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Asymptotic spectral analysis of the adjacency matrix of a large regular graph is
formulated within algebraic or quantum probability theory. We prove a quan-
tum central limit theorem for the quantum components of the adjacency matrices
of growing regular graphs under a weaker condition. A new example of growing
regular graphs is constructed, for which the limit is described in terms of an inter-
acting Fock space whose Jacobi parameter is periodic. The central limit measure is
obtained from the periodic continued fraction expansion of the Cauchy transform.

1 Introduction

Let {G, = (V("), E())} be a growing family of regular graphs (always assumed
to be connected), where the growing parameter v runs over an infinite directed
set. The degree of G, is denoted by «(v). For each graph G, we fix an origin
2o € V) and consider the stratification induced by the natural distance
function on the graph:

o0
v = v, v = {y e V5 8(zo,y) = n}- (1)
n=0
(V,f") = 0 may occur.) The adjacency matrix A, of G, admits a quantum
decomposition:
A, = AF + A7, (2)
which is canonically induced from the stratification (1). We are interested in
asymptotic behavior of the quantum components as ¥ — oo and study it from
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the viewpoint of algebraic probability theory. According to the stratification
(1), we define

) = VM2 Y 6, 3)
zeV{¥

where §, stands for the indicator function of the singlet {z} and those func-
tions form a complete orthonormal basis of H, = £2(V(*)). One can expect
easily that the quantum components A behave like the annihilation and cre-
ation operators on a “Fock space” spanned by the “number vectors” <I>(")
where n runs over 0,1,2,... whenever A # 0. In the limit as ¥ — oo this
guess is realized concretely in terms of quantum central limit theorem, where

the limit is described by an interacting Fock space.
To be precise we need some statistical assumptions on how the regular

graphs G, grow as v — o0. For z € V¥ we put
wi(@) ={yeViu~al, w-@=HyeViy~all. @

These are the numbers of points in the upper or lower stratum connecting

with z, respectively. The average and variance of w_(z) over V) are defined
by

w =V YT wo(a),

zev™
o2 = [Vt B (w(2) —w))?,
zev¥

respectively. We consider the following five conditions:

(A1) wf: ) (x) + w® (z) = k() for all z € V(*), in other words, there is no
edge lying in a stratum;

(A2) lim, k(v) =

(A3) for each n > 0 there exists a limit w, = lim, w ) < o0;
(A4) lim, ¢%” =0 for all n > 0;

(A5) for each n > 1 we have

W, = sup W,(,") < 00, W) = max{w_(z); z € v},

With these notations we may claim the following
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Theorem 1.1 Let {G, = (V¥), E(®)} be a growing family of regular graphs
satisfying conditions (A1)-(A5). Let (T,{\n},B*,B™) be the interacting
Fock space associated with {\,} given by A, = w; ...wn, Ao = 1. Then,

lim <<1>‘."> A A <1>‘"’> =(0;, B ... B U)r ()
N VR0 VR ST
holds for all j,k > 0 and for any choice of €1,...,ém € {£}, m > 1. Here
¥;, U, in the right hand side are number vectors of I'.
The proof is deferred in Section 5. A similar result was first obtained by

Hashimoto [9], where a growing family of Cayley graphs was discussed under
the assumptions (A1), (A2), (A5) and

(A3") for each n there exist constant numbers w, > 0 and C, > 0 indepen-
dent of v such that

{z € V{); w_(z) # wn}| < Car(v)"™
holds for all n > 1 and v.

In fact, Hashimoto [9] proved convergence of the matrix elements (5) with re-
spect to “coherent vectors” as well as “number vectors” under an assumption
slightly stronger than (A5), and clarified Gauss-Poisson interpolation investi-
gated in Hashimoto [8]. Later on we formulated in Hashimoto-Hora-Obata
[10] and Hora-Obata [17] Hashimoto’s theorem for general regular graphs and
proved Theorem 1.1 under assumptions (A1), (A2), (A3"”) and (A5). Note
that (A3") implies (A3) and (A4), but not conversely.

By virtue of (2) asymptotics of the adjacency matrix A, follows immedi-
ately from Theorem 1.1 (classical reduction). We obtain the following
Theorem 1.2 Let {G, = (V*),E®)} and (T, {\n}, B*,B~) be the same
as in Theorem 1.1. Let p be the probability measure corresponding to
(T,{A\n}, BT, B~). Then, it holds that

115“(@‘3”%(“%) (I)(()”)>u =/R:l:"'u(d:v), mz0,1,2,....

In particular, the moments of odd orders vanish and p is symmetric.

