Inserting (4.14) into the chaotic expansion (4.12), we obtain the Fock ex-
pansion:

iAm (—1)"

== ¥ an (L G e ) 019
l,m=0 n=0

Theorem 4.3. Let E be an admissible white noise operator and let

o0
E= Y. Eim(Kim) (4.16)

I,m=0
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be the Fock expansion. Then for alll,m > 0 we have K} ,,, € L(H®™, H®').
Moreover, if £ € L(Gp,G,) for some p,q € R, then (4.16) converges in
L(Gg—s+ryGq—s) for any r > 0 and s > 0 satisfying
2q —2q 2p
£<2s<3r l+e e%(1 + €?P)

2 '5") rezs_r/z ) 1;631'/2-“28 <1 (4.17)

Proof. Given E € L(G,G*), we define L; ;, as in Theorem 4.2. Comparing
(4.15) and (4.16), we obtain

IAm (—1)"
Kim = Zo 1% ® Li_nmn, (4.18)
n=

from which the first assertion is obvious. We shall prove the convergence.
Suppose that Z € £(Gp,G,) with some p,q € R and denote by || E|| the
operator norm. It follows easily from (4.13) that

pm—ql

€ -
” Ll.m Hop < —7\/—'__1‘7‘1._'. HI — ||| )
Then (4.18) becomes

I,m>0.

Iam 4 ep(m—n)—q(l—n)

”Kl,m “op < Z

n:O—’r;i (l—n)'(m—n)

=21 (4.19)

Applying the Schwartz inequality, we see that the last quantity is bounded

by
< epm—al 2’: lle2an 1 i mle—2pn ) 1/2 121
= Vi'm! nl(l—n)! /] nl(m — n)! =

n=0 n=0

l
Wi (L+2)/2(1+ e )2 | E].
me N

Thus, (4.19) becomes

erm—a

<

epm—-ql _ o
| Kim llop < Vi 1+ 21+ e )2 | 2. (4.20)

Now let r,s > 0. Applying Proposition 3.1 and a simple inequality n” <
e™n!, we obtain

MNEm(Kim)ol,_,

1+e2a \'/? e 24(1 + &%) m/2 _
S 67‘/2 (7‘628_'/2) ( ,’.631‘/2_23 m = "l “I ¢ "Iq—-a-l-r . (4’21)

Hence for any 7, s > 0 satisfying (4.17), the Fock expansion (4.16) converges
in £(Gg-s+r Gg-s)- : : a
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4.5. QWN-Derivatives of an Admissible Operator

Theorem 4.4. E'verg admissible white noise operator is qun-differentiable.
More precisely, if the Fock expansion of E € L(G,G*) is given as in (4.16),
then for any {( € H we have

[ o0 |
D;E= Y mEima(Kim*(), D{E= Y IEi1m(¢*Kim),
1,m=0 l,m=0

where the right hand sides converges in the same manner as mentioned in
Theorem 4.8. Moreover, DZ'E is a continuous linear operator on L(G,G*).

Proof. Each E;,,(K; ) is admissible by Theorem 4.3 and hence qwn-
differentiable by Theorem 4.1. Then, it is sufficient to show the onvergence
of the right hand sides of DéhE. Suppose that £ € £(Gp,G,). Applying
Proposition 3.1 and (4.20), we obtain easily

I mEim—1(Kim * ol _,
1/2 -~ 2
< Jrea=str/e (iifiq_) / Jm (e 21+ ezp))m/

re2s—r/2 redr/2—2s

PENClo NP lg—sur-

This estimate is almost the same as (4.21) and the series

I,m=0

o0
Y ImEim-1(Kim x QOd 1,

converges whenever (4.17) is satisfied. In this case we have

I (D72)¢la—s CUENIClo NS Ngmsirs

with some constant C' = C(p, g, 8), which proves that D is a continuous
linear operator on £(G,G*). The argument for D;." is similar. a

4.6. Pointwise Q WN-Derivatives

A gwn-differentiable operator & € L((E), (E)") is called pointwisely qun-
differentiable if there exists a measurable map t —» DFE € L((E), (E)*)
such that ' :

((DEDde, 60) = fT (DEDSe, $NCOW(d), (e H, EneE.

The following examples support the intuitive idea (1.3) in Introduction.
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Example 4.1. For f € E* define Ko € L(E,C) and K; 4 € L(C, E*) by
Koi:€m (£,8), Kig:crcf,

respectively. The integral kernel operators

“Aj = Eou(Kon) = /Tf(t)at v(dt), A} ==E10(Kio)= Af(t)a’{ v(dt)

are respectively called annihilation and creation operators associated with
f. If f € H, both Ay and A} are pointwisely qwn-differentiable and

Dy A; = f(t)I, DfA;=0; D;A;=0, DiA};=f@)l

Example 4.2. The number Operator and the Gross Laplacian are defined
by

N=E.()= /T atasv(dt), g =Eoa(l) = /T a2 v(dt),

respectively. Then we have

DN =a;, D}N=a;, D;Ag=2a;, D}Ag=0.
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