It is a natural question to characterize the class of probability measures
appearing as in Theorem 1.2. In Hashimoto-Hora-Obata [10] we examined
some Cayley graphs with our method. The standard Gaussian measure is
obtained from.the lattices ZV and the Wigner semi-circle law from the ho-
mogeneous trees associated with the free groups F. These are prototypes of
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classical and free central limit theorems, see e.g., Hiai~Petz [12], Voiculescu-
Dykema~Nica [21]. From the Coxeter groups with the off-diagonal elements
of the Coxeter matrix being > 3 the Wigner semi-circle law is obtained, see
Fendler [7] for a different derivation. From the symmetric group & with Cox-
eter generators the standard Gaussian measure is obtained. The same occurs
when &y is equipped with all the transpositions as a set of generators. On the
other hand, the Wigner semi-circle law is obtained from &y equipped with
the generators {(12), (13),...,(1N)}, see Biane [2]. No “natural” example of
growing Cayley graphs is known, from which another probability measure is
obtained. However, beyond Cayley graphs there are interesting examples. In
Section 3 we construct a new example of growing regular graphs for which the
limit is described in terms of an interacting Fock space with a periodic Jacobi
parameter. Thus the Cauchy transform (also called the Stieltjes transform) of
the corresponding probability measure admits a periodic continued fraction
expansion. Similar probability measures are derived by Bozejko [3] from a
deformation of convolution products called the r-free convolution though the
range of parameter is different.

When condition (A1) is removed, the situation becomes full of variety. For
example, the probability measures obtained in the limit are no longer sym-
metric. We know two examples from distance regular graphs: From a growing
family of Hamming graphs the standard Gaussian measure and Poisson mea-
sures are obtained, see Hashimoto—~Obata-Tabei [11]. From a growing family
of Johnson graphs an exponential distribution and geometric distributions ap-
pear, see Hashimoto-Hora-Obata [10]. While, these limit distributions were
first investigated by Hora [13] with a classical method. A general strategy of
investigating the limit distribution has been discussed for a growing family
of distance regular graphs, see Hashimoto-Hora-Obata [10]. Another type of
limit procedure has been also studied by Hashimoto [8] and Hora [14,15,16].

2 Preliminaries

For the sake of the readers’ convenience we assemble some basic notion and
notation used in Theorems 1.1 and 1.2.

2.1 Adjacency Matriz

Let G = (V,E) be a regular graph of degree 1 < K < co. When z,y € V
are connected by an edge, we write z ~ y. That z.~ z never occurs. By
assumption for each = € V the number |{y € V; y ~ }| = & is constant. In
this paper, unless otherwise specified, all graphs are assumed to be connected.
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Then, for any pair z,y € V there is a walk zg ~ 1 ~ -+ ~ & such that
z = Zo and y = T,,. In that case n is called the length of the walk. The length
of the shortest walk connecting x and y is denoted by 8(z,y) and is called
the distance between them. By definition 8(z,z) = 0. Note that d(z,y) =1
if and only if z ~ y. :

Let A = (Azy)z,yev be the adjacency matrix of G, namely, 4 is a sym-
metric matrix defined by

i, r~y,
Agy = 6
i {O, otherwise. ©)

The adjacency matrix is identified with a bounded operator acting on 2(V):
Af@ =Y f), =zeV, felV).
y~z
Note that ||A|| = k. For each z € V denote by d, the indicator function of the
singlet {z}. Then {6, ; z € V'} forms a complete orthonormal basis of £2(V).
Obviously, .
Ab, =6, zeV. (7)

Yy~

2.2 Stratification and Quantum Decomposition

We fix a point 2o € V as an origin of the graph. Then, the graph is stratified
into a disjoint union of strata:

V= U Va, Vo = {z EV; a(fvo,x) = n}a (8)
n=0
where V,, = 0 may occur. Obviously, |Vo| = 1, |Vi| = &, and |V,| < k(k—1)""!
for n > 2. . \
By the triangle inequality we see that if z € V,, and  ~ y, then y €
Va1 UV, U Vy1. In this paper we avoid the case of y € V;,, that is, we
assume throughout the following condition: '

(A1) there is no edge lying in a common stratum.

We assign to each edge z ~ y of the graph G = (V, E) an orientation com-
patible with the stratification, i.e., in such a way that z < y if z € V,, and
y € Vaq1. Then we define

Ap=1 ify>z, _ Ape=1 ify<z
A+ .= yz ) A — Yy ) 9
- 1( )y {0 otherwise, vz {0 otherwise, )



126

or equivalently,
A6, =)"6, A6 =) 5, (10)
: Y-z y=<z
Then we come to a quantum decomposition of A:
A=At + A7, (At)*=4". (11)
The former relation is checked by (7) and the latter by definition (9).

2.3 Interacting Fock Space

We refer to Accardi-Bozejko [1] for more details. Let Ag = 1,1, A2,-- 2> 0
be a sequence of nonnegative numbers and assume that if \,, = 0 occurs for
some m > 1 then A, = 0 for all n > m. According as A, > 0 for all n or
Am = 0 occurs for some m > 1, we define a Hilbert space of infinite dimension
or of finite dimension:

[ mo—1
r=Y eC¥, TI=) &C¥,
n=0 n=0

where my is the first number such that Ap,, = 0, and {¥,} is an orthonormal
basis. We call ¥,, the n-th number vector.

The creation operator Bt and the annihilation operator B~ are defined
by

B, = ’\:\'“ Uni1, n30,

An
An—l

In the case when I' is of finite dimension we tacitly understand that
B*¥,,,-1 = 0. Equipped with the natural domains, B* become closed oper-
ators which are mutually adjoint. Then I'({\,}) = (T, {A\n}, B, B~) is called
an interacting Fock space associated with {\,}. By simple computation we
have

B ¥,=0, B ¥,=

‘I’n—l, n Z 1.

B*B~¥, =0, B*B-¥,= :\i\—"— T, n>1, (12)
n-—1

B~B*¥, = ’\:'\“ ¥, n>0, (13)

B¥"g = /A, ¥, n>0. (14)
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2.4 Orthogonal Polynomials

Let u be a probability measure on R with finite moments of all orders, i.e.,
/ |$|m#(d$)<00, m=0’172)"' )
R

and {P,} the associated orthogonal polynomials normalized in such a way that

P,(z) = 2™ +.... Then there exists uniquely a pair of sequences o1, a2, - €
R and w;,ws,- -+ > 0 such that
Py(z) =1,
P1 (:B) =r—0,
2P (z) = Poy1(2) + @ng1 Pa(2) + wnPn-1(z), n 21 (15)

The pair {,}, {wn} is called the Szegd—Jacobi parameter. When the probabil-
ity measure y is supported by a finite set of exactly mo points, the orthogonal
polynomials {P,} terminate at n = mo — 1 and the Szegd-Jacobi parameter
becomes a pair of finite sequences a1,...,0m, and w1 ..., Wmo—1, where the
last numbers are determined by (15) with P,11 = 0. Note also that p is
symmetric if and only if a, = 0 for all n > 1.

Theorem 2.1 (Accardi-Bozejko [1]) Let {P,} be the orthogonal polyno-
mials with respect to p with Szegé—Jacobi parameters {an}, {wn}. Let I'({\.})
be an interacting Fock space associated with

/\o = 1, An =WW2...Wp, N > 1. (16)

Then there exists an isometry U from T({\,}) into L*(R, p) uniquely deter-
mined by

Udy =Py, UBYU*P,= P41, Q=UB*+B +an+1)U%

where Q is the multiplication operator by z densely defined in L*(R, ) and
an+1 is the operator defined by any1¥n = ant1¥n. ,

In fact, the isometry U is uniquely specified by VAL ¥, ~ P,. A question
of when U is a unitary, or equivalently when the polynomials span a dense
subspace in L?(R, p) is related to the so-called determinate moment problem,
see e.g., [6,20,22]. ‘

By Theorem 2.1, given an interacting Fock space (T, {\n}, Bt,B7), there
exists a probability measure p such that ' ' ‘

(To, (B + B~ + an1)"¥o) = /R 2™ u(dz).
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This g is unique if the corresponding moment problem is determinate. There
is a formula linking the Cauchy transform (also called the Stieltjes transfrom)
of 1 and the Szegt-Jacobi parameter {ay,}, {wn}:

G,,(z):/ u(dz) _ 1 wr wa w3 ' (17)

RZ—T 2Z—01—2Z—Q2—2—Q3—2—Q4—"""

If p is supported by a bounded interval, G,(z) is holomorphic on {|2| > r}
for some r > 0 and the continued fraction converges. Conversely, if both
{an}, {wn} are bounded sequence, then the continued fraction converges uni-
formly on {|z] > '} for some 7' > 0 and there exists a unique probability
mesure 4 such that (17) holds. In this case u is supported by a bounded
interval, see e.g., [6,22]. Unless u is supported by a bounded interval, (17) is
still useful but the situation becomes complicated, see [22].

Remark 2.2 The Cauchy transform is defined for every probability measure
p# on R without assuming existence of moments, and becomes a holomorphic
function on {Im(2) # 0}. In fact, the integral in (17) converges absolutely
and uniformly on every compact subset in that domain, see e.g., [5,22].

3 New Examples

3.1 Construction of Regular Graphs with Periodic Parameters

Theorem 3.1 Let a,b,k > 1 be integers. Define k = abk and
wi=1 ws=a, w3=b wi=a, ws=h,.... (18)

Then there ezists a k-regular graph G = (V, E) which admits a stratification
V = Uneo Va such that w_(z) = w, forz € V,, n > 1.

PRrRoOF. We shall explicitly eonstruct a k-regular graph having the de-
sired property. ‘

1° Let Vo and V; consist of a single point zo (origin) and of x points,
respectively. We draw edges connecting each point in V; and zo. Then z; has
K edges. _

2° We construct V3 and edges connecting between V; and V5. The number
of points in V; is determined by counting such edges. Since each x € V; must
have x — 1 edges connecting with points in V; and each y € V2 has a edges
connecting with points in V; by request, we have the relation: .

(k= DVi| = a|V4.
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Thus,

oy = e, | (19)

which is an integer for k = abk. We must prove that the points in V; and
those in V can be connected by edges in such a way that each point y € V2
has a edges and each z € V; has k — 1 edges. This is possible by looking at

k(k—1)

K
l‘/llzK’:—xa" |V2|:
a a

='—;-x(n-—1).

We can divide V; and V; into k/a = bk subsets:

bk bk
n=Un®, w=Uw with VOl=a, [V=x-1

i=1 i=1

For each i, we draw edges between l(i) and Vz(i) in such a way that any
pair z € Vl(“ and y € Vi,(i) is connected. For distinct 4,j there is no edge
connecting between Vl(ﬂ and ‘/2(j ). In this way, each z € V; has  edges with
w_(z) =1 and each y € V> has a edges connecting with points in V3.

3° We construct V3 and edges connecting between V5 and V3. The number
of points in V3 is determined by the relation:
(k — a)|Va| = b| V3.
Hence, in view of (19) we have |

n(r; ~1)(k - a)

vl = S

Since

k(k=1)

ab x (K«"‘(I),

|V2|= K’(K'—l) ="5(K4"‘1) %< b

a ~ ab ’ |V3| =

a similar argument as in 2° allows us to draw edges between V2 and V3 in
such a way that each point in V5 has k — a edges and each point in V3 has b
edges. In total each point in y € V; has k edges with w_(y) = a.

4° This procedure can be applied repeatedly and we obtain a k-regular
graph having the desired property, see Figure 1. In fact, the number of points
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in each stratum is given by
I‘/OI =1, II/ll =K,

(k=1) ((k—a)(x—b)\"
I%nl = ad ( ) ) n 2> 1’

a ab

(k—1)(k — a) ((»ﬁ~<l)('ﬂ—”))"—l n>1.

K
Von+1l =
I 2 +l’ ab ab

=2

Figure 1. Construction Procedure: a =2,b=:3, k=6

Remark 3.2 There are three trivial cases (i) k = 1; (ii) k =a > 2and b= 1;
(ii) k = b > 2 and a = 1. Except these cases the x-regular graph constructed
in Theorem 3.1 has infinitely many strata.

By modifying the above proof we obtain the following

Theorem 3.3 Letay,...,am,k > 1 be integers. Define k = aya3...amk and
wi=1 wr=ai, ..., Wm+1 = Am,
Wim+itl = G4, .7 2> 0, 1 <i<m.

Then there exists a k-regular graph G = (V, E) which admits a stratification
V = Unzo Va such that w—(z) =wn forz € Vo, n > 1.
8.2 Limit Distribution

Let a,b > 1 be integers fixed. For each integer k > 1 let G; be the abk-
regular graph constructed in Theorem 3.1. As is easily verified, {Gi} fulfills
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conditions (A1)-(A5) and becomes an example of Theorem 1.1. Here the
interacting Fock space describing the limit is determined by the parameter:

=1, A=wr...Wn,
where w,, is a periodic sequence given in (18). We are interested in the corre-
sponding probability measure p.
Lemma 3.4 The Cauchy transform of p is given by
(2b—1)2%2 +a—b— /2" —2(a + )22 + (a — b)?
22{(b-1)z2 +a—-b+1)} !
where Im (z) > 0 and Re(z) > 0.
PROOF. By general theory mentioned at the end of §2.4, the Cauchy
transform of p is given by the continued fraction:
1 1 a b a b
=2 2 2 - = = . 21
Gu(2) 2—2—2—2—Z—2Z—""" (21)
By using the periodicity, it is not hard to obtain a compact expression of
G,.(z) as in (20). [ |
By applying the Stieltjes inversion formula [5,22] we come to the following
Theorem 3.5 Let x(x) be the indicator function of

[~ Va~ VB -|va - VB U[[Va- VB, va+ V]

and define

Gu(2) =

(20)

_ V2(a+b)z® —zt - (a—b)?
Pas(®) = 2|z|{(b— 1)22 +a —b+1} x(@)-
Then u(dz) is given as follows:

(1) If1<b<La-1,

de) = (1- a—._—,l;ﬁ)ao(d;) + pap(@)da.

(2 Ifb=aorb=a+1,
u(dz) = pas(z)dz.
3) Ifb>a+2,

a

pde) = 3 (1- Gy ) e+ -0(d) + pus(a)ds

where £ = /(b—1-a)/(b—1).
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Remark 3.6 In (3] Bozejko introduced a one-parameter deformation of the
free product called the r-free convolution, where r runs over [0, 1]. The Cauchy
transform of the central limit measure is given by a periodic continued fraction
asin (21) witha=7r,b=1.

4 Remarks on Conditions (A1)—(A5)

4.1 Statistical Quantities for Graphs

Conditions (A3) and (A4) for n = 0,1 are automatically satisfied because of

structure of the stratification. In fact, w{”) =0, w{) =1 and ¢’ = ¢ =0

for all v. When V;, # 0 and V41 = 0 occurs, we understand that
w=0, wi=1 w21l ..., we=K21, wpp=---=0 (22
Otherwise,
wo=0, wp=1 w,>21 n>2

Note also that if V,, # @ and for some n > 1, we have w, > 1. In fact, every
z € V, is connected with at least one point in V,_;.

4.2 How Graph Grows
Roughly speaking, under conditions (A1)-(A5) the graph grows upwards by
adding new points and new vertices.
Proposition 4.1 If {G,} satisfies conditions (A1), (A2) and (A3), then for
each n > 1 there exists vo = vo(n) such that v #0 forallv > vy. In
particular, w, > 1 for alln > 1.

PROOF. We prove by contradiction. Suppose that there exist n > 1 and
v < vp < -+ =+ 00 such that V{*) # 0 and V,f_';‘l) = (. It follows from (A1)
that w_(z) = k(¥;) for all z € V,ﬁ"l"). Hence, taking the average over A
we come to w(*) = k(v;). But this is impossible by (A2) and (A3).

We show that w, > 1 for all n > 1. For each n > 1 choose vy as in the
assertion. Then, for all v > vy we have w_(z) > 1 for all z € V,S"). Hence its

average satisfies w{”) > 1 and its limit w,, > 1. 1

Proposition 4.2 If {G,} satisfies (A1), (A2) and (A5), then for eachn > 1
there exists vo = vp(n) such that every z € V,f_':)l has an edge connecting with

a point in a upper stratum whenever v > vy. In particular, ,S") # 0 for all
v 2. ’ .
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PROOF. By induction on n. The assertion for n = 1 is clear. Assume
the assertion holds up to n — 1, where n > 1. By (A1) we have

w&') (z) = K(v) — W (z), zeV¥, v>un.
By (A5),
W () 2 k() = W 2 k(W) = Wa-i.
Since W,_; is independent of v, we see by (A2) that
lim min{w{ (z); = € v} = 0.
In particular, there exists vy > vp such that
mm{w(") (z);ze V¥ >1, v>uy.

Hence if v > vy, every z € V( 1 possesses an edge connecting with a point in
an upper stratum. In that case, obviously, v) £ 0. |

4.3 Condition Equivalent to (A3) and (A4)
For a growing famlly of regular graphs {G, = V(") , E)} consider the fol-
lowing condition:

(A3') for each n there exists a constant number w, independent of v such
that

). =
lim Hz € V2"’ w-(z) = wa} _1

23
; oo (23)

We then come to

Proposition 4.3 Under (A1), (A2) and (A5), we have equivalence: (A3')
<> (A3), (A4)-

PROOF. (=) Divide V¥ into two parts:

UD ={z eV w(@)=w} Ufp={zeV{;w() #wny

sing
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where the index n is omitted for simplicity. The average of w_(z) is given by

w) = 1 Z w-(x)

(v)
lV" |z€V,S")
1 1
_-————IV(U)l Z w_(w)+wlv(y)| Z w-(x)
n eu®) " zeul)
U ,‘e'QI 1
n + w-(x).
T2l 2

U(v)

sing

Since w_(z) < W, for z € Vi) by (A5), we see that

(v) U(") U(")
o9 —nl < (1= Ll o ot < Dol .

Vi) Vi) V|
Applying Lemma 5.2 and (A3'), we obtain
Ugh
hsn IV(V)I (24)
and hence
lim w,(,") = Wn, (25)

which proves (A3). We next consider the variance. By Minkowski’s 1nequa11ty,
we obtain

W=l ¥ -y}

IV,SV)l zeV¥
1 1/2 1/2
< {"'”‘(T,’)— Z (w_(a:) __wn)2} { ) Z (wn_w(u) } ’
v A . v 2,

where the first term is estimated by using
lw—(z) = wn| L w-() + wn < Wy +wn
and the second term is a sum of a constant independent of z. Then
oW < (lUs(.;)gl)l/z (Wi +wn) + |wn — 0]
ERANTZCIV A
Taking (24) and (25) into account, we obtain lim, o) = 0, which is (A4).
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(¢<=) Let n > 1 be fixed. By (A3), for any € > 0 there exists o such
that .

W) —wa| <€, v Y.
If z € V) satisfies |w—(z) — wn| > 2¢, we have
lw-(z) = w| > |Jw-(2) — wa| = |wn — w¥| >e
Hence
fz € V&5 - () —wal 2 26} _ [{z € VA7) fw_(2) = wi)| 2 €}
Vi) - V| '
By Chebyshev’s inequality and (A4) we have
o € Vi |w-(2) ~wal 2 26}] _ (gf_i
Vi) B

We prove that w, is an integer. Suppose otherwise. Then, since w-(z) is
always an integer, we can choose a sufficiently small € > 0 such that

VW) = {z e V), lw-(z) — wn| > 2¢}.

But this contradicts (26) and we conclude w, to be an integer. Since w(z)
and w,, are all integers, we may choose a sufficiently small € > 0 such that

He e Vi w_(z) #wa}| _ {z € V5 lw—(2) — wa| > 2}
Vil B v '
As is shown in (26), the right hand side tends to 0 as v — co. Therefore
i E €V 50 @) #Fwnll _
A \2l
which proves (23). \ |

2
) - 0, vV = 00. (26)

4.4 (A4) is Necessary for an Intefacting Fock Space in the Limit

Lemma 4.4 Let ¢ = (V,E) be a regular graph with stratification V =
U2 Va satisfying (A1). Let A= A" + A~ be the quantum decomposition of
the adjacency matriz. Then for n > 0 we have

- Va
(@0, 4= A% 80) = 470l = [l (02, 4 2,), (27)

Tl (-t el

(‘I)mA.FA*q’n) = I|A°<1>n-||2 =
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The proof is a direct computation and is omitted, see also (39), (40).
Proposition 4.5 Let {G, = (V*),E®))} be a growing family of regular
graphs satisfying (A1)-(A3). Assume that there ezists an interacting Fock
space (T, {\,}, BY, B~) such that

lim <<1>£:>, \/,_ \/’_4_:_ (v)> = (¥,,B~B*¥,) (29)
K l/
lim <<1>$,">, \/'57 \/f'.%_ <1><")> = (¥, B*B~T,) (30)

hold for alln > 0. Then T is necessarily infinite dimensional and {G,} fulfills
condition (A4).

PROOF. In view of (12) and (13) we obtain

+
hm< ), Ay ("’> = ’\"“ (31)

i
“5“< s, \/__NV_ (u)>

On the other hand, with the help of Lemma 4.4 the left hand sides are written

in terms of statistical quantities depending on v.
We begin with (31). Since

)\n-}-l - lm< ,,) A_ A+ (u)>

A w0 TR0 VR

A w2, ()2
= lim —nt (12 4 50)2) (33)
v K(V)lvrsy)l ( +1 n+1)

applying Lemma 5.1 and conditions (A2), (A3), we obtain

(32)

v 1 w®) 1
lim "“() = lim (1 ) (34)
v @IV W, &(v))  wnir

Recall that w, > 1 for all n > 1, see Proposition 4.1. Then (33) becomes

/\n+1
An

1
= Wp4y + —— lim af,'ﬁ, n >0, (35)
Wnt1 ¥

which guarantees also that the limit lim, aﬂl exists. Moreover, it is clear
that A\, > 0 for all n > 0. Namely, I' is of infinite dimension.



137

We next consider (32). In a similar manner as above, we see from Lemma

5.1 that
An . < Af A
—lim {3, 2 (v)>
An—-l I'I’n " VK \/
)

o
= lim —2=2 ((x(v —-w('f 2+a(")2
e ‘"’I((() W) +al%)

= lim K—(ll%l(—y:—lL {(1 - :%3)1)2+ (%)2}

( )

Since both lim, w,,’; and lim, o (*) " are convergent, we see from (34) that

On-1
An_ wn, n>1 (36)
An—l
Finally, combining (35) and (36), we obtain lim, on » - =0forn>1. |

5 Proof of Theorem 1.1

5.1 Estimate of Strata

Let G = (V, E) be a k-regular graph with stratification V = ;2o V. We
assume (A1) is satisfied, namely there is no edge lying in a stratum.
Lemma 5.1 Let n > 0 and assume V,, # 0. Then,

W,
ma[Vasal = WVl (157 (37

PROOF. Suppbse first that Vg1 # 0. The number of edges whose
endpoints lying in V,, is x|V;|. Dividing these edges into two parts, we have

KlVal = Y wi(@) + ) w-(2)

€V, Ieyn
= 5 w.(®+ Y, w-(2) = wnsa[Vasa| +walVal - (38)
yEVns1 2E€EV,

This proves the assertion. (37) is valid also for n = 0 since we have put wo = 0.
If the stratification terminates at finite steps, say, V = VoUWV U---UV, and
Va+1 = 0, then wn 4 is not defined but at a tacit understandmg Wnt1|Vat1] =
0 we have (38).
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Lemma 5.2 Let n > 1 and assume that V,, # 0. Then,wy > 1, ... ,wp 21
and
Val = —— + 0(x""")
M. wa !
where O(k™!) is a polynomial in K of degree (n — 1).
PRrOOF. An immediate consequence from Lemma 37. |

5.2 Estimate of Error Terms

In this subsection too we fix v so that this suffix is omitted for notational
simplicity.

Explicit actions of A* on the number vectors follow directly from defini-
tions (3) and (10). We have

At Visa |\ /2
Vit (G) e

1
+W > W-(v) —wat1)dy, n20, (39)
n YE€EVa41
Ao wary [KlVaor] )
\/E@,.—(l - )( v ) Bps
1
+ W Z (Wn-1 —w-(2))8;, n2>1, (40)
n 26V
é\/;%_o (41)

In order to express the above actions in a unified manner we need some no-
tation:

f\1/2
711 Wn ("'an—ll E] n jin S ] ( )
- wa\ [ &|Val \/?
7= (1-%) (mm) . 20 (43)
g >
ST = G _1|)1 7 :4; (@-() ~wa)ly,  n21, (49)
ST = Y (wn~w_(2))8;, n>0. (45)

(K’|Vﬂ+1 )1/2 2€V,
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Then, (39) and (40) are unified as follows:

AE

VE

where n + € stands for n £ 1 according as € = . Setting
Y180 = §7, =0,

we can involve (41) in (46) too.
We next consider repeated action of A*. Suppose we are given m > 1
and €1,...,€em € {£}. Then, applying (46) repeatedly, we obtain
ACm AE
\/’“ \/" 71511:1-61’7:124-61-}-52 tee ’Y:I'-y{l—el+---+c,,. ¢"+€l+"'+5m

Aem A€k+1
+Z7r?+ex- ey dorbenc R TR Spiertotent (47)

¢, = "/:1+¢(I)n+e + S:H.e’ e=%+, n>0, (46)

Here we assumed that

n+e >0, n+e+€>0 ..., ntea+e+--+en >0 (48)
If a negative number appears among the above, we have
Atm AEl =0
f" ‘/"
In fact, let k be the first number such that n +¢; + €2 +--- + € <O0. Then
n+e€ +e+---+ex—1 = 0and e = —, and hence A%*-1 ... A*1®,, is a constant

multiple of ®p and A A%*-1 .. AP, = 0.
We must estimate of the error term of (47). For k > 1 we set

Wi = max{w_(z); ¢ € Vi }. ‘ (49)
Obviously, Wi < k. Then, for n > 1 and g > 0 we define My, 4 by

y __{max{WkIsz...qu\;lgkl,kg,...,qun}, a>1,
’q—— !

1, q=0. (50)

Lemma 5.3 Let€y,...,em € {£}, m > 1, be given arbitrarily. Let p and ¢
be the numbers of + and — in {ej,...,€nm}, respectively. Then for anyn 21
withn + p — g > 0 we have

(sema 25

KVl \ 2 Val \
< —_— .
- 0nMn+p,q ( [Vatp—dl ) (K‘IVn—d) 1)
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ProOF. It is sufficient to prove the assertion under (48). If otherwise,
the left hand side of (51) vanishes and the assertion is trivial. Note first

Afm A‘l Afm A‘l
VR R Chy m Z(w-(y) wn)—ﬁ "R Oy

yEV,

1/2 ) (w-(y) —wa)A .. A96,. (52)

(K'lv - A

We use a new notation. According as € = &, we set

y—féz— y<z €=+
y>z €=-—

For y,z € V we put

w(y; €1, . €m;2)
= |{ Z]_,...,Zm_l) € Vm—'l Y Y g 21 -63 Zg¢° " e""—;l Zm-1 53 Z}l
This counts the walks from y to z along edges with directions €3, ...,€n. Then
(52) becomes
Aem A"
ER
—m/2

= ®Vai D72 Yo Y w-(u) —wa)w@ie, . Emi 2)da

YEVR 2€Vaqp—g

Therefore,
< s Am  Aa > 1 K—™/2
n+p o \/_ \/_ B |Vn+p—q|1/2 (K|Va-1])/2
x 3 Y (w-(u) —wawyie,. .. emiz).  (53)
yEV, ZGVu.H,-
Let y € V,, be fixed. Then
> w(yien.. em;2) (54)
2€Vatpr—g
coincides with the number of walks from y to a certain point along edges with
directions €;,...,€m. Consider an intermediate point 2 € Vi in such a walk.

The number of edges from z with + direction is given by & — w_(z), which
is bounded by & uniformly. On the other hand, the edges with — direction is
given by w_(z) and bounded by W; as defined in (49). Thus (54) is obtained
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by a product of such numbers. Remind that + direction appears p times, —
direction ¢ times, and any walk starting from y € V,, to a certain point along
edges with direction €1,...,€n, contained in Vo UV U+ U Vyyp. Then, by
using (50) we have

Z w(y, €1y..43€m;y Z) < K‘pMn+p,q-
2€Va4p—g

The right hand side is independent of y € V,,. Now we come to an estimate
of (53). In fact,

(oot )

K Mnipq
< |w-(y) = wal
[Vitp—al*/? ( 'GIV I)”2 g‘;

KPM, K—™m/2 1/2
< Mnipa (Zw_(y)—wm) Va2

Varp—al'/2 (RVaD2 \ 2

oM <K2p—mlvn|>1/2( Ian )1/2
T oninpa [Vatp—ql K| V1] '

This proves inequality (51). |

Lemma 5.4 Let€y,...,em € {£}, m > 1, be given arbitrarily. Let p and q
be the numbers of + and — among {e1,...,€n}, respectively. Then for any
n>0withn+p-q2>0,

A A
Brtp-o g JROn

K2p—m|Vn| 1/2 |Vn| 1/2
< K ¥l _Wal
= ""M"“""t( Varp—al ) (n|vn+1|) (53)

PROOF. By definition (45) we have S; = 0. Hence for n = 0 the left
hand side of (55) vanishes and the assertion obviously holds. Suppose n > 1.
We note the identity:

1/2
Sy =- (:K "D SF, nx1,
n+1

which is verified by (44) and (45). Then (55) follows from (51). |
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5.8 Proof of Theorem 1.1

When we consider a growing family of graphs G,, quantities introduced in the
previous subsection depend on the growing parameter v.
Inserting (47) into the left hand side of (5), one obtains:

< g A Ay (v)>
7V T VRW)

— €1 €2 € (v) (v)
= Tntey Tnkertea +* Tntertotem <‘I)j s Brtertotem

m Am €k+1
+ Z '7::l+e . 7::l‘+el 4ote <(I)(u)a = n+e +4-oe > (56)
Pt 1 1 k-1 J \/“_‘ \/““ 1 k

The coefficients 7%, depends on v. Explicit expressions of 75, being given in
(42) and (43), with the help of Lemma 5.1 and condition (A3) we come to

limvy, = wn, liin'y;' = \/wnt1. (57)

Therefore, in order to prove that the second term of (56) vanishes as v — 0o
it is sufficient to show that

€m €k
lim <<1>‘"> A A s >=0. (58)

J ’\/"““ \/—‘— n+€1+ tex

By Lemmas 5.3 and 5.4 we have

Aem Aa K2P—™|V, 1/2 Vil 1/2
(o Gt | s ot (2) () - 0

[Vatp~dl K|Vn-1]|
Aem Aq n2p—m'Vn| 1/2 |Vn| 1/2
G —— =S < nt .
K‘D e g SE)| S obtntna (Tl ) G

(The left hand side vanishes unless j = n + p — ¢.) The constant numbers in
the right hand sides depend on v. We examine them one by one.
By (A5) we have

(v)

ntp,q < OO

sup M

It follows from Lemma 5.2 that
k2P| V|

= OB TEnm) = 0P+ = 0(1).
nrp—q
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Since O(1) is uniform in v by (A3),

K% V)|
sup —————— <
v |Vn+p—q‘
Similarly,
su —:———~—-|V’£u)| li .-__IV’SV.)l =
P W, S A G
v k(V)|V,2l N(V)|Vn+1|

Therefore, the right hand sides of (59) and (60) vanish by (A4) in the limit
as v — 0o. Consequently, only the first term of (56) contributes to the limit
and we come to

lim <<1>‘."> A A <1><")>
v I VeW) T VE) T
= liyl7:11+61'y:zz-f-ex+ez .o "7:1.':-61+~--+€.'..djyﬂ+€1+"'+€m' (61)

Using (57) we come to the final form, which is equal to
(®j,B™...B"®,).

The verification is straightforward by definition of the interacting Fock space
(T, {An}, B¥,B~). Thus we have completed the proof.
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